ON BODIES WITH CONGRUENT SECTIONS BY CONES OR NON-CENTRAL PLANES

N. ZHANG

ABSTRACT. Let K and L be two convex bodies in \mathbb{R}^3 , such that their sections by cones $\{x \in \mathbb{R}^3 : x \cdot \xi = t|x|\}$ or non-central planes with a fixed distance from the origin are directly congruent. We prove that if their boundaries are of class C^2 , then K and L coincide.

1. INTRODUCTION AND MAIN RESULTS

This paper is motivated by the following problem (see, for example, the book of R. J. Gardner "Geometric tomography" [2, Page 289]).

Problem 1.1. Suppose that $2 \le k \le n-1$ and that K and L are star bodies in \mathbb{R}^n such that the section $K \cap H$ is congruent to $L \cap H$ (see Figure 1) for all $H \in G(n,k)$. Do K and L coincide up to a reflection only?

FIGURE 1. Congruent sections by central planes.

Here, $K \cap H$ being congruent to $L \cap H$ means that there exists an orthogonal transformation φ in H such that $\varphi(K \cap H)$ is a translate of $L \cap H$. The answer is affirmative in the case when $K \cap H$ is a translate of $L \cap H$ for every H (see Gardner [2, Theorem 7.1.1] and Ryabogin [8]). If $K \cap H$ is a rotation of $L \cap H$ for each H and k = 2, Ryabogin [7] gave an affirmative answer. For the higher dimension, some partial results were obtained by Alfonseca, Cordier, and Ryabogin in [1] and Myroshnychenko and Ryabogin in [6]. Several other results can be found in the book of Golubyatnikov [3]. In general, this problem is still open. Below we study two versions of this problem.

Problem 1.2. Let $K, L \subset \mathbb{R}^n$ be star bodies and $t \in (0, 1)$. Assume that for every $\xi \in S^{n-1}$ there is a rigid motion ϕ_{ξ} such that $K \cap C_t(\xi) = \phi_{\xi}(L \cap C_t(\xi))$ (see Figure 2). Does it follow that K = L?

Received by the editors May 8, 2017, and, in revised form, July 22, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 52A20, 52A38.

Key words and phrases. Convex body, congruent sections, unique determination.

FIGURE 2. Congruent sections by cones.

Here, for $t \in (0, 1)$, we define

 $C_t(\xi) := \{ x \in \mathbb{R}^n : \langle x, \xi \rangle = t |x| \}$

to be a cone in the direction of ξ . For some special values of t, Problem 1.2 has an affirmative answer (cf. Schneider [10]; see also Sacco [9] for details).

Problem 1.3. Let $K, L \subset \mathbb{R}^n$ be convex bodies containing a ball B in their interiors. Assume that for every $\xi \in S^{n-1}$ there is a rigid motion ϕ_{ξ} such that $K \cap (\xi^{\perp} + t\xi) = \phi_{\xi}(L \cap (\xi^{\perp} + t\xi))$ (see Figure 3). Does it follow that K = L?

FIGURE 3. Congruent sections by non-central planes.

Here and below, B is the ball with centre at the origin of radius t, t > 0.

In this paper, we solve Problem 1.2 in \mathbb{R}^3 in the class of C^2 star bodies, i.e., star bodies with C^2 boundaries.

Theorem 1.4. Let $f, g \in C^2(S^2)$ and $t \in (0,1)$. Assume that for every $\xi \in S^2$ there is a rotation ϕ_{ξ} around ξ such that

$$f(\phi_{\xi}(\theta)) = g(\theta)$$

for all $\theta \in S^2 \cap (\xi^{\perp} + t\xi)$. Then f = g.

The case $t \in (0, 1)$ is more difficult than the case t = 0, for, in general, there is no injectivity of the corresponding Spherical Radon transform. And the smoothness of the function is necessary when creating disjoint C^2 level sets of the function.

As a corollary of Theorem 1.4, we get a positive answer to a version of Problem 1.2.

Corollary 1.5. Let $K, L \subset \mathbb{R}^3$ be C^2 star bodies and $t \in (0, 1)$. Assume that for every $\xi \in S^{n-1}$ there is a rotation ϕ_{ξ} around ξ such that $K \cap C_t(\xi) = \phi_{\xi}(L \cap C_t(\xi))$. Then K = L.

We also solve a version of Problem 1.3 in \mathbb{R}^3 .

Theorem 1.6. Let $K, L \subset \mathbb{R}^3$ be C^2 convex bodies containing a ball B in their interiors. Assume that for every $\xi \in S^2$ there is a rotation ϕ_{ξ} around ξ such that $K \cap (\xi^{\perp} + t\xi) = \phi_{\xi}(L \cap (\xi^{\perp} + t\xi))$. Then K = L.

2. Proofs of main results

For a unit vector $\xi \in S^2$, we define an open ball on S^2 with centre at ξ to be

$$B_{\epsilon}(\xi) := \{\theta \in S^2 : \|\theta - \xi\| < \epsilon\},\$$

where $\|\cdot\|$ is the Euclidean distance. We also define $\phi_{\xi} = \phi_{\xi,\alpha} \in SO(3)$ to be the rotation around ξ by an angle α in the counterclockwise direction. Namely, for any $\theta \in S^2$,

$$\phi_{\xi,\alpha}(\theta) = \theta \cos(\alpha \pi) + (\xi \times \theta) \sin(\alpha \pi) + \xi \langle \xi, \theta \rangle (1 - \cos(\alpha \pi)),$$

where $\xi \times \theta$, $\langle \xi, \theta \rangle$ are usual vector and scalar products in \mathbb{R}^3 .

2.1. Congruent sections by cones. Auxiliary results. In order to prove the theorem, we assume the opposite, that is, by Lemma 2.5, there exists an $x \in S^2$ such that $f(x) \neq g(x)$ and $\nabla_{S^2} f(x) \neq 0$, which gives a neighbourhood of x on S^2 containing local level sets of f. By the C^2 smoothness of f and the implicit function theorem, those level sets are a collection of disjoint C^2 curves. Then, the $\sqrt{2-t}$ -distance is parallel to the sets of those C^2 curves forming a subset of S^2 with non-empty interior, whose intersection with $\Xi_{\rm con}$ is not empty. By Lemmas 2.4 and 2.6, the level set $\Theta_{\tau} \cup \Lambda(\theta)$ of f is not C^2 curve for some τ ; a contradiction. (See Figure 4.)

FIGURE 4. The level set $\Theta_{\tau} \cup \Lambda(\theta)$ is not C^2 curve.

The details of the proof are organized as follows.

Definition 2.1. Let f, g, t be as in Theorem 1.4. Define the following three subsets of S^2 :

$$\begin{split} \Xi_0 &= \{\xi \in S^2 : f(\theta) = g(\theta) \ \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi)\};\\ \Xi_n &= \{\xi \in S^2 : f(\phi_{\xi,\frac{2}{n}}(\theta)) = f(\theta) \ \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi)\}, \quad n = 2, 3, \dots;\\ \Xi_{\rm con} &= S^2 \backslash (\Xi_0 \cup (\bigcup_{n=2}^{\infty} \Xi_n)). \end{split}$$

Lemma 2.2. Ξ_n are closed for all $n = 0, 2, 3, \ldots$

Proof. First, for any pair of directions ξ_1 and ξ_2 , we define the map ψ_{ξ_1,ξ_2} .

If ξ_1 is not parallel to ξ_2 , then consider the great circle passing through ξ_1, ξ_2 , which intersects $\xi_1^{\perp} + t\xi_1$ and $\xi_2^{\perp} + t\xi_2$ at θ_{11}, θ_{12} and θ_{21}, θ_{22} , respectively. The directions θ_{11}, θ_{12} are chosen in such a way that the triple $\theta_{11}, \theta_{12}, \xi_1 \times \xi_2$ has a positive orientation. The same is assumed to hold for θ_{21}, θ_{22} . For any point $\theta \in S^2 \cap (\xi_1^{\perp} + t\xi_1)$, there exists $\phi_{\xi_1,\alpha} \in SO(3)$, such that $\theta = \phi_{\xi_1,\alpha}(\theta_{11})$. We define $\psi_{\xi_1,\xi_2}(\theta) := \phi_{\xi_2,\alpha}(\theta_{21})$.

If ξ_1 is parallel to ξ_2 , we define $\psi_{\xi_1,\xi_2}(\theta) = \theta$. Note that for any $\theta \in S^2 \cap (\xi_1^{\perp} + t\xi_1)$, since $\xi_2 \times \theta_{21} = \xi_1 \times \theta_{11}$ and $\langle \xi_2, \theta_{21} \rangle = \langle \xi_1, \theta_{11} \rangle = t$, we have

$$\begin{aligned} \|\psi_{\xi_{1},\xi_{2}}(\theta) - \theta\| &= \|\phi_{\xi_{2},\alpha}(\theta_{21}) - \phi_{\xi_{1},\alpha}(\theta_{11})\| \\ &= \|\theta_{21}\cos(\alpha\pi) + (\xi_{2} \times \theta_{21})\sin(\alpha\pi) + \xi_{2}\langle\xi_{2},\theta_{21}\rangle(1 - \cos(\alpha\pi)) \\ &- \theta_{11}\cos(\alpha\pi) - (\xi_{1} \times \theta_{11})\sin(\alpha\pi) - \xi_{1}\langle\xi_{1},\theta_{11}\rangle(1 - \cos(\alpha\pi))\| \\ &= \|\theta_{21}\cos(\alpha\pi) + t\xi_{2}(1 - \cos(\alpha\pi)) - \theta_{11}\cos(\alpha\pi) - t\xi_{1}(1 - \cos(\alpha\pi))\| \\ &\leq \|\theta_{21}\cos(\alpha\pi) - \theta_{11}\cos(\alpha\pi)\| + \|t\xi_{2}(1 - \cos(\alpha\pi)) - t\xi_{1}(1 - \cos(\alpha\pi))\| \\ &\leq \|\theta_{21} - \theta_{11}\| + 2\|\xi_{1} - \xi_{2}\| \\ &= 3\|\xi_{1} - \xi_{2}\| \end{aligned}$$

and

$$\phi_{\xi_2,\beta}(\psi_{\xi_1,\xi_2}(\theta)) = \psi_{\xi_1,\xi_2}(\phi_{\xi_1,\beta}(\theta)) \quad \text{for any } \beta.$$

Given a sequence $\xi_i \in \Xi_0$ with $\lim_{i\to\infty} \xi_i = \xi$, define ψ_{ξ,ξ_i} as similar to the above. For any $\theta \in S^2 \cap (\xi^{\perp} + t\xi)$, we have

$$\begin{aligned} |f(\theta) - g(\theta)| \\ &\leq |f(\theta) - f(\psi_{\xi,\xi_i}(\theta))| + |f(\psi_{\xi,\xi_i}(\theta)) - g(\psi_{\xi,\xi_i}(\theta))| + |g(\psi_{\xi,\xi_i}(\theta)) - g(\theta)| \\ &= |f(\theta) - f(\psi_{\xi,\xi_i}(\theta))| + |g(\psi_{\xi,\xi_i}(\theta)) - g(\theta)|. \end{aligned}$$

As $\xi_i \to \xi$, $\psi_{\xi,\xi_i}(\theta) \to \theta$; hence, by continuity of f and g,

$$|f(\theta) - g(\theta)| = 0 \quad \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi),$$

which implies $\xi \in \Xi_0$. Now we prove the closeness of Ξ_0 .

Similarly, given a sequence $\xi_i \in \Xi_n$ with $\lim_{i\to\infty} \xi_i = \xi$, for any $\theta \in S^2 \cap (\xi^{\perp} + t\xi)$, we have

$$\begin{split} &|f(\phi_{\xi,\frac{2}{n}}(\theta)) - f(\theta)| \\ &\leq |f(\phi_{\xi,\frac{2}{n}}(\theta)) - f(\phi_{\xi_{i},\frac{2}{n}}(\psi_{\xi,\xi_{i}}(\theta)))| + |f(\phi_{\xi_{i},\frac{2}{n}}(\psi_{\xi,\xi_{i}}(\theta))) - f(\psi_{\xi,\xi_{i}}(\theta))| \\ &+ |f(\psi_{\xi,\xi_{i}}(\theta)) - f(\theta)| \\ &= |f(\phi_{\xi,\frac{2}{n}}(\theta)) - f(\psi_{\xi,\xi_{i}}(\phi_{\xi,\frac{2}{n}}(\theta)))| + |f(\psi_{\xi,\xi_{i}}(\theta)) - f(\theta)|. \end{split}$$

As $\xi_i \to \xi$, $\psi_{\xi,\xi_i}(\theta) \to \theta$; hence, by continuity of f,

$$|f(\phi_{\xi,\frac{2}{n}}(\theta)) - f(\theta)| = 0 \quad \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi),$$

which implies $\xi \in \Xi_n$.

Lemma 2.3. Suppose that for some $\xi \in S^2$ there exists $\alpha \in \mathbb{Q}$ such that $f(\phi_{\xi,\alpha}(\theta)) = f(\theta) \quad \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi)$. Then, there exists $n \geq 2$, such that $\xi \in \Xi_n$.

Proof. Let us write $\alpha = \frac{p}{q}$, where p and q are coprime integers. It is sufficient to show $\frac{2}{n} = m\frac{p}{q} + 2l$ for some $m, n, l \in \mathbb{Z}$. Indeed, this would imply that

$$f(\phi_{\xi,\frac{2}{n}}(\theta)) = f(\phi_{\xi,m\frac{p}{q}+2l}(\theta)) = f(\phi_{\xi,m\frac{p}{q}}(\theta)) = f(\theta).$$

But, since p, q are coprime, there exist $k, r \in \mathbb{Z}$, such that pk + qr = 1. If we set n = q, then

$$\frac{2}{n} = \frac{2(pk+qr)}{q} = 2k\frac{p}{q} + 2r.$$

Now, we define

$$\lambda(\xi) := \{ \alpha \in [0,2) : f(\phi_{\xi,\alpha}(\theta)) = g(\theta) \ \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi) \}$$

In the case when $\xi \in \Xi_n$, $n \ge 2$, $\lambda(\xi)$ is a multi-valued function; on the other hand, if $\xi \in \Xi_{\text{con}}$, $\lambda(\xi)$ is a single-valued function; otherwise, if $\alpha, \beta \in \lambda(\xi)$ with $\alpha \neq \beta$,

$$f(\phi_{\xi,\alpha}(\theta)) = g(\theta) = f(\phi_{\xi,\beta}(\theta)) \quad \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi),$$

implying

$$f(\phi_{\xi,\alpha-\beta}(\theta)) = f(\theta) \quad \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi).$$

If $\alpha - \beta$ is irrational, then $f(\theta) \equiv C \equiv g(\theta) \ \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi)$, which means $\xi \in \Xi_0$; a contradiction. If $\alpha - \beta$ is rational, then by Lemma 2.3, $\xi \in \Xi_n$; a contradiction.

Lemma 2.4. Let f, g, t be as in Theorem 1.4. Then Ξ_{con} is open and $\lambda(\xi)$ is a continuous function on Ξ_{con} if $\Xi_{\text{con}} \neq \emptyset$.

Proof. If $\Xi_{\text{con}} = \emptyset$, then Ξ_{con} is open. Now assume that Ξ_{con} is not open. There exists $\xi \in \Xi_{\text{con}}$, such that, for any $i \in \mathbb{N}$, there exists $\xi_i \in B_{\frac{1}{i}}(\xi) \cap \Xi_{n_i}$ for some n_i . If there are infinitely many ξ_i that belong to Ξ_0 , then $0 \in \lambda(\xi)$, that is, $\xi \in \Xi_0$; a contradiction. If there are infinitely many ξ_i , for which $n_i \neq 0$, then $\lambda(\xi_i)$ is a multi-valued function. Thus there exists $\alpha_i \in \lambda(\xi_i)$, such that $|\alpha_i - \lambda(\xi)| > \varepsilon$ for some $\varepsilon > 0$. By compactness of [0, 2], there exists a subsequence ξ_{i_k} , such that $\lim_{k\to\infty} \alpha_{i_k} = \alpha$, where $|\alpha - \lambda(\xi)| \ge \varepsilon$. Set $\psi_{\xi,\xi_{i_k}}$ similarly to the ones defined in Lemma 2.2.

Then for any $\theta \in S^2 \cap (\xi^{\perp} + t\xi)$,

$$\begin{aligned} &|f(\phi_{\xi,\lambda(\xi)}(\theta)) - f(\phi_{\xi,\alpha}(\theta))| \\ &\leq |f(\phi_{\xi,\lambda(\xi)}(\theta)) - g(\theta)| + |g(\theta) - g(\psi_{\xi,\xi_{i_k}}(\theta))| \\ &+ |g(\psi_{\xi,\xi_{i_k}}(\theta)) - f(\phi_{\xi_{i_k},\alpha_{i_k}}(\psi_{\xi,\xi_{i_k}}(\theta)))| + |f(\phi_{\xi_{i_k},\alpha_{i_k}}(\psi_{\xi,\xi_{i_k}}(\theta))) - f(\phi_{\xi,\alpha_{i_k}}(\theta))| \\ &= |g(\theta) - g(\psi_{\xi,\xi_{i_k}}(\theta))| + |f(\psi_{\xi,\xi_{i_k}}(\phi_{\xi,\alpha_{i_k}}(\theta))) - f(\phi_{\xi,\alpha}(\theta))|. \end{aligned}$$

As $k \to \infty$, we have $\psi_{\xi,\xi_{i_k}}(\theta) \to \theta$ and $\psi_{\xi,\xi_{i_k}}(\phi_{\xi,\alpha_{i_k}}(\theta)) \to \phi_{\xi,\alpha}(\theta)$; hence, by continuity of f and g,

$$|f(\phi_{\xi,\lambda(\xi)}(\theta)) - f(\phi_{\xi,\alpha}(\theta))| = 0 \quad \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi),$$

implying

$$|f(\phi_{\xi,\alpha}(\theta)) - g(\theta)| = 0 \quad \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi);$$

a contradiction.

For the continuity, since $\lambda(\xi)$ is a single-valued function when $\xi \in \Xi_{\text{con}}$, consider a sequence $\{\xi_i\}_{i=1}^{\infty} \in \Xi_{\text{con}}$, such that $\Xi_{\text{con}} \ni \xi = \lim_{i \to \infty} \xi_i$. By compactness of [0,2], there exists a subsequence $\{\xi_{i_k}\}_{k=1}^{\infty}$, such that $\alpha = \lim_{k \to \infty} \lambda(\xi_{i_k})$. Then for any $\theta \in S^2 \cap (\xi^{\perp} + t\xi)$,

$$\begin{split} &|f(\phi_{\xi,\alpha}(\theta)) - g(\theta)| \\ &\leq |f(\phi_{\xi,\alpha}(\theta)) - f(\phi_{\xi_{i_k},\lambda(\xi_{i_k})}(\psi_{\xi,\xi_{i_k}}(\theta)))| + |f(\phi_{\xi_{i_k},\lambda(\xi_{i_k})}(\psi_{\xi,\xi_{i_k}}(\theta))) - g(\psi_{\xi,\xi_{i_k}}(\theta))| \\ &quad + |g(\psi_{\xi,\xi_{i_k}}(\theta)) - g(\theta)| \\ &= |f(\phi_{\xi,\alpha}(\theta)) - f(\phi_{\xi_{i_k},\lambda(\xi_{i_k})}(\psi_{\xi,\xi_{i_k}}(\theta)))| + |g(\psi_{\xi,\xi_{i_k}}(\theta)) - g(\theta)|. \end{split}$$

As $k \to \infty$, we have $\phi_{\xi_{i_k},\lambda(\xi_{i_k})}(\psi_{\xi,\xi_{i_k}}(\theta)) \to \phi_{\xi,\alpha}(\theta)$ and $\psi_{\xi,\xi_{i_k}}(\theta) \to \theta$; hence, by continuity of f and g,

$$|f(\phi_{\xi,\alpha}(\theta)) - g(\theta)| = 0 \quad \forall \theta \in S^2 \cap (\xi^{\perp} + t\xi),$$

that is, $\lambda(\xi) = \alpha$. If $\{\lambda(\xi_i)\}_{i=1}^{\infty}$ has another subsequence with a different limit $\beta \neq \alpha$, then $\{\alpha, \beta\} \subset \lambda(\xi)$, contradicting the fact that $\xi \in \Xi_{\text{con}}$.

Lemma 2.5. Let f, g, t be as in Theorem 1.4. Then either $\{\theta \in S^2 : f(\theta) = g(\theta)\} = S^2$ or the set

$$\{\theta \in S^2 : f(\theta) \neq g(\theta)\} \cap [\{\theta \in S^2 : \nabla_{S^2} f(\theta) \neq 0\} \cup \{\theta \in S^2 : \nabla_{S^2} g(\theta) \neq 0\}]$$

is not empty.

Here, ∇_{S^2} is the spherical gradient, that is, for a function f on S^2 ,

$$(\nabla_{S^2} f)(x/|x|) = \nabla \left(f(x/|x|) \right), \quad x \in \mathbb{R}^3/\{0\},$$

where f(x/|x|) is the 0-degree homogeneous extension of the function f to $\mathbb{R}^3/\{0\}$ and ∇ is the gradient in the ambient space \mathbb{R}^3 .

Proof. First, the set $\{\theta \in S^2 : f(\theta) \neq g(\theta)\}$ is not the whole sphere; otherwise without loss of generality let $f(\theta) < g(\theta)$. Then

$$\int_{S^2 \cap (\xi^{\perp} + t\xi)} g(\theta) \, d\theta = \int_{S^2 \cap (\xi^{\perp} + t\xi)} f(\phi_{\xi}(\theta)) \, d\theta$$
$$= \int_{S^2 \cap (\xi^{\perp} + t\xi)} f(\theta) \, d\theta < \int_{S^2 \cap (\xi^{\perp} + t\xi)} g(\theta) \, d\theta.$$

Now assume

 $\{\theta \in S^2 : f(\theta) \neq g(\theta)\} \cap [\{\theta \in S^2 : \nabla_{S^2} f(\theta) \neq 0\} \cup \{\theta \in S^2 : \nabla_{S^2} g(\theta) \neq 0\}] = \emptyset.$ Then

$$\{\theta \in S^2 : f(\theta) \neq g(\theta)\} \subset \{\theta \in S^2 : \nabla_{S^2} f(\theta) = 0\} \cap \{\theta \in S^2 : \nabla_{S^2} g(\theta) = 0\}.$$

Since $f, g \in C^2(S^2)$, the set

$$\Upsilon_0 := \{\theta \in S^2 : \nabla_{S^2} f(\theta) = 0\} \cap \{\theta \in S^2 : \nabla_{S^2} g(\theta) = 0\}$$

is closed and f and g are constant in any connected subset of Υ_0 .

Assume there exists $x \in \{\theta \in S^2 : f(\theta) \neq g(\theta)\}$. Choose the largest connected open neighbourhood \mathcal{N}_x of x in $\{\theta \in S^2 : f(\theta) \neq g(\theta)\} \forall \theta \in S^2$. Then the closure of \mathcal{N}_x is in Υ_0 and the boundary of \mathcal{N}_x is a subset of $\{\theta \in S^2 : f(\theta) = g(\theta)\}$,

which implies $C_1 = f = g = C_2$ in the closure of \mathcal{N}_x ; a contradiction. Hence, $\{\theta \in S^2 : f(\theta) \neq g(\theta)\} = \emptyset$.

Note that for $\xi \in \Xi_{\text{con}}$, since Ξ_{con} is open, there exists an $\epsilon > 0$, such that $B_{\epsilon}(\xi) \subset \Xi_{\text{con}}$. Then, for any point $\theta \in S^2 \cap (\xi^{\perp} + t\xi)$, we set $\eta = \phi_{\xi, -\lambda(\xi)}(\theta)$ and $\xi \in \eta^{\perp} + t\eta$ since $\langle \xi, \eta \rangle = t$; hence, $(\eta^{\perp} + t\eta) \cap B_{\epsilon}(\xi)$ is not empty. Thus, we define the curve

$$\Lambda(\theta) := \bigcup_{\zeta \in (\eta^{\perp} + t\eta) \cap B_{\epsilon}(\xi)} \phi_{\zeta,\lambda(\zeta)}(\eta)$$

passing through θ (see Figure 5).

FIGURE 5. The construction of $\Lambda(\theta)$.

We set $(\xi^{\perp} + t\xi)_+ := \{x \in \mathbb{R}^3 : \langle x, \xi \rangle \ge t\}$ and $\operatorname{int} ((\xi^{\perp} + t\xi)_+) := \{x \in \mathbb{R}^3 : \langle x, \xi \rangle > t\}.$

Lemma 2.6. Let f, g, t be as in Theorem 1.4 and $\xi \in \Xi_{\text{con}}$. If $\lambda(\xi) \neq 1$, then

$$\Lambda(\theta) \cap S^2 \cap \operatorname{int} \left((\xi^{\perp} + t\xi)_+ \right) \neq \emptyset.$$

Proof. Without loss of generality, we can assume that $0 < \lambda(\xi) < 1$. The other case $1 < \lambda(\xi) < 2$ is similar. Since $\xi \in \Xi_{\text{con}}$ and $0 < \lambda(\xi) < 1$, by Lemma 2.4 there exists $0 < \iota < 1/2$ and a ball $B_{\epsilon}(\xi) \subset \Xi_{\text{con}}$ such that $\iota \leq \lambda(\zeta) \leq 1 - \iota$ for any $\zeta \in B_{\epsilon}(\xi)$.

Now take any $\theta \in S^2 \cap (\xi^{\perp} + t\xi)$ and define $\eta = \phi_{\xi, -\lambda(\xi)}(\theta)$. We set $\zeta = \phi_{\eta, \alpha}(\xi)$ for some small $\alpha > 0$ and $\omega = \phi_{\zeta, \lambda(\zeta)}(\eta)$. Then we have

$$\begin{aligned} \zeta \times \eta &= \phi_{\eta,\alpha}(\xi) \times \eta \\ &= (\xi \cos(\alpha \pi) + (\eta \times \xi) \sin(\alpha \pi) + \eta \langle \eta, \xi \rangle (1 - \cos(\alpha \pi))) \times \eta \\ &= \xi \times \eta \cos(\alpha \pi) + (\xi \langle \eta, \eta \rangle - \eta \langle \xi, \eta \rangle) \sin(\alpha \pi) \\ &= \xi \times \eta \cos(\alpha \pi) + (\xi - t\eta) \sin(\alpha \pi) \end{aligned}$$

and

(1)

$$\begin{aligned} \langle \xi, \zeta \rangle &= \langle \xi, \phi_{\eta,\alpha}(\xi) \rangle \\ &= \langle \xi, \xi \cos(\alpha \pi) + (\eta \times \xi) \sin(\alpha \pi) + \eta \langle \eta, \xi \rangle (1 - \cos(\alpha \pi)) \rangle \\ &= \cos(\alpha \pi) + t^2 (1 - \cos(\alpha \pi)). \end{aligned}$$

Therefore,

$$\begin{split} \langle \xi, \omega \rangle &- t = \langle \xi, \phi_{\zeta,\lambda(\zeta)}(\eta) \rangle - t \\ &= \langle \xi, \eta \cos(\lambda(\zeta)\pi) + (\zeta \times \eta) \sin(\lambda(\zeta)\pi) + t\zeta(1 - \cos(\lambda(\zeta)\pi)) \rangle - t \\ &= t \cos(\lambda(\zeta)\pi) + \langle \xi, \xi \times \eta \cos(\alpha\pi) + (\xi - t\eta) \sin(\alpha\pi) \rangle \sin(\lambda(\zeta)\pi) \\ &+ t(1 - \cos(\lambda(\zeta)\pi))(\cos(\alpha\pi) + t^2(1 - \cos(\alpha\pi))) - t \\ &= t \cos(\lambda(\zeta)\pi) + (1 - t^2) \sin(\alpha\pi) \sin(\lambda(\zeta)\pi) \\ &+ t(1 - \cos(\lambda(\zeta)\pi))(\cos(\alpha\pi) + t^2(1 - \cos(\alpha\pi))) - t \\ &= (1 - t^2) \sin(\alpha\pi) \sin(\lambda(\zeta)\pi) + t(1 - \cos(\lambda(\zeta)\pi))(t^2 - 1)(1 - \cos(\alpha\pi))) \\ &= (1 - t^2)(\sin(\alpha\pi) \sin(\lambda(\zeta)\pi) - t(1 - \cos(\lambda(\zeta)\pi))(1 - \cos(\alpha\pi))) \\ &\geq (1 - t^2)(\sin(\alpha\pi) \sin(\iota\pi) - t(1 - \cos((1 - \iota)\pi))(1 - \cos(\alpha\pi))) \\ &> 0 \quad \text{for sufficiently small } \alpha. \end{split}$$

To show

$$\sin(\alpha\pi)\sin(\iota\pi) - t(1-\cos((1-\iota)\pi))(1-\cos(\alpha\pi)) > 0$$

for sufficiently small $\alpha > 0$, we used that for a, b > 0, x > 0 sufficiently small, and $h(x) = a \sin x - b(1 - \cos x)$,

$$h'(x) = a\cos x - b\sin x > 0$$

and h(0) = 0.

Hence, $\omega \in \Lambda(\theta) \cap S^2 \cap \operatorname{int} ((\xi^{\perp} + t\xi)_+).$

Proof of Theorem 1.4. Assume the set $\{\theta \in S^2 : f(\theta) \neq g(\theta)\}$ is not empty. By Lemma 2.5, we have

$$\{\theta \in S^2 : f(\theta) \neq g(\theta)\} \cap [\{\theta \in S^2 : \nabla_{S^2} f(\theta) \neq 0\} \cup \{\theta \in S^2 : \nabla_{S^2} g(\theta) \neq 0\}] \neq \emptyset.$$

Without loss of generality, we can choose

$$x \in \{\theta \in S^2 : f(\theta) \neq g(\theta)\} \cap \{\theta \in S^2 : \nabla_{S^2} f(\theta) \neq 0\},\$$

and therefore, there exists an open ball

$$B_{\epsilon}(x) \subset \{\theta \in S^2 : f(\theta) \neq g(\theta)\} \cap \{\theta \in S^2 : \nabla_{S^2} f(\theta) \neq 0\}.$$

By the implicit function theorem (see [5, Section I-5]), the collection of local level sets of f, $\mathcal{L}(f) := \{\Theta_{\tau}\}_{a < \tau < b}$, is a collection of disjoint C^2 curves, where $\Theta_{\tau} := \{\theta \in S^2 : f(\theta) = \tau\} \cap B_{\epsilon}(x)$. Here, $a = \inf_{\theta \in B_{\epsilon}(x)} f(\theta)$ and $b = \sup_{\theta \in B_{\epsilon}(x)} f(\theta)$.

For curves $\{\Theta_{\tau}\} \subset S^2$, consider their geodesic curvature $k_g(\cdot)$ (see [4, Section 17.4] for details). If for every $\eta \in \Theta_{\tau}$ and $\Theta_{\tau} \in \mathcal{L}(f)$, we have $k_g(\eta) = 0$, then each Θ_{τ} belongs to some great circle. Choose one of these great circles. It divides S^2 into two hemispheres. Fix one of these hemispheres and denote it by S^2_+ . Consider all circles of the form $S^2 \cap (\xi^{\perp} + t\xi)$ that are tangent to the curves Θ_{τ} and $\xi \in S^2_+$. Denote by Σ the set of such directions ξ .

Now consider the case when for some $\tau \in (a, b)$, there exists a $\theta \in \Theta_{\tau}$, such that $k_g(\theta) \neq 0$. Then by C^2 smoothness of f, there exists a smaller neighbourhood of x, which we will again denote by $B_{\epsilon}(x)$, and a collection of level sets in $B_{\epsilon}(x)$, such that $k_g(\eta) \neq 0$ for any $\eta \in \Theta_{\tau}$ and $a < \tau < b$. For each point $\eta \in \Theta_{\tau}$, consider the great circle which is tangent to Θ_{τ} at η . Then $\{\Theta_{\tau}\}_{a < \tau < b}$ lie on one side of their tangent great circle. For each τ and each $\eta \in \Theta_{\tau}$ consider a circle $S^2 \cap (\xi^{\perp} + t\xi)$

8746

that is tangent to Θ_{τ} at η and lies on the other side with respect to the tangent great circle. Let Σ be the set of such directions ξ (see Figure 6).

Note that for each Θ_{τ} , these $\xi \in \Sigma$ form a parallel set of Θ_{τ} on S^2 , i.e., the envelope of a family of circles on S^2 with centres on Θ_{τ} and of radius $\sqrt{2-2t}$.

FIGURE 6. The construction of Σ .

Hence, the set Σ is a union of such curves and thus contains non-empty interior. We claim $\Xi_{con} \cap int(\Sigma) \neq \emptyset$; otherwise, $int(\Sigma) \subset \Xi_0 \cup (\bigcup_{n=2}^{\infty} \Xi_n)$, but $int(\Sigma) \cap \Xi_0 = \emptyset$, since $B_{\epsilon}(x) \subset \{\theta \in S^2 : f(\theta) \neq g(\theta)\}$. Hence, $int(\Sigma) \subset \bigcup_{n=2}^{\infty} \Xi_n$, which implies that $(\bigcup_{n=2}^{\infty} \Xi_n) \cap int(\Sigma)$ contains non-empty interior. By the Baire category theorem and Lemma 2.2, there exists some $k \in \mathbb{N}$, such that $\Xi_k \cap int(\Sigma)$ contains non-empty interior.

Now assume $\xi \in int (\Xi_k \cap \Sigma)$. Then, there exists $\delta > 0$ such that $B_{\delta}(\xi) \subset int (\Xi_k \cap \Sigma)$. For any $\theta \in \xi^{\perp} + t\xi$, we have

$$f(\eta) = f(\theta) \quad \forall \eta \in \Lambda_{\xi}(\theta) := \bigcup_{\zeta \in (\theta^{\perp} + t\theta) \cap B_{\delta}(\xi)} \phi_{\zeta, \frac{2}{k}}(\theta)$$

and

$$f(\omega) = f(\theta) \quad \forall \omega \in \Delta_{\xi}(\theta) := \bigcup_{\eta \in \Lambda_{\xi}(\theta)} \bigcup_{\vartheta \in (\eta^{\perp} + t\eta) \cap B_{\delta}(\xi)} \phi_{\vartheta, -\frac{2}{k}}(\eta).$$

Let us show that $\Delta_{\xi}(\theta)$ has non-empty interior. Note that for any $\eta \in \Lambda_{\xi}(\theta)$, by equation (1) we have

$$\langle \theta, \eta \rangle = \cos(2\pi/k) + t^2(1 - \cos(2\pi/k)) =: \varsigma(t),$$

where $-1 < \varsigma(t) < 1$. If $\varsigma(t) = 0$, then $\Lambda_{\xi}(\theta) \subset S^2 \cap \theta^{\perp}$. Fix $\eta \in \Lambda_{\xi}(\theta)$; then for each

$$\omega \in \bigcup_{\vartheta \in (\eta^{\perp} + t\eta) \cap B_{\delta}(\xi)} \phi_{\vartheta, -\frac{2}{k}}(\eta),$$

by equation (1) we have

$$\langle \omega, \eta \rangle = \varsigma(t) = 0$$

which means $\bigcup_{\vartheta \in (\eta^{\perp} + t\eta) \cap B_{\delta}(\xi)} \phi_{\vartheta, -\frac{2}{k}}(\eta)$ is a curve passing through θ and contained in $S^2 \cap \eta^{\perp}$. Since $\Lambda_{\xi}(\theta)$ is a continuous curve, by changing η we see that $\Delta_{\xi}(\theta)$ has the shape of a sand dial, which we will refer to as a \bowtie shape.

If $0 < \varsigma(t) < 1$, then

$$\Lambda_{\xi}(\theta) \subset S^2 \cap (\theta^{\perp} + \varsigma(t)\theta).$$

Fix $\eta \in \Lambda_{\xi}(\theta)$; then $\bigcup_{\vartheta \in (\eta^{\perp} + t\eta) \cap B_{\delta}(\xi)} \phi_{\vartheta, -\frac{2}{k}}(\eta)$ gives a curve passing through θ and contained in $S^2 \cap (\eta^{\perp} + \varsigma(t)\eta)$. Observe that for different $\eta \in \Lambda_{\xi}(\theta)$, we have different curves $\bigcup_{\vartheta \in (\eta^{\perp} + t\eta) \cap B_{\delta}(\xi)} \phi_{\vartheta, -\frac{2}{k}}(\eta)$ with the only common point θ . Since these curves change continuously, the set $\Delta_{\xi}(\theta)$ again has a \bowtie shape.

If $-1 < \varsigma(t) < 0$, use the same argument to show that $\Delta_{\xi}(\theta)$ has a \bowtie shape. Therefore, $\Delta_{\xi}(\theta)$ is a set with non-empty interior on S^2 .

Now to reach a contradiction, assume that f is not constant on $S^2 \cap (\xi^{\perp} + t\xi)$. Then f takes on infinitely many values and so there are infinitely many disjoint sets $\Delta_{\xi}(\theta)$ with $m(\Delta_{\xi}(\theta)) = \nu > 0$, where ν is a number independent of $\theta \in S^2 \cap (\xi^{\perp} + t\xi)$, which is impossible. Here m is the Hausdorff measure on S^2 . On the other hand, if f is a constant on $S^2 \cap (\xi^{\perp} + t\xi)$, then $\xi \in \Xi_0$, which contradicts int $(\Sigma) \cap \Xi_0 = \emptyset$. Thus, we have proved $\Xi_{\rm con} \cap {\rm int} (\Sigma) \neq \emptyset$.

Now assume that for every $\xi \in \Xi_{\text{con}} \cap \text{int}(\Sigma)$, we have $\lambda(\xi) = 1$. Then, there exists $\delta > 0$ such that $B_{\delta}(\xi) \subset \Xi_{\text{con}} \cap \text{int}(\Sigma)$ and $\lambda(\zeta) = 1$ for any $\zeta \in B_{\delta}(\xi)$. For any $\theta \in \xi^{\perp} + t\xi$, we have

$$g(\eta) = f(\theta) \quad \forall \eta \in \Lambda_{\xi}(\theta) := \bigcup_{\zeta \in (\theta^{\perp} + t\theta) \cap B_{\delta}(\xi)} \phi_{\zeta,1}(\theta)$$

and

$$f(\omega) = g(\eta) = f(\theta) \quad \forall \omega \in \Delta_{\xi}(\theta) := \bigcup_{\eta \in \Lambda_{\xi}(\theta)} \bigcup_{\vartheta \in (\eta^{\perp} + t\eta) \cap B_{\delta}(\xi)} \phi_{\vartheta,1}(\eta)$$

Following the same argument as above, we have that $\Delta_{\xi}(\theta)$ is a set with non-empty interior on S^2 . Therefore, f is a constant on $\xi^{\perp} + t\xi$; otherwise, if f takes on infinitely many values, then there are infinitely many disjoint sets $\Delta_{\xi}(\theta)$, where $m(\Delta_{\xi}(\theta)) = \nu > 0$; a contradiction. But if f is a constant on $\xi^{\perp} + t\xi$, then $\xi \in \Xi_0$, which contradicts $\xi \in \Xi_{\text{con}}$.

Finally, assume that there exists $\xi \in \Xi_{\text{con}} \cap \text{int}(\Sigma)$ such that $\lambda(\xi) \neq 1$. Then by Lemma 2.4 there exists a neighbourhood $B_{\epsilon}(\xi) \subset \Xi_{\text{con}} \cap \text{int}(\Sigma)$ and $\theta \in \Theta_{\tau} \in \mathcal{L}(f)$ for some τ , such that $S^2 \cap (\xi^{\perp} + t\xi)_+ \cap \Theta_{\tau} = \theta$. On the other hand, by Lemma 2.6

$$\Lambda(\theta) = \bigcup_{\zeta \in (\eta^{\perp} + t\eta) \cap B_{\epsilon}(\xi)} \phi_{\zeta,\lambda(\zeta)}(\eta), \quad \text{where } \eta = \phi_{\xi,-\lambda(\xi)}(\theta).$$

gives a curve such that $\Lambda(\theta) \cap S^2 \cap \operatorname{int} ((\xi^{\perp} + t\xi)_+) \neq \emptyset$ and $f(\omega) = f(\theta)$ for any $\omega \in \Lambda(\theta)$. Thus, $\Lambda(\theta) \cup \Theta_{\tau}$ must be a level set of f at value τ but it is not a 1-manifold; a contradiction.

Therefore, $\{\theta \in S^2 : f(\theta) \neq g(\theta)\} = \emptyset$.

2.2. Congruent sections by non-central planes. Auxiliary results. We will use ideas of Section 2.1. However, some proofs will be different.

Definition 2.7. Let K, L, B be as in Theorem 1.6. Define the following three subsets of S^2 :

$$\begin{split} \Xi_0' &= \{\xi \in S^2 : K \cap (\xi^{\perp} + t\xi) = L \cap (\xi^{\perp} + t\xi)\};\\ \Xi_n' &= \{\xi \in S^2 : \phi_{\xi,\frac{2}{n}}(L \cap (\xi^{\perp} + t\xi)) = L \cap (\xi^{\perp} + t\xi)\}, \quad n = 2, 3, \dots;\\ \Xi_{\rm con}' &= S^2 \backslash (\Xi_0' \cup (\bigcup_{n=2}^{\infty} \Xi_n')). \end{split}$$

Using the same argument as above, it is easy to prove the following lemmas.

Lemma 2.8. Ξ'_n are closed for all n = 0, 2, 3, ...

Proof. First, set $d_{\mathrm{H}}(\cdot, \cdot)$ to be the Hausdorff distance on sets in \mathbb{R}^3 . Given a sequence $\xi_i \in \Xi'_0$ with $\lim_{i \to \infty} \xi_i = \xi$, we have

$$\begin{aligned} d_{\rm H}(K \cap (\xi^{\perp} + t\xi), L \cap (\xi^{\perp} + t\xi)) \\ &\leq d_{\rm H}(K \cap (\xi^{\perp} + t\xi), K \cap (\xi^{\perp}_i + t\xi_i)) + d_{\rm H}(K \cap (\xi^{\perp}_i + t\xi_i), L \cap (\xi^{\perp}_i + t\xi_i)) \\ &+ d_{\rm H}(L \cap (\xi^{\perp}_i + t\xi_i), L \cap (\xi^{\perp} + t\xi)) \\ &= d_{\rm H}(K \cap (\xi^{\perp} + t\xi), K \cap (\xi^{\perp}_i + t\xi_i)) + d_{\rm H}(L \cap (\xi^{\perp}_i + t\xi_i), L \cap (\xi^{\perp} + t\xi)). \end{aligned}$$

As $\xi_i \to \xi$, $d_H(K \cap (\xi^{\perp} + t\xi), K \cap (\xi_i^{\perp} + t\xi_i)) \to 0$ and $d_H(L \cap (\xi_i^{\perp} + t\xi_i), L \cap (\xi^{\perp} + t\xi)) \to 0$; hence, $d_H(K \cap (\xi^{\perp} + t\xi), L \cap (\xi^{\perp} + t\xi)) = 0$, which implies $\xi \in \Xi'_0$. Now we prove the closeness of Ξ'_0 .

Similarly, given a sequence $\xi_i \in \Xi'_n$ with $\lim_{i\to\infty} \xi_i = \xi$, we have

$$\begin{aligned} d_{\mathrm{H}}(\phi_{\xi,\frac{2}{n}}(L \cap (\xi^{\perp} + t\xi)), L \cap (\xi^{\perp} + t\xi)) \\ &\leq d_{\mathrm{H}}(\phi_{\xi,\frac{2}{n}}(L \cap (\xi^{\perp} + t\xi)), \phi_{\xi_{i},\frac{2}{n}}(L \cap (\xi^{\perp}_{i} + t\xi_{i}))) \\ &+ d_{\mathrm{H}}(\phi_{\xi_{i},\frac{2}{n}}(L \cap (\xi^{\perp}_{i} + t\xi_{i})), L \cap (\xi^{\perp}_{i} + t\xi_{i})) \\ &+ d_{\mathrm{H}}(L \cap (\xi^{\perp}_{i} + t\xi_{i}), L \cap (\xi^{\perp} + t\xi)) \\ &= d_{\mathrm{H}}(\phi_{\xi,\frac{2}{n}}(L \cap (\xi^{\perp} + t\xi)), \phi_{\xi_{i},\frac{2}{n}}(L \cap (\xi^{\perp}_{i} + t\xi_{i}))) \\ &+ d_{\mathrm{H}}(L \cap (\xi^{\perp}_{i} + t\xi_{i}), L \cap (\xi^{\perp} + t\xi)). \end{aligned}$$

As $\xi_i \to \xi$, $d_{\mathrm{H}}(L \cap (\xi^{\perp} + t\xi), L \cap (\xi_i^{\perp} + t\xi_i)) \to 0$; hence, $d_{\mathrm{H}}(\phi_{\xi,\frac{2}{n}}(L \cap (\xi^{\perp} + t\xi)), L \cap (\xi^{\perp} + t\xi)) = 0,$

which implies $\xi \in \Xi'_n$.

Now we define

$$\lambda'(\xi) := \{ \alpha : K \cap (\xi^{\perp} + t\xi) = \phi_{\xi,\alpha}(L \cap (\xi^{\perp} + t\xi)) \}.$$

In the case when $\xi \in \Xi'_n$, $n \ge 2$, $\lambda'(\xi)$ is a multi-valued function; on the other hand, if $\xi \in \Xi'_{con}$, $\lambda'(\xi)$ is a single-valued function; otherwise, if $\alpha, \beta \in \lambda'(\xi)$ with $\alpha \neq \beta$,

$$\phi_{\xi,\alpha}(L \cap (\xi^{\perp} + t\xi)) = K \cap (\xi^{\perp} + t\xi) = \phi_{\xi,\beta}(L \cap (\xi^{\perp} + t\xi))$$

implying

$$\phi_{\xi,\alpha}(L \cap (\xi^{\perp} + t\xi)) = \phi_{\xi,\beta}(L \cap (\xi^{\perp} + t\xi)).$$

If $\alpha - \beta$ is irrational, then $L \cap (\xi^{\perp} + t\xi)$ is a disk, which means $\xi \in \Xi'_0$; a contradiction. If $\alpha - \beta$ is rational, then by Lemma 2.3, $\xi \in \Xi'_n$; a contradiction.

Lemma 2.9. Let K, L, B be as in Theorem 1.6. Then Ξ'_{con} is open and $\lambda'(\xi)$ is a continuous function on Ξ'_{con} if $\Xi'_{con} \neq \emptyset$.

Proof. If $\Xi'_{con} = \emptyset$, then Ξ'_{con} is open. Now assume that Ξ'_{con} is not open. There exists $\xi \in \Xi'_{con}$, such that, for any $i \in \mathbb{N}$, there exists $\xi_i \in B_{\frac{1}{i}}(\xi) \cap \Xi'_{n_i}$ for some n_i . If there are infinitely many ξ_i that belong to Ξ'_0 , then $0 \in \lambda'(\xi)$. If there are infinitely many ξ_i for which $n_i \neq 0$, then $\lambda'(\xi_i)$ is a multi-valued function. Thus there exists $\alpha_i \in \lambda'(\xi_i)$, such that $|\alpha_i - \lambda'(\xi)| > \varepsilon$ for some $\varepsilon > 0$. By compactness of [0, 2],

N. ZHANG

there exists a subsequence ξ_{i_k} , such that $\lim_{k\to\infty} \alpha_{i_k} = \alpha$, where $|\alpha - \lambda'(\xi)| \ge \varepsilon$. Then

$$\begin{split} d_{\mathrm{H}}(\phi_{\xi,\lambda'(\xi)}(L\cap(\xi^{\perp}+t\xi)),\phi_{\xi,\alpha}(L\cap(\xi^{\perp}+t\xi))) \\ &\leq d_{\mathrm{H}}(\phi_{\xi,\lambda'(\xi)}(L\cap(\xi^{\perp}+t\xi)),K\cap(\xi^{\perp}+t\xi)) \\ &+ d_{\mathrm{H}}(K\cap(\xi^{\perp}+t\xi),K\cap(\xi^{\perp}_{i_{k}}+t\xi_{i_{k}})) \\ &+ d_{\mathrm{H}}(K\cap(\xi^{\perp}_{i_{k}}+t\xi_{i_{k}}),\phi_{\xi_{i_{k}},\alpha_{i_{k}}}(L\cap(\xi^{\perp}_{i_{k}}+t\xi_{i_{k}}))) \\ &+ d_{\mathrm{H}}(\phi_{\xi_{i_{k}},\alpha_{i_{k}}}(L\cap(\xi^{\perp}_{i_{k}}+t\xi_{i_{k}})),\phi_{\xi,\alpha}(L\cap(\xi^{\perp}+t\xi)))) \\ &= d_{\mathrm{H}}(K\cap(\xi^{\perp}+t\xi),K\cap(\xi^{\perp}_{i_{k}}+t\xi_{i_{k}})) \\ &+ d_{\mathrm{H}}(\phi_{\xi_{i_{k}},\alpha_{i_{k}}}(L\cap(\xi^{\perp}_{i_{k}}+t\xi_{i_{k}})),\phi_{\xi,\alpha}(L\cap(\xi^{\perp}+t\xi))). \end{split}$$

As $k \to \infty$, we have $\xi_{i_k} \to \xi$ and $\alpha_{i_k} \to \alpha$; hence,

$$d_{\mathrm{H}}(\phi_{\xi,\lambda'(\xi)}(L \cap (\xi^{\perp} + t\xi)), \phi_{\xi,\alpha}(L \cap (\xi^{\perp} + t\xi))) = 0,$$

implying

$$K \cap (\xi^{\perp} + t\xi) = \phi_{\xi,\alpha}(L \cap (\xi^{\perp} + t\xi));$$

a contradiction.

For continuity, since $\lambda'(\xi)$ is a single-valued function when $\xi \in \Xi'_{\text{con}}$, consider a sequence $\{\xi_i\}_{i=1}^{\infty} \in \Xi'_{\text{con}}$, such that $\Xi'_{\text{con}} \ni \xi = \lim_{i \to \infty} \xi_i$. By compactness of [0, 2], there exists a subsequence $\{\xi_{i_k}\}_{k=1}^{\infty}$, such that $\alpha = \lim_{k \to \infty} \lambda'(\xi_{i_k})$. Then

$$\begin{split} &d_{\mathrm{H}}(K \cap (\xi^{\perp} + t\xi), \phi_{\xi,\alpha}(L \cap (\xi^{\perp} + t\xi))) \\ &\leq d_{\mathrm{H}}(K \cap (\xi^{\perp} + t\xi), K \cap (\xi^{\perp}_{i_{k}} + t\xi_{i_{k}})) \\ &+ d_{\mathrm{H}}(K \cap (\xi^{\perp}_{i_{k}} + t\xi_{i_{k}}), \phi_{\xi_{i_{k}},\lambda'(\xi_{i_{k}})}(L \cap (\xi^{\perp}_{i_{k}} + t\xi_{i_{k}}))) \\ &+ d_{\mathrm{H}}(\phi_{\xi_{i_{k}},\lambda'(\xi_{i_{k}})}(L \cap (\xi^{\perp}_{i_{k}} + t\xi_{i_{k}})), \phi_{\xi,\alpha}(L \cap (\xi^{\perp} + t\xi)))) \\ &= d_{\mathrm{H}}(K \cap (\xi^{\perp} + t\xi), K \cap (\xi^{\perp}_{i_{k}} + t\xi_{i_{k}})) \\ &+ d_{\mathrm{H}}(\phi_{\xi_{i_{k}},\lambda'(\xi_{i_{k}})}(L \cap (\xi^{\perp}_{i_{k}} + t\xi_{i_{k}})), \phi_{\xi,\alpha}(L \cap (\xi^{\perp} + t\xi)))). \end{split}$$

As $k \to \infty$, we have $\lambda'(\xi_{i_k}) \to \alpha$ and $\xi_{i_k} \to \xi$; hence,

$$d_{\mathrm{H}}(K \cap (\xi^{\perp} + t\xi), \phi_{\xi,\alpha}(L \cap (\xi^{\perp} + t\xi))) = 0,$$

that is, $\lambda'(\xi) = \alpha$. If $\{\lambda'(\xi_i)\}_{i=1}^{\infty}$ has another subsequence with a different limit $\beta \neq \alpha$, then $\{\alpha, \beta\} \subset \lambda'(\xi)$, contradicting $\xi \in \Xi'_{\text{con}}$.

For a convex body K, we define its radial function in the direction of θ to be

$$\rho_K(\theta) := \sup\{t : t\theta \in K\}$$

Lemma 2.10. Let K, L, B be as in Theorem 1.6. Then either $\{\theta \in S^2 : \rho_K(\theta) = \rho_L(\theta)\} = S^2$ or the set

$$\{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\} \cap [\{\theta \in S^2 : \nabla_{S^2} \rho_K(\theta) \neq 0\} \cup \{\theta \in S^2 : \nabla_{S^2} \rho_L(\theta) \neq 0\}]$$

is not empty.

Proof. First, the set $\{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\}$ is not the whole sphere; otherwise without loss of generality let $\rho_K(\theta) < \rho_L(\theta) \quad \forall \theta \in S^2$. This means that K is strictly

inside L. Then

$$vol_{n-1}(K \cap (\xi^{\perp} + t\xi)) = vol_{n-1}(\phi_{\xi}(L \cap (\xi^{\perp} + t\xi))) = vol_{n-1}(L \cap (\xi^{\perp} + t\xi)) > vol_{n-1}(K \cap (\xi^{\perp} + t\xi)).$$

Now assume

$$\{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\}$$

$$\cap [\{\theta \in S^2 : \nabla_{S^2} \rho_K(\theta) \neq 0\} \cup \{\theta \in S^2 : \nabla_{S^2} \rho_L(\theta) \neq 0\}] = \emptyset.$$

Then

$$\{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\}$$

$$\subset \{\theta \in S^2 : \nabla_{S^2} \rho_K(\theta) = 0\} \cap \{\theta \in S^2 : \nabla_{S^2} \rho_L(\theta) = 0\}.$$

Since $\rho_K, \rho_L \in C^2$, the set

$$\Upsilon'_0 := \{\theta \in S^2 : \nabla_{S^2} \rho_K(\theta) = 0\} \cap \{\theta \in S^2 : \nabla_{S^2} \rho_L(\theta) = 0\}$$

is closed and ρ_K and ρ_L are constant in any connected subset of Υ'_0 .

Assume there exists $x \in \{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\}$. Choose the largest connected open neighbourhood \mathcal{N}_x of x in $\{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\}$. Then the closure of \mathcal{N}_x is in Υ'_0 and the boundary of \mathcal{N}_x is a subset of $\{\theta \in S^2 : \rho_K(\theta) = \rho_L(\theta)\}$, which implies $C_1 = \rho_K = \rho_L = C_2$ in the closure of \mathcal{N}_x ; a contradiction. Hence, $\{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\} = \emptyset$.

Note that for $\xi \in \Xi'_{\text{con}}$, since Ξ'_{con} is open, there exists an $\epsilon > 0$, such that $B_{\epsilon}(\xi) \subset \Xi'_{\text{con}}$. Then, for any point $\theta \in S^2$ such that $\rho_L(\theta)\theta \in L \cap (\xi^{\perp} + t\xi)$, we set $\eta = \phi_{\xi,\lambda'(\xi)}(\theta)$. Thus, we define the curve

$$\Lambda'(\theta) := \{ \phi_{\zeta, -\lambda'(\zeta)}(\eta) : \zeta \in B_{\epsilon}(\xi) \text{ and } \rho_L(\theta)\eta \in \zeta^{\perp} + t\zeta \}$$

passing through θ (see Figure 7).

FIGURE 7. The construction of $\Lambda'(\theta)$.

Lemma 2.11. Let K, L, B be as in Theorem 1.6 and $\xi \in \Xi'_{\text{con}}$. If $\lambda'(\xi) \neq 1$, then $\{\rho_L(\theta)u : u \in \Lambda'(\theta)\} \cap \operatorname{int} ((\xi^{\perp} + t\xi)_+) \neq \emptyset.$

Proof. Without loss of generality, we can assume that $0 < \lambda'(\xi) < 1$. The other case $1 < \lambda'(\xi) < 2$ is similar. Since $\xi \in \Xi'_{\text{con}}$ and $0 < \lambda'(\xi) < 1$, by Lemma 2.9 there exists $0 < \iota' < \frac{1}{2}$ and a ball $B_{\epsilon}(\xi) \subset \Xi'_{\text{con}}$ such that $\iota' \leq \lambda'(\zeta) \leq 1 - \iota'$ for any $\zeta \in B_{\epsilon}(\xi)$.

Now take any $\theta \in S^2$ such that $\rho_L(\theta)\theta \in L \cap (\xi^{\perp} + t\xi)$ and define $\eta = \phi_{\xi,\lambda'(\xi)}(\theta)$. We set $\zeta = \phi_{\eta,-\alpha}(\xi)$ for small $\alpha > 0$ and $\omega = \phi_{\zeta,-\lambda'(\zeta)}(\eta)$; then we have

$$\langle \zeta, \eta \rangle = \langle \phi_{\eta, -\alpha}(\xi), \eta \rangle = \langle \xi, \eta \rangle = \frac{t}{\rho_K(\eta)} = \frac{t}{\rho_L(\theta)} \in (0, 1).$$

Hence, $\rho_L(\theta)\eta \in \zeta^{\perp} + t\zeta$,

$$\begin{split} \zeta &\times \eta = \phi_{\eta, -\alpha}(\xi) \times \eta \\ &= (\xi \cos(-\alpha \pi) + (\eta \times \xi) \sin(-\alpha \pi) + \eta \langle \eta, \xi \rangle (1 - \cos(-\alpha \pi))) \times \eta \\ &= \xi \times \eta \cos(\alpha \pi) - (\xi \langle \eta, \eta \rangle - \eta \langle \xi, \eta \rangle) \sin(\alpha \pi) \\ &= \xi \times \eta \cos(\alpha \pi) - (\xi - \frac{t}{\rho_L(\theta)} \eta) \sin(\alpha \pi), \end{split}$$

and

(2)

$$\begin{aligned} \langle \xi, \zeta \rangle &= \langle \xi, \phi_{\eta, -\alpha}(\xi) \rangle \\ &= \langle \xi, \xi \cos(-\alpha \pi) + (\eta \times \xi) \sin(-\alpha \pi) + \eta \langle \eta, \xi \rangle (1 - \cos(-\alpha \pi)) \rangle \\ &= \cos(\alpha \pi) + \frac{t^2}{\rho_L^2(\theta)} (1 - \cos(\alpha \pi)). \end{aligned}$$

Therefore,

$$\begin{split} \rho_L(\theta)\langle\xi,\omega\rangle &-t\\ &= \rho_L(\theta)\langle\xi,\eta\cos(-\lambda'(\zeta)\pi) + (\zeta\times\eta)\sin(-\lambda'(\zeta)\pi)\\ &+ \frac{t}{\rho_L(\theta)}\zeta(1-\cos(-\lambda'(\zeta)\pi))\rangle - t\\ &= t\cos(\lambda'(\zeta)\pi) - \rho_L(\theta)\langle\xi,\xi\times\eta\cos(\alpha\pi) - (\xi-\frac{t}{\rho_L(\theta)}\eta)\sin(\alpha\pi)\rangle\sin(\lambda'(\zeta)\pi)\\ &+ t(1-\cos(\lambda'(\zeta)\pi))(\cos(\alpha\pi) + \frac{t^2}{\rho_L^2(\theta)}(1-\cos(\alpha\pi))) - t\\ &= t\cos(\lambda'(\zeta)\pi) + \rho_L(\theta)(1-\frac{t^2}{\rho_L^2(\theta)})\sin(\alpha\pi)\sin(\lambda'(\zeta)\pi)\\ &+ t(1-\cos(\lambda'(\zeta)\pi))(\cos(\alpha\pi) + \frac{t^2}{\rho_L^2(\theta)}(1-\cos(\alpha\pi))) - t\\ &= (1-\frac{t^2}{\rho_L^2(\theta)})\rho_L(\theta)\sin(\alpha\pi)\sin(\lambda'(\zeta)\pi)\\ &- t(1-\cos(\lambda'(\zeta)\pi))(1-\frac{t^2}{\rho_L^2(\theta)})(1-\cos(\alpha\pi)))\\ &= (1-\frac{t^2}{\rho_L^2(\theta)})(\rho_L(\theta)\sin(\lambda'(\zeta)\pi)\sin(\alpha\pi) - t(1-\cos(\lambda'(\zeta)\pi))(1-\cos(\alpha\pi))))\\ &\geq (1-\frac{t^2}{\rho_L^2(\theta)})(\rho_L(\theta)\sin(\iota'\pi)\sin(\alpha\pi) - t(1-\cos((1-\iota')\pi))(1-\cos(\alpha\pi))))\\ &> 0 \quad \text{for sufficiently small } \alpha > 0. \end{split}$$

Hence, $\rho_L(\theta)\omega \in \{\rho_L(\theta)u : u \in \Lambda'(\theta)\} \cap \operatorname{int} ((\xi^{\perp} + t\xi)_+).$

Proof of Theorem 1.6. Assume $\{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\} \neq \emptyset$. By Lemma 2.10, we have

$$\{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\}$$

$$\cap \left[\{\theta \in S^2 : \nabla_{S^2} \rho_K(\theta) \neq 0\} \cup \{\theta \in S^2 : \nabla_{S^2} \rho_L(\theta) \neq 0\}\right] \neq \emptyset.$$

Without loss of generality, we can choose

$$x \in \{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\} \cap \{\theta \in S^2 : \nabla_{S^2} \rho_L(\theta) \neq 0\},\$$

Therefore there exists an open ball

$$B_{\epsilon}(x) \subset \{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\} \cap \{\theta \in S^2 : \nabla_{S^2} \rho_L(\theta) \neq 0\}.$$

By the implicit function theorem, the collection of local level sets of ρ_L , $\mathcal{L}'(L) := \{\Theta'_{\tau}\}_{a' < \tau < b'}$, is a collection of disjoint C^2 curves, where $\Theta'_{\tau} := \{\theta \in S^2 : \rho_L(\theta) = \tau\} \cap B_{\epsilon}(x)$. Here, $a' = \inf_{\theta \in B_{\epsilon}(x)} \rho_L(\theta)$ and $b' = \sup_{\theta \in B_{\epsilon}(x)} \rho_L(\theta)$.

For curves $\{\Theta'_{\tau}\} \subset S^2$, consider their geodesic curvature $k_g(\cdot)$. If for every $\eta \in \Theta'_{\tau}$ and $\Theta'_{\tau} \in \mathcal{L}'(L)$, we have $k_g(\eta) = 0$, then each Θ'_{τ} belongs to some great circle. Choose one of these great circles. It divides S^2 into two hemispheres. Fix one of these hemispheres and denote it by S^2_+ . Consider all circles of the form $S^2 \cap (\xi^{\perp} + \frac{t}{\tau}\xi)$ that are tangent to the curves Θ_{τ} and $\xi \in S^2_+$. Denote by Σ' the set of such directions ξ .

Now consider the case when for some $\tau \in (a', b')$, there exists a $\theta \in \Theta'_{\tau}$, such that $k_g(\theta) \neq 0$. Then by C^2 smoothness of ρ_L , there exists a smaller neighbourhood of x, which we will again denote by $B_{\epsilon}(x)$, and a collection of level sets in $B_{\epsilon}(x)$, such that $k_g(\eta) \neq 0$ for any $\eta \in \Theta'_{\tau}$ and $a' < \tau < b'$. For each point $\eta \in \Theta'_{\tau}$, consider the great circle which is tangent to Θ'_{τ} at η . Then $\{\Theta'_{\tau}\}_{a' < \tau < b'}$ lie on one side of their tangent great circle. For each τ and each $\eta \in \Theta'_{\tau}$ consider a circle $S^2 \cap (\xi^{\perp} + \frac{t}{\tau}\xi)$ that is tangent to Θ'_{τ} at η and lies on the other side with respect to the tangent great circle. Let Σ' be the set of such directions ξ .

Note that for each Θ'_{τ} , these ξ form a parallel set of Θ'_{τ} on S^2 , which we denote by \mathcal{C}'_{τ} . This is the envelope of a family of circles on S^2 with centres at Θ'_{τ} and of radius $\frac{t}{\tau}$. We claim that for different values of $\tau \in (a', b')$, the corresponding \mathcal{C}'_{τ} do not coincide. Otherwise, for some $\tau_1 \in (a', b')$, the envelope of a family of tangent planes of $\frac{1}{\tau_1}B$ at the points on $\frac{t}{\tau_1}\mathcal{C}'_{\tau_1}$ intersects S^2 along Θ'_{τ_1} , i.e.,

$$\Theta_{\tau_1}' = \operatorname{Envelope}\left\{\bigcup_{\xi\in\mathcal{C}_{\tau_1}'} H_{\frac{t}{\tau_1}\xi,\frac{1}{\tau_1}B}\right\} \cap S^2,$$

where $H_{\frac{t}{\tau_1}\xi,\frac{1}{\tau_1}B}$ is the tangent plane to $\frac{1}{\tau_1}B$ at the point $\frac{t}{\tau_1}\xi$ and Envelope $\{\cdot\}$ is the envelope of a one-parameter family of curves. Hence, multiplying both sides by τ_1 , we obtain

$$\partial L \supset \tau_1 \Theta'_{\tau_1} = \text{Envelope} \left\{ \bigcup_{\xi \in \mathcal{C}'_{\tau_1}} H_{t\xi,B} \right\} \cap \tau_1 S^2.$$

On the other hand, assume that for a different value $(a', b') \ni \tau_2 \neq \tau_1$, we have

$$au_2 \Theta'_{ au_2} = ext{Envelope} \left\{ \bigcup_{\xi \in \mathcal{C}'_{ au_1}} H_{t\xi,B} \right\} \cap \partial L.$$

N. ZHANG

However, Envelope $\{\bigcup_{\xi \in \mathcal{C}'_{\tau_1}} H_{t\xi,B}\}$ is a ruled surface (i.e., comprised of straight lines), which cannot intersect ∂L along two different curves. So \mathcal{C}'_{τ_1} and \mathcal{C}'_{τ_2} do not coincide. We conclude that by the continuity of \mathcal{C}'_{τ} with respect to τ , the set Σ' is a union of \mathcal{C}'_{τ} and thus contains non-empty interior.

Now we claim $\Xi'_{\text{con}} \cap \text{int}(\Sigma') \neq \emptyset$; otherwise, $\text{int}(\Sigma') \subset \Xi'_0 \cup (\bigcup_{n=2}^{\infty} \Xi_n)$, but $\text{int}(\Sigma') \cap \Xi'_0 = \emptyset$, since $B_{\epsilon}(x) \subset \{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\}$. Hence, $\text{int}(\Sigma') \subset \bigcup_{n=2}^{\infty} \Xi'_n$, which implies that $(\bigcup_{n=2}^{\infty} \Xi'_n) \cap \text{int}(\Sigma)$ contains non-empty interior. By the Baire category theorem and Lemma 2.8, there exists some $k \in \mathbb{N}$, such that $\Xi_k \cap \text{int}(\Sigma')$ contains non-empty interior.

Assume $\xi \in \operatorname{int} (\Xi'_k \cap \Sigma')$. Then, there exists $\delta > 0$ such that $B_{\delta}(\xi) \subset \operatorname{int} (\Xi'_k \cap \Sigma')$. For any $\rho_L(\theta)\theta \in \xi^{\perp} + t\xi$,

$$\rho_L(\eta) = \rho_L(\theta) \quad \forall \eta \in \Lambda'_{\xi}(\theta) := \{ \phi_{\zeta,\frac{2}{k}}(\theta) : \rho_L(\theta)\theta \in \zeta^{\perp} + t\zeta, \zeta \in B_{\delta}(\xi) \}$$

and

$$\rho_L(\omega) = \rho_L(\eta) = \rho_L(\theta)$$

$$\forall \omega \in \Delta'_{\xi}(\theta) := \{ \phi_{\vartheta, -\frac{2}{k}}(\eta) : \eta \in \Lambda'_{\xi}(\theta), \ \rho_L(\theta)\eta \in \vartheta^{\perp} + t\vartheta, \ \vartheta \in B_{\delta}(\xi) \}.$$

Let us show that $\Delta'_{\xi}(\theta)$ has non-empty interior. Note that for any $\eta \in \Lambda'_{\xi}(\theta)$, by equation (2) we have

$$\langle \theta, \eta \rangle = \cos(2\pi/k) + \frac{t^2}{\rho_L^2(\theta)} (1 - \cos(2\pi/k)) =: \varsigma'(t),$$

where $-1 < \varsigma'(t) < 1$. If $\varsigma'(t) = 0$, then $\Lambda'_{\xi}(\theta) \subset S^2 \cap \theta^{\perp}$. Fix $\eta \in \Lambda'_{\xi}(\theta)$; then for each

$$\omega \in \{\phi_{\vartheta, -\frac{2}{k}}(\eta) : \rho_L(\theta)\eta \in \vartheta^\perp + t\vartheta, \ \vartheta \in B_{\delta}(\xi)\},\$$

by equation (2) we have

$$\langle \omega, \eta \rangle = \varsigma'(t) = 0,$$

which means $\{\phi_{\vartheta,-\frac{2}{k}}(\eta): \rho_L(\theta)\eta \in \vartheta^{\perp} + t\vartheta, \ \vartheta \in B_{\delta}(\xi)\}$ is a curve passing through θ and contained in $S^2 \cap \eta^{\perp}$. Since $\Lambda'_{\xi}(\theta)$ is a continuous curve, by changing η we see that $\Delta'_{\xi}(\theta)$ has the shape of a sand dial, which we will refer to as a \bowtie shape.

If $0 < \varsigma'(t) < 1$, then $\Lambda'_{\xi}(\theta) \subset S^2 \cap (\theta^{\perp} + \varsigma(t)\theta)$. Fix $\eta \in \Lambda'_{\xi}(\theta)$; then $\{\phi_{\vartheta, -\frac{2}{k}}(\eta) : \rho_L(\theta)\eta \in \vartheta^{\perp} + t\vartheta, \ \vartheta \in B_{\delta}(\xi)\}$ gives a curve passing through θ and contained in $S^2 \cap (\eta^{\perp} + \varsigma'(t)\eta)$. Observe that for different $\eta \in \Lambda'_{\xi}(\theta)$, we have different curves $\{\phi_{\vartheta, -\frac{2}{k}}(\eta) : \rho_L(\theta)\eta \in \vartheta^{\perp} + t\vartheta, \ \vartheta \in B_{\delta}(\xi)\}$ with the only common point θ . Since these curves change continuously, the set $\Delta'_{\xi}(\theta)$ again has a \bowtie shape.

If $-1 < \varsigma'(t) < 0$, use the same argument to show that $\Delta'_{\xi}(\theta)$ has a \bowtie shape. Therefore, $\Delta'_{\xi}(\theta)$ is a set with non-empty interior on S^2 ; hence, it is not a 1-manifold.

Now to reach a contradiction, assume that $\nabla_{S^2} \rho_L(\theta) = 0$ for every $\theta \in S^2$ such that $\rho_L(\theta)\theta \in L \cap (\xi^{\perp} + t\xi)$; then $L \cap (\xi^{\perp} + t\xi)$ is a disk, $\xi \in \Xi'_0$, which contradicts int $(\Sigma') \cap \Xi'_0 = \emptyset$.

On the other hand, if $\nabla_{S^2} \rho_L(\theta) \neq 0$ for some point θ satisfying

$$\rho_L(\theta)\theta \in L \cap (\xi^\perp + t\xi),$$

then by the implicit function theorem, the level set of ρ_L passing through θ on S^2 is a 1-manifold; a contradiction. Thus, we have shown that $\Xi'_{\rm con} \cap \operatorname{int}(\Sigma') \neq \emptyset$.

Now assume that for every $\xi \in \Xi'_{\text{con}} \cap \text{int}(\Sigma')$, $\lambda'(\xi) = 1$. Then, there exists $\delta > 0$ such that $B_{\delta}(\xi) \subset \text{int}(\Xi'_{\text{con}} \cap \Sigma')$ and $\lambda'(\zeta) = 1$ for any $\zeta \in B_{\delta}(\xi)$. For any $\theta \in S^2$ such that $\rho_L(\theta)\theta \in \xi^{\perp} + t\xi$, we have

$$\rho_K(\eta) = \rho_L(\theta) \quad \forall \eta \in \Lambda'_{\xi}(\theta) := \{\phi_{\zeta,1}(\theta) : \rho_L(\theta)\theta \in \zeta^{\perp} + t\zeta, \zeta \in B_{\delta}(\xi)\}$$

and

$$\rho_L(\omega) = \rho_K(\eta) = \rho_L(\theta)$$

$$\forall \omega \in \Delta'_{\xi}(\theta) := \{ \phi_{\vartheta,1}(\eta) : \eta \in \Lambda'_{\xi}(\theta), \ \rho_L(\theta)\eta \in \vartheta^{\perp} + t\vartheta, \ \vartheta \in B_{\delta}(\xi) \}$$

Following the same argument as above, we have that $\Delta'_{\xi}(\theta)$ is a set with nonempty interior on S^2 ; hence, it is not a 1-manifold. If $\nabla_{S^2}\rho_L(\theta) = 0$, for every θ such that $\rho_L(\theta)\theta \in L \cap (\xi^{\perp} + t\xi)$, then $L \cap (\xi^{\perp} + t\xi)$ is a disk; a contradiction.

If $\nabla_{S^2}\rho_L(\theta) \neq 0$ for some point θ satisfying $\rho_L(\theta)\theta \in L \cap (\xi^{\perp} + t\xi)$, then by the implicit function theorem, the level set of ρ_L passing through θ on S^2 is a 1-manifold; a contradiction.

Finally, consider the case when there exists $\xi \in \operatorname{int} (\Xi'_{\operatorname{con}} \cap \Sigma')$ such that $\lambda'(\xi) \neq 1$. Then, there exists a neighbourhood $B_{\epsilon}(\xi) \in \Xi'_{\operatorname{con}} \cap \operatorname{int} (\Sigma')$ and $\theta \in \Theta'_{\tau} \in \mathcal{L}'(L)$ for some τ , such that $(\xi^{\perp} + t\xi)_{+} \cap \Theta'_{\tau} = \theta$. On the other hand, by Lemma 2.11

$$\Lambda'(\theta) = \{\phi_{\zeta, -\lambda'(\zeta)}(\eta) : \zeta \in B_{\epsilon}(\xi) \text{ and } \rho_L(\theta)\eta \in \zeta^{\perp} + t\zeta\},\$$

where $\eta = \phi_{\xi,\lambda'(\xi)}(\theta)$, is a curve such that $\{\rho_L(\theta)u : u \in \Lambda'(\theta)\} \cap \operatorname{int} ((\xi^{\perp} + t\xi)_+) \neq \emptyset$ and $\rho_L(\vartheta) = \rho_L(\theta)$ for any $\vartheta \in \Lambda'(\theta)$; however, $\Lambda'(\theta) \cup \Theta'_{\tau} \subset \mathcal{L}'(L)$ must be a level set of ρ_L in $\mathcal{L}'(L)$ that is not a 1-manifold; a contradiction.

Therefore, $\{\theta \in S^2 : \rho_K(\theta) \neq \rho_L(\theta)\} = \emptyset$.

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Vladyslav Yaskin, for fruitful discussions. Thanks are also due to the referee for the critical reading of the manuscript.

References

- M. Angeles Alfonseca, Michelle Cordier, and Dmitry Ryabogin, On bodies with directly congruent projections and sections, Israel J. Math. 215 (2016), no. 2, 765–799. MR3552295
- [2] Richard J. Gardner, *Geometric tomography*, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR2251886
- [3] V. Golubyatnikov, Uniqueness questions in reconstruction of multidimensional objects from tomography type projection data, Inverse and Ill-posed problems series, Utrecht-Boston-Koln-Tokyo, 2000.
- [4] Alfred Gray, Elsa Abbena, and Simon Salamon, Modern differential geometry of curves and surfaces with Mathematica[®], 3rd ed., Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR2253203
- [5] Serge Lang, Introduction to differentiable manifolds, 2nd ed., Universitext, Springer-Verlag, New York, 2002. MR1931083
- [6] Sergii Myroshnychenko and Dmitry Ryabogin, On polytopes with congruent projections or sections, Adv. Math. 325 (2018), 482–504. MR3742596
- [7] Dmitry Ryabogin, On the continual Rubik's cube, Adv. Math. 231 (2012), no. 6, 3429–3444. MR2980504
- [8] Dmitry Ryabogin, A lemma of Nakajima and Süss on convex bodies, Amer. Math. Monthly 122 (2015), no. 9, 890–892. MR3418213
- [9] J. Sacco, Geometric tomography via conic sections, MSc Thesis, University of Alberta, 2011.
- [10] Rolf Schneider, Functions on a sphere with vanishing integrals over certain subspheres, J. Math. Anal. Appl. 26 (1969), 381–384. MR0237723

N. ZHANG

School of Mathematics and Statistics, Huazhong University of Science and Tech-Nology, Wuhan 430074, Hubei, People's Republic of China *Email address*: nzhang2@ualberta.ca