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SUBSPACE DESIGNS BASED ON ALGEBRAIC

FUNCTION FIELDS

VENKATESAN GURUSWAMI, CHAOPING XING, AND CHEN YUAN

Abstract. Subspace designs are a (large) collection of high-dimensional sub-
spaces {Hi} of Fm

q such that for any low-dimensional subspace W , only a small
number of subspaces from the collection have non-trivial intersection with W ;
more precisely, the sum of dimensions of W ∩Hi is at most some parameter L.
The notion was put forth by Guruswami and Xing (STOC’13) with applica-
tions to list decoding variants of Reed-Solomon and algebraic-geometric codes
and later also used for explicit rank-metric codes with optimal list decoding
radius.

Guruswami and Kopparty (FOCS’13, Combinatorica ’16) gave an explicit

construction of subspace designs with near-optimal parameters. This con-
struction was based on polynomials and has close connections to folded Reed-
Solomon codes and required large field size (specifically q � m). Forbes and
Guruswami (RANDOM’15) used this construction to give explicit constant de-
gree “dimension expanders” over large fields and noted that subspace designs
are a powerful tool in linear-algebraic pseudorandomness.

Here, we construct subspace designs over any field, at the expense of a
modest worsening of the bound L on total intersection dimension. Our ap-
proach is based on a (non-trivial) extension of the polynomial-based construc-
tion to algebraic function fields and instantiating the approach with cyclotomic
function fields. Plugging in our new subspace designs in the construction of
Forbes and Guruswami yields dimension expanders over F

n for any field F,
with logarithmic degree and expansion guarantee for subspaces of dimension
Ω(n/(log logn)).

1. Introduction

An emerging theory of “linear-algebraic pseudorandomness” studies the linear-
algebraic analogs of fundamental Boolean pseudorandom objects where the rank of
subspaces plays the role of the size of subsets. A recent work [FG15] studied the
interrelationships between several such algebraic objects such as subspace designs,
dimension expanders, rank condensers, and rank-metric codes and highlighted the
fundamental unifying role played by subspace designs in this web of connections.
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Informally, a subspace design is a collection of subspaces of a vector space F
m
q

(throughout we denote by Fq the finite field with q elements) such that any low-
dimensional subspace W intersects only a small number of subspaces from the
collection. More precisely:

Definition 1. A collection H1, H2, . . . , HM of b-dimensional subspaces of Fm
q form

an (s, L)-(strong) subspace design if for every s-dimensional subspace W ⊂ F
m
q ,∑M

i=1 dim(W ∩Hi) � L.

In particular, this implies that at most L subspaces Hi have non-trivial inter-
section with W . A collection meeting this weaker requirement is called a weak
subspace design; unless we mention otherwise, by subspace design we always mean
a strong subspace design in this paper. One would like the dimension b of each sub-
space in the subspace design to be large, typically Ω(m) for applications of interest,
L to be small, and the number of subspaces M to be large.

Subspace designs were introduced by the first two authors in [GX13], where
they used them to improve the list size and efficiency of list decoding algorithms
for algebraic-geometric codes, yielding efficiently list-decodable codes with optimal
redundancy over fixed alphabets and small output list size. A standard probabilistic
argument shows that a random collection of subspaces forms a good subspace design
with high probability. Subsequently, Guruswami and Kopparty [GK16] gave an
explicit construction of subspace designs, nearly matching the parameters of random
constructions, albeit over large fields.

Intriguingly, the construction in [GK16] was based on algebraic list-decodable
codes (specifically folded Reed-Solomon codes). Recall that improving the list-
decodability of such codes was the motivation for the formulation of subspace de-
signs in the first place! This is yet another compelling example of the heavily
intertwined nature of error-correcting codes and other pseudorandom objects. The
following states one of the main trade-offs achieved by the construction in [GK16].

Theorem 1.1 (Folded Reed-Solomon based construction [GK16]). For every ε ∈
(0, 1), positive integers s,m with s � εm/4 (here we think s to be small or even a
constant), and a prime power q > m, there exists an explicit1 collection of M =
qΩ(εm/s) subspaces in F

m
q , each of dimension at least (1 − ε)m, which form an

(s′, 2s
′

ε )-(strong) subspace design for all s′ � s.2

Note the requirement of the field size q being larger than the ambient dimension
m in their construction. To construct subspace designs over small fields, they use
a construction over a large extension field Fqr and view b-dimensional subspaces of

F
m′

qr as br-dimensional subspaces of Frm′

q . However, this transformation need not
preserve the “strongness” of the subspace design, and an (s, L)-subspace design
over the extension field only yields an (s, L)-weak subspace design over Fq.

The strongness property is crucial for all the applications of subspace designs in
[FG15]. In particular, the strongness is what drives the construction of dimension
expanders (defined below) of low degree. The weak subspace design property does
not suffice for these applications.

1By explicit we mean a deterministic construction that runs in time poly(q,m,M) and outputs
a basis for each of the subspaces in the subspace design.

2Note that we state a slightly stronger property that the bound on intersection size improves
for subspaces of lower dimension s′ � s. This property holds for the construction in [GK16] and in
fact is important for the dimension expander construction in [FG15], and so we make it explicit.
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Definition 2. A collection of linear maps A1, A2, . . . , Ad : Fn → F
n is said to be

a (b, α)-dimension expander if for every subspace V of Fn of dimension at most b,

dim(
∑d

i=1 Ai(V )) � (1 + α) · dim(V ). The number of maps d is the “degree” of
the expander, and α is the expansion factor (here we think d to be small or even a
constant).

Using the subspace designs constructed in Theorem 1.1 in a black-box fashion,
Forbes and Guruswami [FG15] gave explicit (Ω(n),Ω(1))-dimension expanders of
O(1) degree when |F| � poly(n). Here explicit means that the maps Ai are specified
explicitly, say by the matrix representing their action with respect to some fixed ba-
sis. Extending Theorem 1.1 to smaller fields will yield constant-degree (Ω(n),Ω(1))-
dimension expanders over all fields. The only known constructions of such dimen-
sion expanders over finite fields rely on monotone expanders [DW10,DS11], a rather
complicated (and remarkable) form of bipartite vertex expanders whose neighbor-
hood maps are monotone. Even the existence of constant-degree monotone ex-
panders does not follow from standard probabilistic methods, and the only known
explicit construction is a sophisticated one using the group SL2(R) by Bourgain
and Yehudayoff [BY13]. (Earlier, Dvir and Shpilka [DS11] constructed monotone
expanders of logarithmic degree using Cayley graphs over the cyclic group, yielding
logarithmic degree (Ω(n),Ω(1))-dimension expanders.)

In light of this, it is a very interesting question to remove the field size restriction
in Theorem 1.1 above, as it will yield an arguably simpler construction of constant-
degree dimension expanders over every field and might also offer a quantitatively
better trade-off between the degree and expansion factor. We note that probabilis-
tic constructions [GX13] achieve similar parameters (in fact a slightly larger sized
collection with qΩ(εm) subspaces) with no restriction on the field size (one can even
take q = 2).

Our construction. The large field size in Theorem 1.1 was inherited from Reed-
Solomon codes, which are defined over a field of size at least the code length.
Our main contribution in this work is a construction of subspace designs based on
algebraic function fields, which permits us to construct subspace designs over small
fields. By instantiating this approach with a construction based on cyclotomic
function fields, we are able to prove the following main result in this work.

Theorem 1.2 (Main Theorem). For every ε ∈ (0, 1), a prime power q, and positive
integers s,m such that s ≤ εm/4, there exists an explicit construction of M =
Ω(q�εm/(2s)�/ε) subspaces in F

m
q , each of dimension at least (1 − ε)m, which form

an
(
s′,

2s′�logq(m)�
ε

)
-strong subspace design for all s′ � s.

The bound on intersection size we guarantee above is worse than the one from
the random construction by a factor of logq m. The result of Theorem 1.1 can be
viewed as a special case of Theorem 1.2 since logq m � 1 when q > m. The factor
logq m comes out as a trade-off of the explicit construction vs. the random construc-
tion given in [GX13]. The extension field based construction using Theorem 1.1
would yield an (s,O(s2/ε))-subspace design (since an (s, L)-weak subspace design
is trivially an (s, sL)-(strong) subspace design). The bound we achieve is better for
all s = Ω(logq m). In the use of subspace designs in the dimension expander con-
struction of [FG15], s governs the dimension of the subspaces which are guaranteed
to expand, which we would like to be large (and ideally Ω(m)). The application
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of subspace designs to list decoding [GX13,GWX16] employs the parameter choice
m = O(s) in order to keep the alphabet size qm small. Therefore, our improve-
ment applies to a meaningful setting of parameters that is important for the known
applications of (strong) subspace designs.

Application to dimension expanders over small fields. By plugging the sub-
space designs of Theorem 1.2 into the dimension expander construction of [FG15],
we can get the following.

Theorem 1.3. For every prime power q and positive integer n � q, there ex-

ists an explicit construction of a
(
b = Ω

(
n

logq logq n

)
, 1/3

)
-dimension expander with

O(logq n) degree.

For completeness, let us very quickly recap how such dimension expanders may
be obtained from the subspace designs of Theorem 1.2, using the “tensor-then-
condense” approach in [FG15]. We begin with linear maps T1, T2 : F

n → F
2n,

where T1(v) = (v; 0) and T2(v) = (0; v) — these trivially achieve expansion fac-
tor 2 by doubling the ambient dimension. Then we take the subspace design of
Theorem 1.2 with m = 2n, ε = 1/2, s = 2b, and M = 12�logq m� subspaces Hi

(if b = βn/(logq logq n) for small enough absolute constant β > 0, Theorem 1.2

guarantees this many subspaces). Let Ei : F2n → F
n be linear maps such that

Hi = ker(Ei). The dimension expander consists of the 2M composed maps Ei ◦ Tj

for i = 1, 2, . . . ,M and j = 1, 2. Briefly, the analysis of the expansion in dimension
proceeds as follows. Let V be a subspace of Fn with dim(V ) = � � b, and let
W = T1(V )+T2(V ) be the 2�-dimensional subspace of F2n after the tensoring step.
The strong subspace design property implies that the number of maps Ei for which
dim(EiW ) < 4�/3 — which is equivalent to dim(W ∩ Hi) > 2�/3 — is less than
12�logq m� = M . So there must be an i for which dim(EiW ) � 4�/3, and this Ei

when composed with T1 and T2 will expand V to a subspace of dimension at least
4
3 dim(V ).

By using a method akin to the conversion of Reed-Solomon codes over extension
fields to BCH codes over the base field, applied to the large field subspace designs
of Theorem 1.1, Forbes and Guruswami [FG15] constructed (Ω(n/ logn),Ω(1))-
dimension expanders of O(logn) degree. In contrast, our construction here guar-
antees expansion for dimension up to Ω(n/(log log n)). The parameters offered
by Theorem 1.3 are, however, weaker than both the construction given in [DS11],
which has logarithmic degree but expands subspaces of dimension Ω(n), as well
as the one in [BY13], which further gets constant degree. However, we do not go
through monotone expanders which are harder to construct than vertex expanders,
and our construction works fully within the linear-algebraic setting. We hope that
the ideas in this work pave the way for a subspace design similar to Theorem 1.1
over small fields and the consequent construction of constant-degree (Ω(n),Ω(1))-
dimension expanders over all fields. In fact, all that is required for this is an
(s,O(s))-subspace design with a sufficiently large constant number of subspaces,
each of dimension Ω(m).

Construction approach. The generalization of the polynomials-based subspace
design from [GK16] to take advantage of more general algebraic function fields is
not straightforward. The natural approach would be to replace the space of low-
degree polynomials by a Riemann-Roch space consisting of functions of bounded
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pole order � at some place. We prove that such a construction can work, provided
the degree � is less than the degree of the field extension (and some other mild
condition is met; see Lemma 3.2). However, this degree restriction is a severe one,
and the dimension of the associated Riemann-Roch space will typically be too small
(as the “genus” of the function field, which measures the degree minus dimension
“defect,” will be large) unless the field size is large. Therefore, we don’t know an
instantiation of this approach that yields a family of good subspace designs over a
fixed size field.

Let us now sketch the algebraic crux of the polynomial based construction in
[GK16] and the associated challenges in extending it to other function fields. The
core property of a dimension s subspace W of polynomials underlying the construc-
tion of Theorem 1.1 is the following: If f1, f2, . . . , fs ∈ Fq[X] of degree less than
m � q − 1 are linearly independent over Fq (these s polynomials being a basis of
the subspace W ), then the “folded Wronskian,” which is the determinant of the
matrix M(f1, f2, . . . , fs) whose i, j’th entry is fj(γ

i−1X), is a non-zero polynomial
in Fq[X]. Here γ is an arbitrary primitive element of Fq. One might compare
this with the classical Wronskian criterion for linear dependence over characteristic
zero fields (and also holds when characteristic is bigger than the degree of the fi’s),

based on the singularity of the s× s matrix whose i, j’th entry is
di−1fj
dXi−1 .

One approach is to prove this claim about the folded Wronskian is via a “list
size” bound from list decoding: one can prove that for any A1, . . . , As ∈ Fq[X], not
all 0, the space of solutions f ∈ Fq[X]<m to

(1) A1(X)f(X) +A2(X)f(γX) + · · ·+As(X)f(γs−1X) = 0

has dimension at most s−1. (This was the basis of the linear-algebraic list decoding
algorithm for folded Reed-Solomon codes [Gur11,GW13].) Stating the contrapos-
itive, if f1, f2, . . . , fs are linearly independent over Fq[X], then the rows of the
matrix M(f1, f2, . . . , fs) are linearly independent, and therefore its determinant,
the folded Wronskian, is a non-zero polynomial. On the other hand, being the
determinant of an s×s matrix whose entries are polynomials of degree less than m,
the folded Wronskian has degree at most (m − 1)s. To prove the subspace design
property, one then establishes that for each subspace Hi in the collection that in-
tersects W = span(f1, . . . , fs), the determinant picks up a number of distinct roots
each with dim(W ∩ Hi) multiplicity, the set of roots for different intersecting Hi

being disjoint from each other. The total intersection bound then follows because
the folded Wronskian has at most (m− 1)s roots, counting multiplicities.

One can try to mimic the above approach for folded algebraic-geometric (AG)
codes, with fσ for some suitable automorphism σ playing the role of the shifted
polynomial f(γX). This, however, runs into significant trouble, as the bound on the
number of solutions f to the functional equation analogous to (1), A1f + A2f

σ +

· · · + Asf
σs−1

= 0, is much higher, where Ai come from certain Riemann-Roch
space. The list of solutions is either exponentially large and needs pruning via pre-
coding the folded AG codes with subspace-evasive sets [GX12] or it is much bigger
than qs−1 in the constructions based on cyclotomic function fields and narrow ray
class fields where the folded AG codes work directly [Gur10,GX15].

Let F/K be a function field where the extension is Galois with cyclic Galois
group generated by an automorphism σ. We choose the m-dimensional ambient
space V ∼= F

m
q to be a carefully chosen subspace of a Riemann-Roch space in F
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of degree � � m (specifically, we require � � m + 2g where g is the genus). We
then establish that if f1, f2, . . . , fs ∈ V are linearly independent over Fq, a certain
“automorphism Moore matrix” Mσ(f1, f2, . . . , fs) (Definition 4) is non-singular.
The determinant of this Moore matrix is thus a non-zero function in F , and this
generalizes the folded Wronskian criterion for polynomials mentioned above.

This non-singularity result is proved in two steps. First, we show that for func-
tions in V , linear independence over Fq implies linear independence over K. Then
we show that for any f1, . . . , fs ∈ F that are linearly independent over K = F σ, the
automorphism Moore matrix associated with σ is non-singular. With our hands on
the non-zero function Δ = det(Mσ(f1, f2, . . . , fs)), we can proceed as in the folded
Reed-Solomon case — the part about Δ picking up many zeroes whenever a sub-
space in the collection intersects span(f1, . . . , fs) also generalizes. The pole order of
Δ, however, is now �s instead of ms in the polynomial-based construction. This is
the cause for the worse bound on total intersection dimension in our Theorem 1.2.

Organization. We begin with a quick review of background on algebraic function
fields in general and cyclotomic function fields in particular in Section 2. We also
elaborate on the complexity aspects of computing bases of Riemann-Roch spaces
and evaluating functions at high-degree places in cyclotomic function fields — this
implies that our subspace designs can be constructed in polynomial time. We
present and analyze our constructions of subspace designs from function fields in
Section 3 — we give two criteria that enable our construction, Lemmas 3.1 and
3.2, though the former is the more useful one for us. In Section 4, we instanti-
ate our construction with specific cyclotomic function fields and derive our main
consequence for subspace designs and establish Theorem 1.2.

2. Preliminaries on function fields

Background on function fields. Throughout this paper, Fq denotes the finite
field of q elements. A function field F over Fq is a field extension over Fq in which
there exists an element z of F that is transcendental over Fq such that F/Fq(z) is
a finite extension. Fq is called the full constant field of F if the algebraic closure
of Fq in F is Fq itself. In this paper, we always assume that Fq is the full constant
field of F . We denote by F/Fq the function field F with the full constant field Fq.

Each discrete valuation ν from F to Z ∪ {∞} defines a local ring O = {f ∈ F :
ν(f) � 0}. The maximal ideal P of O is called a place. We denote the valuation ν
and the local ring O corresponding to P by νP and OP , respectively. The residue
class field OP /P , denoted by FP , is a finite extension of Fq. The extension degree
[FP : Fq] is called degree of P , denoted by deg(P ).

Let PF denote the set of places of F . A divisor D of F is a formal sum∑
P∈PF

mPP , where mP ∈ Z are equal to 0 except for finitely many P . The
degree of D is defined to be deg(D) =

∑
P∈PF

mP deg(P ). We say that D is pos-
itive, denoted by D � 0, if mP � 0 for all P ∈ PF . For a non-zero function f ,
the principal divisor (f) is defined to be

∑
P∈PF

νP (f)P . Then the degree of the
principal divisor (f) is 0. The Riemann-Roch space associated with a divisor D,
denoted by L(D), is defined by

(2) L(D) := {f ∈ F \ {0} : (f) +D � 0} ∪ {0}.
Then L(D) is a finite-dimensional space over Fq. By the Riemann-Roch theorem
[Sti08], the dimension of L(D), denoted by dimFq

(D), is lower bounded by deg(D)−
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g + 1, i.e., dimFq
(D) � deg(D) − g + 1, where g is the genus of F . Furthermore,

dimFq
(D) = deg(D)− g+ 1 if deg(D) � 2g− 1. In addition, we have the following

results [Sti08, Lemma 1.4.8 and Corollary 1.4.12(b)]:

(i) If deg(D) < 0, then dimFq
(D) = 0.

(ii) For a positive divisor G, we have dimFq
(D)− dimFq

(D−G) � deg(G), i.e.,
dimFq

(D −G) � dimFq
(D)− deg(G).

Let Aut(F/Fq) denote the set of automorphisms of F that fix every element of
Fq, i.e.,

Aut(F/Fq) = {τ : τ is an automorphism of F and ατ = α for all α ∈ Fq}.

For a place P ∈ PF and an automorphism σ ∈ Aut(F/Fq), we denote by P σ the
set {fσ : f ∈ P}. Then P σ is a place, and moreover we have deg(P σ) = deg(P ).
The place P σ is called a conjugate place of P . σ also induces an automorphsim of
Aut(FP /Fq). This implies that there exists an integer e � 0 such that ασ = αqe

for all α ∈ FP . σ is called the Frobenius of P if e = 1, i.e., ασ = αq for all α ∈ FP .
For a place P and a function f ∈ OP , we denote by f(P ) the residue class of f in
FP . Thus, we have (f(P ))q

e

= (f(P ))σ = fσ(P σ).

Background on cyclotomic function fields. Let x be a transcendental element
over Fq and denote by K the rational function field Fq(x). Let K

ac be an algebraic
closure of K. Denote by Fq[x] the polynomial ring Fq[x]. Let End(K

ac) be the ring
of homomorphisms from Kac to Kac. We define ρx(z) = zq+xz for all z ∈ Kac. For
i � 2, we define ρxi(z) = ρx(ρxi−1(z)). For a polynomial p(x) =

∑n
i=0 aix

i ∈ Fq[x],

we define ρp(x)(z) =
∑n

i=0 aiρxi(z). For simplicity, we denote ρp(x)(z) by zp(x). It

is easy to see that zp(x) ∈ Fq[x][z] is a q-linearized polynomial in z of degree qd,
where d = deg(p(x)).

For a polynomial p(x) ∈ Fq[x] of degree d, define the set

(3) Λp(x) := {α ∈ Kac : αp(x) = 0}.

As |Λp(x)| = qd = |Fq[x]/(p(x))| and Λp(x) is an Fq[x]/(p(x))-module, we have
Λp(x) � Fq[x]/(p(x)). Furthermore, Λp(x) is a cyclic Fq[x]-module [Hay74]. For any

generator λ of Λp(x), one has Λp(x) = {λA : A ∈ Fq[x]/(p(x))} and λA is a generator
of Λp(x) if and only if gcd(A, p(x)) = 1. The extension K(λ) = K(Λp(x)) is a Galois
extension over K with Gal(K(Λp(x))/K) � (Fq[x]/p(x))

∗, where (Fq[x]/p(x))
∗ is

the unit group of the ring Fq[x]/(p(x)). We use σA to denote the automorphism
of Aut(K(λ)/K) corresponding to A, i.e., λσA = λA. The size of (Fq[x]/p(x))

∗

is denoted by Φ(p(x)). If p(x) is an irreducible polynomial of degree d over Fq,
we have Φ(p(x)) = qd − 1. In this case, the extension K(Λp(x))/K is cyclic and
Gal(K(Λp(x))/K) � (Fq[x]/p(x))

∗ � F
∗
qd .

From now on in this subsection, we assume that p(x) is a monic irreducible
polynomial of degree d over Fq. The infinite place ∞ of K splits into (qd−1)/(q−1)
places of degree 1 in K(Λp(x)), each having ramification index q − 1. The zero
place of p(x) is totally ramified in K(Λp(x))/K. Furthermore, a monic irreducible
polynomial h(x) �= p(x) of Fq[x] is unramified and splits into s places of degree
r deg(h), where r is the order of h(x) in the unit group (Fq[x]/p(x))

∗ and s =
(qd − 1)/r. This implies that the zero place of x is totally inert in K(Λp(x))/K if
p(x) �= x is a monic primitive polynomial.
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Lemma 2.1 ([Hay74,Ros02]). Let p(x) be a monic irreducible polynomial of degree
d and let λ be a generator of Λp(x). Then λ is a local parameter of the unique place
P ′ of K(Λp(x)) lying over p(x), i.e., νP ′(λ) = 1. Furthermore, let OK(Λp(x)) be the

integral closure of Fq[x] in K(Λp(x)). Then {1, λ, . . . , λm−1} is an integral basis of

OK(Λp(x)) over Fq[x], where m = qd − 1.

Let ∞ denote the pole place of x in K. The following lemma determines the
principal divisor of a generator of Λp(x).

Lemma 2.2. Let p(x) be a monic irreducible polynomial of degree d and let λ be a
generator of Λp(x). Then the principal divisor (λ) is equal to

(4) (λ) = P ′ +
d∑

i=1

qi−1∑
j=1

((q − 1)(d− i)− 1)∞ij ,

where P ′ is the unique place of K(Λp(x)) lying over the zero of p(x) and
{∞ij}1�i�d,1�j�qi−1 is the set of all places of K(Λp(x)) lying over ∞ of Fq(x).

Proof. Let us first look at the poles of λ. Write λp(x)/λ =
∑d

i=0

[
p(x)
i

]
λqi−1, where[

p(x)
i

]
denotes the coefficient of λqi−1. Then

[
p(x)
i

]
is a polynomial in x of degree

qi(d−i). If a place Q ofK(Λp(x)) does not lie over∞ ofK, we claim that νQ(λ) � 0.

Otherwise, one would have νQ(λ
qd−1) < νQ

([
p(x)
i

]
λqi−1

)
for all i � 0 � d−1. This

is impossible as
∑d

i=0

[
p(x)
i

]
λqi−1 = 0.

By [Hay74, Theorem 3.2], we know that there exists a place Q of K(Λp(x)) lying

over∞ ofK such that νQ(λ) = −1 and νQ(λ
A) = (q−1)(d−i)−1 for any polynomial

A ∈ Fq[x] of degree i − 1 � d− 1. This implies that for a polynomial A of degree
i−1 � d−1 with gcd(A, p(x)) = 1, one has νR(λ) = (q−1)(d−1)−1 for R = QσB ,
where B is the unique polynomial of degree < d satisfying AB ≡ 1 mod p(x). When
A runs through all polynomials in (Fq[x]/(p(x)))

∗, σB runs through all conjugate
places lying over ∞. This means that there are exactly qi−1 places R lying over ∞
with νR(λ) = (q−1)(d−i)−1 since there are qi−1 monic polynomials of degree i−1

in (Fq[x]/(p(x)))
∗. Hence, the divisor

∑d
i=1

∑qi−1

j=1 ((q − 1)(d− i) − 1)∞ij appears

as part of the principal divisor (λ). The desired result follows from the following
facts: (i) λ has no poles other than those lying over ∞; (ii) λ is a local parameter of

P ′; and (iii) deg
(∑d

i=1

∑qi−1

j=1 ((q − 1)(d− i)− 1)∞ij

)
= −d. This completes the

proof. �

Now we show that every element in the Riemann-Roch space L(�P ′) has a unique
representation of a certain form.

Lemma 2.3. Let p(x) be a monic irreducible polynomial of degree d and let λ
be a generator of Λp(x). Put m = qd − 1. Let P ′ be the place of K(Λp(x)) lying
over p(x). Then every non-zero element f of L(�P ′) can be uniquely written as

f = p(x)−e ∑m−1
i=0 Aiλ

i for some e � 0, where Ai are polynomials of Fq[x] and not
all of them are divisible by p(x). Furthermore, deg(Ai) � (m−1)/(q−1)+de+d/2
for all 0 � i � m− 1.

Proof. If f ∈ Fq, it is clearly true. Now let f ∈ L(�P ′) \ Fq. Let νP ′(f) =
−r < 0 and put e = � r

m�. Then 0 � νP ′(p(x)ef) < m. Thus, p(x)ef belongs to
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OK(Λp(x)). By Lemma 2.1, there exists a set {Ai}m−1
i=0 of Fq[x] such that p(x)ef =∑m−1

i=0 Aiλ
i. We claim that not all Ai are divisible by p(x). Otherwise we would

have νP ′(p(x)−e ∑m−1
i=0 Aiλ

i) � −em+m > −r, and this is a contradiction.
Put g = p(x)

e
f . Let σ be a generator of the Galois group Gal(K(Λp(x))/K).

Define g = (g, gσ, . . . , gσ
m−1

). Since gσ
k

= p(x)
e
fσk ∈ p(x)

eL(�P ′), we have

ν∞ij
(gσ

k

) � ν∞ij
(p(x)

e
) � −(q − 1)de for all 0 � k � m − 1 and each infinite

place ∞ij . Let C be the m×m matrix with (k, l) entry equal to σk(λl). Let Ci be
the matrix obtained from C by replacing the i′s column with the column vector g.
Then we have Ai = det(Ci)/ det(C).

Since ν∞ij
(σk(λl)) � −1, we have ν∞ij

(det(Ci)) � −(m − 1) − (q − 1)de. As

det(C)2 = ±P , we have ν∞ij
(det(C)) = −(q − 1)d/2. Thus, we have ν∞ij

(Ai) =
ν∞ij

(det(Ci)/ det(C)) = −(m − 1) − (q − 1)de + (q − 1)d/2. This implies that
deg(Ai) � (m− 1)/(q − 1) + de+ d/2. The proof is completed. �

We next discuss how to evaluate a function at a place of higher degree. Let g(x)
be an irreducible polynomial of degree r that splits completely in K(Λp(x)). By the

Kummer Theorem [Sti08, Theorem III.3.7], the polynomial λp(x)/x is factorized
into m products of linear factors over Fq[x]/(g(x)) � Fqr . Let λ − α be a linear
factor; then there is a place Q of degree r of K(Λp(x)). To evaluate a function
f(x, λ) ∈ L(�P ′) at Q, we can simply compute f(x̄, α), where x̄ is the residue
class of x in Fq[x]/(g(x)). The evaluation of f(x, λ) at (x̄, α) is an evaluation of
a polynomial over the field Fqr of degree m = qd − 1. Thus, it is clear that the
complexity of this evaluation takes time poly(q,m, r). The above analysis gives the
following result.

Lemma 2.4. Let p(x) be a monic irreducible polynomial of degree d and let λ be
a generator of Λp(x). Let P ′ be the place of K(Λp(x)) lying over p(x). Then for
a function of f(x, λ) ∈ L(�P ′) given in the form of Lemma 2.3 and a place Q of
K(Λp(x)) of degree r that is completely splitting over K, the evaluation of f at Q
can be computed in poly(q,m, r) time.

Computing bases. Our next goal is to show that bases for the requisite bases for
our construction can be efficiently computed.

Assume that p(x) is a monic primitive polynomial of degree d in Fq[x]. Let λ be
a generator of Λp(x). Then we have the following facts:

• Every non-zero function f in L(D) has the form

(5) f = p(x)e
m−1∑
i=0

ai(x)λ
i,

where e � 0 and ai(x) ∈ Fq[x] and not all ai(x) are divisible by p(x).
• The principal divisor (λ) is

(6) (λ) = P ′ +
d∑

i=1

qi−1∑
j=1

((q − 1)(d− i)− 1)∞ij ,

where {∞ij}1�i�d,1�j�qi−1 is the set of all places lying over ∞ of Fq(x).

Let f be a function given in (5). To show that f belongs L(D), it is sufficient
to check that νP ′(f) � −�/d and ν∞ij

(f) � 0 for all places i, j.
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Let i0 be the smallest number in [0,m − 1] such that ai(x) is not divisible by
p(x). Then we have νP ′(f) = −em+ i0. Thus, we have −em+ i0 � −

⌈
2g+m−1

d

⌉
=

−m+
⌊
m−q+1
d(q−1)

⌋
. This implies that either e = 0 (in this case f ∈ Fq) or e = 1 and

i0 �
⌊
m−q+1
d(q−1)

⌋
.

To consider ν∞ij
(f), we note that ti := (xd−iλ)−1 is a local parameter of ∞ij

for all i, j. Assume that 0 = λp(x)/λ = λm + cm−1(x)λ
m−1 + · · ·+ c1(x)λ+ c0(x) ∈

Fq[x][λ]. Then we get an equation

(7) x−m(d−i)t−m
i + x−(m−1)(d−i)cm−1(x)t

−(m−1)
i + · · ·+ x−(d−i)t−1

i + c0(x) = 0.

Let the local expansion of x at ∞ij be

(8)

−1∑
k=1−q

αkt
−k
i + a(ti)

for some αi ∈ Fq and a(x) ∈ Fq[x]. Substituting x with local expansion of (8) into
(7) to solve αk, then substituting (8) into (5) we get

(9) f =

−1∑
k=−r

βkt
−k
i + b(ti)

for some integer r � 1, βk ∈ Fq, and b(x) ∈ Fq[x]. Note that βk is a linear
combination of coefficients of ai(x).

The genus of the function field K(Λp(x)) is g = 1
2

(
d− 2 + q−2

q−1

)
(qd−1)+1. Put

D =
⌈
2g+m−1

d

⌉
P ′. Let Q′ be the unique place of K(Λp(x)) lying over x. It is clear

that � = deg(D) � 2g +m. Thus, dimFq
(D − Q′) = deg(D)−m − g + 1. Choose

V ⊆ L(D) such that V and L(D −Q′) are a direct sum of L(D).
In conclusion, f in the form (5) belongs to L(D) if and only if (i) (a) f ∈ Fq

or (b) e = 1 and ai(x) is divisible by p(x) for all 0 � i <
⌊
m−q+1
d(q−1)

⌋
; (ii) the local

expansion of f in (9) satisfies βk = 0 for all −r � i � d(q − 1) + 1. Furthermore, f
in the form (5) belongs to L(D−Q′) if and only if in addition f satisfies that ai(x)
is divisible by x for all 0 � i � m− 1.

Determining f is equivalent to finding ai(x). As ai(x) are divisible by p(x)
(ai(x) are divisible by x as well if f ∈ L(D − Q′)) and the linear combination βk

of coefficients of ai(x) are equal to 0, we can solve ai(x) through a homogenous
equation system of about m2 variables that are coefficients of ai(x). Therefore,
one can find a basis of V in poly(q,m) time. Summing the above analysis gives us
Lemma 2.5.

Lemma 2.5. Let p(x) be a monic primitive polynomial of degree d and let λ be
a generator of Λp(x). Let P ′, Q′ be the places of K(Λp(x)) lying over p(x) and x,

respectively. Put D =
⌈
2g+m−1

d

⌉
P ′ with m = qd−1. Then a basis of a vector space

V satisfying V ⊕ L(D −Q′) = L(D) can be computed in poly(q,m) time.

3. Construction of subspace design

3.1. Moore determinant. The main purpose of this subsection is to provide a
function, namely the determinant of a “Moore” matrix, that is guaranteed to be
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non-zero when s functions f1, f2, . . . , fs in a function field F are linearly indepen-
dent over Fq. This will provide the necessary generalization of the fact that the
folded Wronskian is non-zero when f1, . . . , fs ∈ Fq[X] of degree less than (q − 1)
are linearly independent over Fq.

Lemma 3.1. Let F/K be a finite field extension. Suppose that Q′ is a place of
F lying above a rational place Q of K. Let D be a positive divisor of F with
Q′ �∈ supp(D). If V is an Fq-subspace of L(D) such that V ∩ L(D − Q′) = {0},
then f1, . . . , fs ∈ V are Fq-linearly independent if and only if they are linearly
independent over K.

Proof. The “if” part is clearly true. Now assume that f1, . . . , fs ∈ V are Fq-linearly
independent. Suppose that there exist functions A1, . . . , As ∈ K such that not all
of them are equal to 0 and

(10)
s∑

i=1

Aifi = 0.

By the Strong Approximation Theorem [Sti08, Theorem I.6.4], we can multiply Ai

with a common non-zero function B in K such that the only possible pole of AiB
is Q for all i = 1, 2, . . . , s. Thus, without loss of generality, we may assume that
νP (Ai) � 0 for all places P �= Q of K. Let a = max{−νQ(Ai) : Ai �= 0, 1 � i � s}.
Then we have Ai ∈ L(aQ) ⊂ K for all 1 � i � s. Since Q is a rational place, one
can find an Fq-basis y1, . . . , yr of L(aQ) such that the pole orders −νQ(yj) are
strictly increasing.

Thus, Ai can be expressed as
∑r

i=1 aijyj for some aij ∈ Fq. We rewrite (10) into
the identity

(11)
r∑

j=1

(
s∑

i=1

aijfi

)
yj = 0.

As
∑s

i=1 aijfi ∈ V ⊆ L(D) and V ∩ L(D − Q′) = {0}, we know that either∑s
i=1 aijfi = 0 or

νQ′

(
s∑

i=1

aijfi

)
= 0, and hence νQ′

((
s∑

i=1

aijfi

)
yj

)
= νQ(yj)e(Q

′|Q),

where e(Q′|Q) denotes the ramification index of Q′ over Q. As the values νQ′(yj)
for j = 1, 2, . . . , s are distinct, this implies that

∑s
i=1 aijfi = 0 for all 1 � j � r.

Therefore, aij = 0 for all 1 � i � s and 1 � j � r since f1, f2, . . . , fs are Fq-linearly
independent. So A1 = · · · = As = 0. This is a contradiction and the proof is
completed. �

The above lemma provides a sufficient condition under which Fq-linear indepen-
dence of a set f1, . . . , fs ∈ L(D) of functions is equivalent to K-linear independence.
Now we give an alternative condition although we will mainly use Lemma 3.1 in
this paper.

Lemma 3.2. Let F/K be a finite field extension of degree n < +∞. Suppose that
there exists a rational place Q in K such that there is only one place Q′ of F lying
above Q. Let D be a positive divisor of F with Q′ �∈ supp(D) and deg(D) < n.
Then f1, . . . , fs ∈ L(D) are Fq-linearly independent if and only if they are linearly
independent over K.
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Proof. The “if” part is clear. Now assume that f1, . . . , fs ∈ L(D) are Fq-linearly
independent. Suppose that there would exist functions A1, . . . , As ∈ K such that
not all Ai were non-zero and

(12)
s∑

i=1

Aifi = 0.

We are going to derive a contradiction.
As in the proof of Lemma 3.1, we may assume that νP (Ai) � 0 for all places

P �= Q of K. Let a = max{−νQ(Ai) : Ai �= 0, 1 � i � s}. Then we have
Ai ∈ L(aQ) ⊂ K for all 1 � i � s. Since Q is a rational place, one can find an Fq-
basis y1, . . . , yr of L(aQ) such that the pole orders −νQ(yj) are strictly increasing
as j increases from 1 to r.

Thus, Ai can be expressed as
∑r

i=1 aijyj for some aij ∈ Fq. We rewrite (12) into
the identity

(13)
r∑

j=0

(
s∑

i=1

aijfi

)
yj = 0.

Assume that b is the largest index such that
∑s

i=1 aibfi �= 0. Such an index must
exist as not all aij ’s are 0, and f1, f2, . . . , fs are linearly independent over Fq. Then
the above identity becomes

(14) −
b−1∑
j=0

(
s∑

i=1

aijfi

)
yj =

(
s∑

i=1

aibfi

)
yb.

Since Q′ is the unique place lying above Q, we have e(Q′|Q) deg(Q′) = n. Then, the
fact that

∑s
i=1 aijfi ∈ L(D) implies that either

∑s
i=1 aijfi = 0 or νQ′ (

∑s
i=1 aijfi)

≤ deg(D)
deg(Q′) < e(Q′|Q). Therefore, the right hand side of (14) gives

νQ′

((
s∑

i=1

aibfi

)
yb

)
� deg(D)

deg(Q′)
+ νQ(yb)e(Q

′|Q)

< e(Q′|Q) + (νQ(yb−1)− 1)e(Q′|Q) = νQ(yb−1)e(Q
′|Q),

while the left hand side of (14) gives

νQ′

⎛
⎝−

b−1∑
j=0

(
s∑

i=1

aijfi

)
yj

⎞
⎠ � min

1�j�b−1
νQ′(yj) = νQ(yb−1)e(Q

′|Q).

This is a contradiction and the proof is completed. �

Remark 1. The requirement of deg(D) < [F : K] = n in Lemma 3.2 makes it
difficult to compute the dimension of L(D), as the genus g of F is usually larger
than n, while in Lemma 3.1, there is no such requirement. When deg(D − Q′) �
2g − 1 and V ⊕ L(D − Q′) = L(D), then by the Riemann-Roch theorem we have
dimFq

(V) = dimFq
(D)− dimFq

(D −Q′) = deg(Q′).

For each element σ ∈ Aut(F/Fq), denote by F σ the fixed field by 〈σ〉, i.e.,
F σ = {x ∈ F : xσ = x}. By the Galois theory, if σ has a finite order, then F/F σ

is a Galois extension and Gal(F/F σ) = 〈σ〉.
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Definition 3 (Moore Matrix). Let F/Fq be a field extension. Let f1, . . . , fs be ele-

ments of F . The Moore Matrix is defined byM(f1, . . . , fn)=

⎛
⎜⎜⎜⎝

f1 · · · fs
fq
1 · · · fq

n
...

. . .
...

fqs−1

1 · · · fqs−1

s

⎞
⎟⎟⎟⎠.

It is a well-known fact that f1, . . . , fs are linearly independent over Fq if and
only if the Moore Determinant det(M(f1, . . . , fs)) is non-zero.

Now we generalize the above Moore matrix as follows.

Definition 4 (Automorphism Moore Matrix). Let F/Fq be a field extension. Let σ
be an automorphism in Aut(F/Fq). Let f1, . . . , fs be elements of F . The σ-Moore

matrix Mσ(f1, . . . , fs) is defined by Mσ(f1, f2, . . . , fs) =

⎛
⎜⎜⎜⎝

f1 · · · fs
fσ
1 · · · fσ

s
...

. . .
...

fσs−1

1 · · · fσs−1

s

⎞
⎟⎟⎟⎠.

Remark 2. If σ is the usual Frobenius automorphism, i.e., fσ = fq for all f ∈ F ,
then we have that det(Mσ(f1, . . . , fs)) �= 0 if and only if f1, . . . , fn are linearly
independent over F σ = Fq.

Our next theorem can be seen as a generalization of the result given in Remark 2.

Lemma 3.3. Let σ ∈ Aut(F/Fq). Let f1, . . . , fs ∈ F . Then the σ-Moore determi-
nant det(Mσ(f1, f2, . . . , fs)) equals 0 if and only if f1, . . . , fs are linearly dependent
over F σ.

Proof. Let us prove the “if” part first. Assume that f1, . . . , fs are linearly depen-
dent over F σ. Then there exist functions A1, . . . , As ∈ F σ such that A1, . . . , As ∈
F σ are not all zero and

(15) A1f1 + · · ·+Asfs = 0.

For each 0 � i � s − 1, let automorphism σi act on both sides of (15). Then we
have

(16) A1f
σi

1 + · · ·+Asf
σi

s = 0.

Note that in the above equation, we use the fact that Aσi

j = Aj . The equation (16)
implies that (A1, . . . , As) is a non-zero solution of Mσ(f1, . . . , fs)z = 0. Hence, we
conclude that det(Mσ(f1, f2, . . . , fs)) = 0.

Next we prove the “only if” part by induction. It is clearly true for the case where
s = 1. Now assume that it holds for s−1. Suppose that det(Mσ(f1, f2, . . . , fs)) = 0
and f1, f2, . . . , fs are linearly independent over F σ. We will derive a contradiction.

As det(Mσ(f1, f2, . . . , fs)) = 0, there exist A1, . . . , As ∈ F such that not all
A1, . . . , As are equal to 0 and

A1f
σi

1 + · · ·+Asf
σi

s = 0, for all i ∈ {0, . . . , s− 1}.

Without loss of generality, we may assume that A1 �= 0. Let Bi =
Ai

A1
∈ F , and we

have

(17) fσi

1 + B2f
σi

2 + · · ·+Bsf
σi

s = 0, for i ∈ {0, . . . , s− 1}.
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Let σ act on both sides of (17). Then

(18) fσi+1

1 +Bσ
2 f

σi+1

2 + · · ·+Bσ
s f

σi+1

s = 0, for i ∈ {0, . . . , s− 2}.
By subtracting the i’th equation in (18) from the (i + 1)’th equation in (17), we
obtain

(19) (B2 −Bσ
2 )f

σi+1

2 + · · ·+ (Bs −Bσ
s )f

σi+1

s = 0, for i ∈ {0, . . . , s− 2}.
As f2, . . . , fs are linearly independent over F σ, by the induction hypothesis, we
have det(Mσ(f2, . . . , fs)) �= 0, which implies that

det(Mσ(f
σ
2 , . . . , f

σ
s )) =

(
det(Mσ(f2, . . . , fs))

)σ �= 0 .

But then the linear dependence (19) implies that Bi − Bσ
i = 0 for all 2 � i � s.

Thus, Bi ∈ F σ and (17) gives a non-trivial linear dependence of f1, f2, . . . , fs over
F σ, a contradiction. �

Combining Lemmas 3.1 and 3.3 gives the following.

Corollary 3.4. Assume that the conditions in Lemma 3.1 are satisfied with K =
F σ. Then for f1, f2, . . . , fs ∈ V ⊆ L(D), the σ-Moore determinant

det(Mσ(f1, f2, . . . , fs)) = 0

if and only if f1, f2, . . . , fs are linearly dependent over Fq.

Combining Lemmas 3.2 and 3.3 gives the following.

Corollary 3.5. Assume that the conditions in Lemma 3.2 are satisfied with K =
F σ. Then for f1, f2, . . . , fs∈L(D), the σ-Moore determinant det(Mσ(f1, f2, . . . , fs))
= 0 if and only if f1, f2, . . . , fs are linearly dependent over Fq.

Remark 3. In [GK16], the function field F is the rational function field Fq(x). The
automorphism σ ∈ Aut(F/Fq) is given by x �→ γx, where γ is a primitive element
of F

∗
q . It is clear that the order of σ is q − 1. The fixed field F σ is Fq(x

q−1).
Thus, the degree [F : F σ] of extension F/F σ is q − 1. Now for m < q − 1, we
consider the Riemman-Roch space L((m− 1)P∞), where P∞ is the unique pole of
x. Then L((m−1)P∞) in fact consists of all polynomials in Fq[x] of degree at most
m − 1. It is clear that ((m − 1)P∞)σ = (m − 1)P∞. Furthermore, the rational
place y− γ of F σ is fully inert in F , where y = xq−1. This is because xq−1 −α lies
over y − α and xq−1 − α has degree q − 1. Thus, all conditions in Lemma 3.2 are
satisfied. Therefore, by Corollary 3.5 for a set of polynomials f1, f2, . . . , fs in Fq[x]
of degree at most m − 1, the σ-Moore determinant det(Mσ(f1, f2, . . . , fs)) = 0 if
and only if f1, f2, . . . , fs are linearly dependent over Fq. This is exactly the result of
Lemma 12 of [GK16]. Note that the Moore determinant is called a folded Wronskian
determinant in [GK16].

3.2. Construction. Let σ ∈ Aut(F/Fq) be an automorphism of a finite order. Let
D be a divisor of F such that Dσ = D. Assume that all the conditions in Lemma
3.1 are satisfied. Recall V ⊆ L(D) such that V ∩ L(D −Q) = {0}.

For each place P ∈ PF such that P �∈ supp(D) and P, P σ−1

, . . . , P σ−(t−1)

are
distinct, we define the subspace HP :
(20)

HP ={f ∈ V : f(P σ−i

) = 0 for each i ∈ {0, . . . , t− 1}}=V ∩ L
(
D −

t−1∑
i=0

P σ−i

)
.



SUBSPACE DESIGNS 8771

Recall that f(P ) is defined to be the residue class of f in the residue field OP /P .
Hence, it is clear that

dimFq
(HP ) � dimFq

(V)+dimFq

(
D −

t−1∑
i=0

P σ−i

)
−dimFq

(D) � dimFq
(V)−t deg(P ).

Let f(P )σ = f(P )q
e

for some integer e � 0. Thus, we have fσi

(P σi

) = f(P )σ
i

=

f(P )q
ei

for all integers i � 0.

Define SP = {P σ−i

: i ∈ {0, . . . , t − 1}}, and denote by Fr a set of places P
with degree r such that SP are disjoint and |SP | = t.

Theorem 3.6. For any integers s, t with 1 � s � t, the collection (HP )P∈Fr
of

subspaces of V, each of codimension at most rt, is an
(
s, �s

r(t−s+1)

)
strong subspace

design, where � = deg(D).

Proof. Let W ⊆ V be an Fq-subspace of dimension s. Let f1, . . . , fs be a basis for
W . Denote the dimension dimFq

(W ∩HP ) by dP . Let {g1, . . . , gdP
} be a basis of

W ∩HP . Extend this basis to a basis {g1, . . . , gdP
, gdP+1, . . . , gs} of W . Then it is

clear that

(21) det(Mσ(f1, . . . , fs)) = b det(Mσ(g1, . . . , gs))

for some b ∈ F
∗
q .

For any g ∈ W ∩HP and any i, j with 0 � i � s− 1 and 0 � j � t− s, we have

g(P σ−(i+j)

) = 0, i.e.,

(22) 0 = (g(P σ−(i+j)

))q
ei

= (g(P σ−(i+j)

))σ
i

= gσ
i

(P σ−j

).

By definition of determinants, we have

det(Mσ(g1, . . . , gs)(P
σ−j

)) =
∑
π∈Ss

sgn(π)
s−1∏
i=0

gσ
i

π(i)(P
σ−j

),

where Ss is the symmetric group. By (22), νP−j (gπ(i)) � 1 whenever π(i) ∈
{1, . . . , dP }. This implies that

νPσ−j

(
sgn(π)

s−1∏
i=0

gσ
u

π(i)

)
� dP

for all π. Hence, νPσ−j (Mσ(g1, . . . , gs)) � dP for all j ∈ {0, 1, . . . , t − s}. In
conclusion, we have

Mσ(f1, . . . , fs) ∈ L

⎛
⎝sD −

∑
P∈Fr

t−s∑
j=0

dPP
σ−j

⎞
⎠ .

As Mσ(f1, . . . , fs) is a non-zero function, we must have

�s = deg(sD) ≥
∑
P∈Fr

dP r(t− s+ 1) ≥
∑
P∈Fr

r(t− s+ 1) dim(W ∩HP ).

The desired result follows. �
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So far in this subsection, we have made use of Lemma 3.1 and Corollary 3.4
for construction of subspace designs. We can also make use of Lemma 3.2 and
Corollary 3.5 to construct subspace designs. Let D be a positive divisor of F
such that Dσ = D and deg(D) < [F : F σ]. For each place P ∈ PF such that

P �∈ supp(D) and P, P σ−1

, . . . , P σ−(t−1)

are distinct, we define the subspace IP :

(23) IP = {f ∈ L(D) : f(P σ−i

) = 0 for each i ∈ {0, . . . , t− 1}}.

We present the following result without proof as it is very similar to the one of
Theorem 3.6.

Theorem 3.7. For any integers s, t with 1 � s � t, the collection (IP )P∈Fr

of subspaces of L(D), each of codimension at most rt, is an
(
s, �s

r(t−s+1)

)
strong

subspace design, where � = deg(D).

Remark 4. To get a strong subspace design from our construction, one requires a
function field F with an automorphism σ ∈ Aut(F/Fq) of larger order; i.e., we want
m := [F : F σ] to be large. However, it was recently shown in [MX17] that genus g
of F is at least Ω(m logq m). In the next section, we will make use of a cyclotomic

function field F with g ≈ 1
2m logq m. This means that the choice of our function

fields is already optimized up to a constant fraction.

3.3. Picking the places indexing the subspaces. To obtain a large set Fr of
places which define the subspaces in Theorems 3.6 and 3.7, we consider those places

P that split completely in F/F σ. Thus, P, P σ−1

, . . . , P σ−(t−1)

are distinct as long
as t � [F : F σ] = ord(σ).

Lemma 3.8. Let P be a place of degree r in F with gcd(r, [F : F σ]) = 1. If P is
unramified in F/F σ, then P splits completely in F/F σ.

Proof. Let R be the place of F σ that lies under P , which has inertia degree f(P |R).
As r = deg(P ) = f(P |R) deg(R) and f(P |R)|[F : F σ], we must have f(P |R) = 1
and deg(R) = r. Since P is unramified, the desired result follows. �

In view of the above result, we can choose Fr as follows. Let r be coprime to
n := ord(σ). Let P1, . . . , PN be all non-conjugate places of degree r that are not

ramified. Then for each i ∈ {1, 2, . . . , N}, Pi, P
σ
i , . . . , P

σn−1

i are all distinct. Thus,
we can form �n/t� sets SPi

, S
Pσ−t

i
, . . . , S

Pσ−t(�n/t�−1)

i

that are pairwise disjoint. On

the other hand, by [Sti08, Corollary 5.2.10(a)] there are at least qr

r − (2 + 7g) q
r/2

r
places of degree r, where g is the genus F . Hence, if r � logq(2 + 7g) and not

many places of degree r are ramified, we have roughly 1
rtq

r such sets SP . In fact,
for our examples based on cyclotomic function fields in the next section, there are
no places of degree r that are ramified.

4. Subspace design from cyclotomic function fields

In this section, we will present subspace design from the construction given in
Section 3 by applying cyclotomic function fields. We start with the subspace design
in an ambient space of smaller dimension.
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The small dimension case. If deg(D) is smaller than n = [F : F σ] and n is
smaller than the genus g(F ) of F , in general it is hard to compute dimension of
the Riemann-Roch space L(D). Therefore, we cannot use the construction given in
Theorem 3.7. In this subsection, we apply Theorem 3.7 to the case where we can
estimate the dimension of L(D).

Let F be the rational function field Fq(x). Let σ ∈ Aut(F/Fq) be given by
x �→ γx, where γ is a primitive element of F∗

q . By Remark 3 and Theorem 3.7, one
can obtain the subspace design given in [GK16]. Below we show that the subspace
design given in [GK16] can be realized by using cyclotomic function fields.

Put K = Fq(x). Let p1(x) be a monic linear polynomial. For instance, we
can simply take p1(x) = x. Then the cyclotomic function field F1 := K(Λp1

) is a
cyclic extension over K with Gal(F1/K) � F

∗
q . In fact, F1 = K(λ) = Fq(λ) with

λ satisfying λq−1 + x = 0. Thus, K = Fq(λ
q−1). Let γ be a primitive root of Fq

and let σ ∈ Gal(F/K) be defined by λσ = λγ = γλ. This gives exactly the same
function fields and automorphism σ as in Remark 1. Therefore, we conclude that
this cyclotomic function field also realizes the subspace design given in [GK16].

Next we consider a monic primitive quadratic polynomial p2(x) = x2 + αx + β
with α, β ∈ Fq. Then the cyclotomic function field F2 := K(Λp2

) is a cyclic
extension over K with Gal(F2/K) � (Fq[x]/(p2)

∗. In fact, F2 = K(λ) with λ

satisfying λq2−1 + λq−1(xq + x+ α) + x2 + αx+ β = 0 (see [MXY16]). Let σ be a
generator of Gal(F2/K). Then by the Galois theory, the fixed field F σ

2 is the rational

function field K = Fq(x). The genus of the function field F2 is g(F2) =
(q−2)(q+1)

2
[Hay74,MXY16].

The zero of p2(x) is the unique ramified place in Fq(x) and it is totally ramified.
Let P ′ be the unique place of F2 that lies over the zero of p2(x). Let � be an
even positive integer with � < q2 − 1 and let D = (�/2)P ′. Then deg(D) = � and
Dσ = D. Furthermore, we know that the zero of (x − α) is fully inert in F2/K.
Thus, all the conditions in Lemma 3.2 are satisfied. By Theorem 3.7, we have the
following result.

Theorem 4.1. For all positive integers s, r, t,m and prime powers q satisfying
s ≤ t ≤ m = ζq2 for some ζ ∈ (0, 1/2], the above construction yields a collection

of M = Ω( q
r

rt ) spaces I1, . . . , IM ⊂ F
m
q , each of codimension rt, which forms an(

s′, (1+1/(2ζ))ms′

r(t−s′+1)

)
strong subspace design for all s′ � s.

Proof. Choose � such that the dimension of L((�/2)P ′) is m = ζq2. By the
Riemman-Roch Theorem, we have ζq2 � deg((�/2)P ′) − g(F2) + 1, i.e., � ≤
ζq2 + g − 1 ≤ (1/2 + ζ)q2. The desired result follows from Theorem 3.7. �

The large dimension case. In this subsection, we will make use of Theorem 3.6
due to large genus. Let p(x) ∈ Fq[x] be a monic primitive polynomial of degree
d � 2. Consider the cyclotomic function field F := K(Λp(x)), where K is the
rational function field Fq(x). Then F/K is a Galois extension with Gal(F/K) �
(Fq[x]/(p(x)))

∗. Thus, Gal(F/K) is a cyclic group of order qd − 1. Let σ be
a generator of this group. Then by the Galois theory, the fixed field F σ is the
rational function field Fq(x).

The zero of p(x) is the unique ramified place in Fq(x) and it is totally ramified.
Let P ′ be the unique place of F lying over the zero of p(x). Let Q′ be the unique
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place of F that lies over the zero of x. Since Q′ is totally inert, we have deg(Q′) =
[F : F σ] = qd − 1 := m.

The genus of the function field F is g = 1
2

(
d− 2 + q−2

q−1

)
(qd − 1) + 1. Put

D =
⌈
2g+m−1

d

⌉
P ′. Then � = deg(D) � 2g + m and hence dimFq

(D − Q′) =
deg(D − Q′) − g + 1. Choose V ⊆ L(D) such that V and L(D − Q′) are a direct
sum of L(D). Thus, we have V ∩ L(D − Q′) = {0} and dimFq

(V) = dimFq
(D) −

dimFq
(D −Q′) = qd − 1 = m.

Thus, all the conditions in Lemma 3.1 are satisfied. By Theorem 3.6, we have
the following.

Theorem 4.2. For all positive integers s, r, t, d,m and prime powers q satisfying
gcd(r,m) = 1 and s ≤ t ≤ m/r = (qd − 1)/r, there is an explicit collection of

M = Ω(m·qr
rt ) spaces H1, . . . ,HM ⊂ F

m
q , each of codimension at most rt, which

forms an (s′, (d−1/(q−1))ms′

r(t−s′+1) )-strong subspace design for all s′ � s. Furthermore,

the subspace design can be constructed in poly(q,m, r) time.

Proof. The subspace design property follows from Theorem 3.6 since � = deg(D) �
(d− 1/(q − 1))m. The construction of the subspace design mainly involves finding
a basis of V and evaluations of functions at places of degree r. We have described
how to compute a basis in Lemma 2.5 and how to evaluate a function of a high
degree place in Lemma 2.4. The places of degree r defining the subspaces in the
subspace design can be computed as described in Section 3.3. We can enumerate
over all degree r irreducible polynomials R ∈ Fq[x] by brute force in qO(r) time.
None of these places are ramified, and by Lemma 3.8 each of these places R splits

completely into m places of degree r, say {P σi−1 | 1 � i � m}, in F . So we can

pick b = �m
t � of these places P, P σt

, . . . , P σ(b−1)t

and define a particular subspace
of codimension rt associated with each of them as in (20). �

By setting t ≈ 2s and r ≈ � εm
2s � in Theorem 4.2, we obtain the Main Theorem 1.2.
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