Nonsymmetric Macdonald polynomials and a refinement of Kostka–Foulkes polynomials
HTML articles powered by AMS MathViewer
- by Sami Assaf PDF
- Trans. Amer. Math. Soc. 370 (2018), 8777-8796
Abstract:
We study the specialization of the type A nonsymmetric Macdonald polynomials at $t=0$ based on the combinatorial formula of Haglund, Haiman, and Loehr. We prove that this specialization expands nonnegatively into the fundamental slide polynomials, introduced by the author and Searles. Using this and weak dual equivalence, we prove combinatorially that this specialization is a positive graded sum of Demazure characters. We use stability results for fundamental slide polynomials to show that this specialization stabilizes and to show that the Demazure character coefficients give a refinement of the Kostka–Foulkes polynomials.References
- Per Alexandersson and Mehtaab Sawhney, A major-index preserving map on fillings, Electron. J. Combin. 24 (2017), no. 4, Paper No. 4.3, 30. MR 3711036, DOI 10.37236/6893
- Sami Assaf and Anne Schilling, A Demazure crystal construction for Schubert polynomials, Algebraic Combinatorics 1 (2018), no. 2, 225–247.
- Sami Assaf and Dominic Searles, Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams, Adv. Math. 306 (2017), 89–122. MR 3581299, DOI 10.1016/j.aim.2016.10.015
- Sami H. Assaf, Weak dual equivalence for polynomials, arXiv:1702.04051.
- Sami Hayes Assaf, Dual equivalence graphs, ribbon tableaux and Macdonald polynomials, ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)–University of California, Berkeley. MR 2710706
- Sami H. Assaf, Dual equivalence graphs I: A new paradigm for Schur positivity, Forum Math. Sigma 3 (2015), Paper No. e12, 33. MR 3376739, DOI 10.1017/fms.2015.15
- Ivan Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices 10 (1995), 483–515. MR 1358032, DOI 10.1155/S1073792895000341
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697
- Michel Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. (2) 98 (1974), no. 3, 163–172. MR 430001
- François Descouens and Alain Lascoux, Non-symmetric Hall-Littlewood polynomials, Sém. Lothar. Combin. 54A (2005/07), Art. B54Ar, 14. MR 2264938
- Ira M. Gessel, Multipartite $P$-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR 777705, DOI 10.1090/conm/034/777705
- A. M. Garsia and M. Haiman, Some natural bigraded $S_n$-modules and $q,t$-Kostka coefficients, Electron. J. Combin. 3 (1996), no. 2, Research Paper 24, approx. 60. The Foata Festschrift. MR 1392509
- A. M. Garsia and C. Procesi, On certain graded $S_n$-modules and the $q$-Kostka polynomials, Adv. Math. 94 (1992), no. 1, 82–138. MR 1168926, DOI 10.1016/0001-8708(92)90034-I
- James Haglund, The $q$,$t$-Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008. With an appendix on the combinatorics of Macdonald polynomials. MR 2371044, DOI 10.1007/s10711-008-9270-0
- J. Haglund, A combinatorial model for the Macdonald polynomials, Proc. Natl. Acad. Sci. USA 101 (2004), no. 46, 16127–16131. MR 2114585, DOI 10.1073/pnas.0405567101
- Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006. MR 1839919, DOI 10.1090/S0894-0347-01-00373-3
- J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc. 18 (2005), no. 3, 735–761. MR 2138143, DOI 10.1090/S0894-0347-05-00485-6
- J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math. 130 (2008), no. 2, 359–383. MR 2405160, DOI 10.1353/ajm.2008.0015
- Bogdan Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116 (2003), no. 2, 299–318. MR 1953294, DOI 10.1215/S0012-7094-03-11624-5
- Bogdan Ion, Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials, J. Algebra 319 (2008), no. 8, 3480–3517. MR 2408328, DOI 10.1016/j.jalgebra.2007.07.029
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Friedrich Knop, Composition Kostka functions, Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math., vol. 19, Tata Inst. Fund. Res., Mumbai, 2007, pp. 321–352. MR 2348910
- Axel Kohnert, Weintrauben, Polynome, Tableaux, Bayreuth. Math. Schr. 38 (1991), 1–97 (German). Dissertation, Universität Bayreuth, Bayreuth, 1990. MR 1132534
- Friedrich Knop and Siddhartha Sahi, A recursion and a combinatorial formula for Jack polynomials, Invent. Math. 128 (1997), no. 1, 9–22. MR 1437493, DOI 10.1007/s002220050134
- Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 13, 447–450 (French, with English summary). MR 660739
- Alain Lascoux and Marcel-Paul Schützenberger, Keys & standard bases, Invariant theory and tableaux (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 19, Springer, New York, 1990, pp. 125–144. MR 1035493
- I. G. Macdonald, A new class of symmetric functions, Actes du 20e Seminaire Lotharingien 372 (1988), 131–171.
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), Exp. No. 797, 4, 189–207. Séminaire Bourbaki, Vol. 1994/95. MR 1423624
- S. Mason, An explicit construction of type A Demazure atoms, J. Algebraic Combin. 29 (2009), no. 3, 295–313. MR 2496309, DOI 10.1007/s10801-008-0133-4
- Eric M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), no. 1, 75–121. MR 1353018, DOI 10.1007/BF02392487
- Austin Roberts, On the Schur expansion of Hall-Littlewood and related polynomials via Yamanouchi words, Electron. J. Combin. 24 (2017), no. 1, Paper No. 1.57, 30. MR 3651939
- Victor Reiner and Mark Shimozono, Key polynomials and a flagged Littlewood-Richardson rule, J. Combin. Theory Ser. A 70 (1995), no. 1, 107–143. MR 1324004, DOI 10.1016/0097-3165(95)90083-7
- Yasmine B. Sanderson, On the connection between Macdonald polynomials and Demazure characters, J. Algebraic Combin. 11 (2000), no. 3, 269–275. MR 1771615, DOI 10.1023/A:1008786420650
Additional Information
- Sami Assaf
- Affiliation: Department of Mathematics, University of Southern California, 3620 S. Vermont Avenue, Los Angeles, California 90089-2532
- MR Author ID: 775302
- Email: shassaf@usc.edu
- Received by editor(s): March 7, 2017
- Received by editor(s) in revised form: March 9, 2017, and August 16, 2017
- Published electronically: July 31, 2018
- © Copyright 2018 by Sami Assaf
- Journal: Trans. Amer. Math. Soc. 370 (2018), 8777-8796
- MSC (2010): Primary 33D52; Secondary 05E05
- DOI: https://doi.org/10.1090/tran/7374
- MathSciNet review: 3864395