# ON BODIES WITH CONGRUENT SECTIONS BY CONES OR NON-CENTRAL PLANES 

N. ZHANG


#### Abstract

Let $K$ and $L$ be two convex bodies in $\mathbb{R}^{3}$, such that their sections by cones $\left\{x \in \mathbb{R}^{3}: x \cdot \xi=t|x|\right\}$ or non-central planes with a fixed distance from the origin are directly congruent. We prove that if their boundaries are of class $C^{2}$, then $K$ and $L$ coincide.


## 1. Introduction and main Results

This paper is motivatied by the following problem (see, for example, the book of R. J. Gardner "Geometric tomography" [2, Page 289]).
Problem 1.1. Suppose that $2 \leq k \leq n-1$ and that $K$ and $L$ are star bodies in $\mathbb{R}^{n}$ such that the section $K \cap H$ is congruent to $L \cap H$ (see Figure (1) for all $H \in G(n, k)$. Do $K$ and $L$ coincide up to a reflection only?


Figure 1. Congruent sections by central planes.
Here, $K \cap H$ being congruent to $L \cap H$ means that there exists an orthogonal transformation $\varphi$ in $H$ such that $\varphi(K \cap H)$ is a translate of $L \cap H$. The answer is affirmative in the case when $K \cap H$ is a translate of $L \cap H$ for every $H$ (see Gardner [2. Theorem 7.1.1] and Ryabogin [8). If $K \cap H$ is a rotation of $L \cap H$ for each $H$ and $k=2$, Ryabogin [7] gave an affirmative answer. For the higher dimension, some partial results were obtained by Alfonseca, Cordier, and Ryabogin in [1] and Myroshnychenko and Ryabogin in [6. Several other results can be found in the book of Golubyatnikov [3]. In general, this problem is still open. Below we study two versions of this problem.

Problem 1.2. Let $K, L \subset \mathbb{R}^{n}$ be star bodies and $t \in(0,1)$. Assume that for every $\xi \in S^{n-1}$ there is a rigid motion $\phi_{\xi}$ such that $K \cap C_{t}(\xi)=\phi_{\xi}\left(L \cap C_{t}(\xi)\right.$ ) (see Figure (2). Does it follow that $K=L$ ?

[^0]

Figure 2. Congruent sections by cones.
Here, for $t \in(0,1)$, we define

$$
C_{t}(\xi):=\left\{x \in \mathbb{R}^{n}:\langle x, \xi\rangle=t|x|\right\}
$$

to be a cone in the direction of $\xi$. For some special values of $t$, Problem 1.2 has an affirmative answer (cf. Schneider [10]; see also Sacco [9] for details).
Problem 1.3. Let $K, L \subset \mathbb{R}^{n}$ be convex bodies containing a ball $B$ in their interiors. Assume that for every $\xi \in S^{n-1}$ there is a rigid motion $\phi_{\xi}$ such that $K \cap\left(\xi^{\perp}+t \xi\right)=\phi_{\xi}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)$ (see Figure 3). Does it follow that $K=L$ ?


Figure 3. Congruent sections by non-central planes.
Here and below, $B$ is the ball with centre at the origin of radius $t, t>0$.
In this paper, we solve Problem 1.2 in $\mathbb{R}^{3}$ in the class of $C^{2}$ star bodies, i.e., star bodies with $C^{2}$ boundaries.

Theorem 1.4. Let $f, g \in C^{2}\left(S^{2}\right)$ and $t \in(0,1)$. Assume that for every $\xi \in S^{2}$ there is a rotation $\phi_{\xi}$ around $\xi$ such that

$$
f\left(\phi_{\xi}(\theta)\right)=g(\theta)
$$

for all $\theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)$. Then $f=g$.
The case $t \in(0,1)$ is more difficult than the case $t=0$, for, in general, there is no injectivity of the corresponding Spherical Radon transform. And the smoothness of the function is necessary when creating disjoint $C^{2}$ level sets of the function.

As a corollary of Theorem [1.4 we get a positive answer to a version of Problem 1.2

Corollary 1.5. Let $K, L \subset \mathbb{R}^{3}$ be $C^{2}$ star bodies and $t \in(0,1)$. Assume that for every $\xi \in S^{n-1}$ there is a rotation $\phi_{\xi}$ around $\xi$ such that $K \cap C_{t}(\xi)=\phi_{\xi}\left(L \cap C_{t}(\xi)\right)$. Then $K=L$.

We also solve a version of Problem 1.3 in $\mathbb{R}^{3}$.
Theorem 1.6. Let $K, L \subset \mathbb{R}^{3}$ be $C^{2}$ convex bodies containing a ball $B$ in their interiors. Assume that for every $\xi \in S^{2}$ there is a rotation $\phi_{\xi}$ around $\xi$ such that $K \cap\left(\xi^{\perp}+t \xi\right)=\phi_{\xi}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)$. Then $K=L$.

## 2. Proofs of main results

For a unit vector $\xi \in S^{2}$, we define an open ball on $S^{2}$ with centre at $\xi$ to be

$$
B_{\epsilon}(\xi):=\left\{\theta \in S^{2}:\|\theta-\xi\|<\epsilon\right\}
$$

where $\|\cdot\|$ is the Euclidean distance. We also define $\phi_{\xi}=\phi_{\xi, \alpha} \in \mathrm{SO}(3)$ to be the rotation around $\xi$ by an angle $\alpha$ in the counterclockwise direction. Namely, for any $\theta \in S^{2}$,

$$
\phi_{\xi, \alpha}(\theta)=\theta \cos (\alpha \pi)+(\xi \times \theta) \sin (\alpha \pi)+\xi\langle\xi, \theta\rangle(1-\cos (\alpha \pi)),
$$

where $\xi \times \theta,\langle\xi, \theta\rangle$ are usual vector and scalar products in $\mathbb{R}^{3}$.
2.1. Congruent sections by cones. Auxiliary results. In order to prove the theorem, we assume the opposite, that is, by Lemma [2.5, there exists an $x \in S^{2}$ such that $f(x) \neq g(x)$ and $\nabla_{S^{2}} f(x) \neq 0$, which gives a neighbourhood of $x$ on $S^{2}$ containing local level sets of $f$. By the $C^{2}$ smoothness of $f$ and the implicit function theorem, those level sets are a collection of disjoint $C^{2}$ curves. Then, the $\sqrt{2-t}$-distance is parallel to the sets of those $C^{2}$ curves forming a subset of $S^{2}$ with non-empty interior, whose intersection with $\Xi_{\text {con }}$ is not empty. By Lemmas 2.4 and 2.6, the level set $\Theta_{\tau} \cup \Lambda(\theta)$ of $f$ is not $C^{2}$ curve for some $\tau$; a contradiction. (See Figure 4)


Figure 4. The level set $\Theta_{\tau} \cup \Lambda(\theta)$ is not $C^{2}$ curve.

The details of the proof are organized as follows.

Definition 2.1. Let $f, g, t$ be as in Theorem 1.4. Define the following three subsets of $S^{2}$ :

$$
\begin{aligned}
& \Xi_{0}=\left\{\xi \in S^{2}: f(\theta)=g(\theta) \quad \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)\right\} ; \\
& \Xi_{n}=\left\{\xi \in S^{2}: f\left(\phi_{\xi, \frac{2}{n}}(\theta)\right)=f(\theta) \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)\right\}, \quad n=2,3, \ldots ; \\
& \Xi_{\mathrm{con}}=S^{2} \backslash\left(\Xi_{0} \cup\left(\bigcup_{n=2}^{\infty} \Xi_{n}\right)\right) .
\end{aligned}
$$

Lemma 2.2. $\Xi_{n}$ are closed for all $n=0,2,3, \ldots$.
Proof. First, for any pair of directions $\xi_{1}$ and $\xi_{2}$, we define the map $\psi_{\xi_{1}, \xi_{2}}$.
If $\xi_{1}$ is not parallel to $\xi_{2}$, then consider the great circle passing through $\xi_{1}, \xi_{2}$, which intersects $\xi_{1}^{\perp}+t \xi_{1}$ and $\xi_{2}^{\perp}+t \xi_{2}$ at $\theta_{11}, \theta_{12}$ and $\theta_{21}, \theta_{22}$, respectively. The directions $\theta_{11}, \theta_{12}$ are chosen in such a way that the triple $\theta_{11}, \theta_{12}, \xi_{1} \times \xi_{2}$ has a positive orientation. The same is assumed to hold for $\theta_{21}, \theta_{22}$. For any point $\theta \in S^{2} \cap\left(\xi_{1}^{\perp}+t \xi_{1}\right)$, there exists $\phi_{\xi_{1}, \alpha} \in \mathrm{SO}(3)$, such that $\theta=\phi_{\xi_{1}, \alpha}\left(\theta_{11}\right)$. We define $\psi_{\xi_{1}, \xi_{2}}(\theta):=\phi_{\xi_{2}, \alpha}\left(\theta_{21}\right)$.

If $\xi_{1}$ is parallel to $\xi_{2}$, we define $\psi_{\xi_{1}, \xi_{2}}(\theta)=\theta$. Note that for any $\theta \in S^{2} \cap\left(\xi_{1}^{\perp}+t \xi_{1}\right)$, since $\xi_{2} \times \theta_{21}=\xi_{1} \times \theta_{11}$ and $\left\langle\xi_{2}, \theta_{21}\right\rangle=\left\langle\xi_{1}, \theta_{11}\right\rangle=t$, we have

$$
\begin{aligned}
& \left\|\psi_{\xi_{1}, \xi_{2}}(\theta)-\theta\right\|=\left\|\phi_{\xi_{2}, \alpha}\left(\theta_{21}\right)-\phi_{\xi_{1}, \alpha}\left(\theta_{11}\right)\right\| \\
& =\| \theta_{21} \cos (\alpha \pi)+\left(\xi_{2} \times \theta_{21}\right) \sin (\alpha \pi)+\xi_{2}\left\langle\xi_{2}, \theta_{21}\right\rangle(1-\cos (\alpha \pi)) \\
& \quad-\theta_{11} \cos (\alpha \pi)-\left(\xi_{1} \times \theta_{11}\right) \sin (\alpha \pi)-\xi_{1}\left\langle\xi_{1}, \theta_{11}\right\rangle(1-\cos (\alpha \pi)) \| \\
& =\left\|\theta_{21} \cos (\alpha \pi)+t \xi_{2}(1-\cos (\alpha \pi))-\theta_{11} \cos (\alpha \pi)-t \xi_{1}(1-\cos (\alpha \pi))\right\| \\
& \leq\left\|\theta_{21} \cos (\alpha \pi)-\theta_{11} \cos (\alpha \pi)\right\|+\left\|t \xi_{2}(1-\cos (\alpha \pi))-t \xi_{1}(1-\cos (\alpha \pi))\right\| \\
& \leq\left\|\theta_{21}-\theta_{11}\right\|+2\left\|\xi_{1}-\xi_{2}\right\| \\
& =3\left\|\xi_{1}-\xi_{2}\right\|
\end{aligned}
$$

and

$$
\phi_{\xi_{2}, \beta}\left(\psi_{\xi_{1}, \xi_{2}}(\theta)\right)=\psi_{\xi_{1}, \xi_{2}}\left(\phi_{\xi_{1}, \beta}(\theta)\right) \quad \text { for any } \beta
$$

Given a sequence $\xi_{i} \in \Xi_{0}$ with $\lim _{i \rightarrow \infty} \xi_{i}=\xi$, define $\psi_{\xi, \xi_{i}}$ as similar to the above. For any $\theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)$, we have

$$
\begin{aligned}
& |f(\theta)-g(\theta)| \\
& \leq\left|f(\theta)-f\left(\psi_{\xi, \xi_{i}}(\theta)\right)\right|+\left|f\left(\psi_{\xi, \xi_{i}}(\theta)\right)-g\left(\psi_{\xi, \xi_{i}}(\theta)\right)\right|+\left|g\left(\psi_{\xi, \xi_{i}}(\theta)\right)-g(\theta)\right| \\
& =\left|f(\theta)-f\left(\psi_{\xi, \xi_{i}}(\theta)\right)\right|+\left|g\left(\psi_{\xi, \xi_{i}}(\theta)\right)-g(\theta)\right|
\end{aligned}
$$

As $\xi_{i} \rightarrow \xi, \psi_{\xi, \xi_{i}}(\theta) \rightarrow \theta$; hence, by continuity of $f$ and $g$,

$$
|f(\theta)-g(\theta)|=0 \quad \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)
$$

which implies $\xi \in \Xi_{0}$. Now we prove the closeness of $\Xi_{0}$.
Similarly, given a sequence $\xi_{i} \in \Xi_{n}$ with $\lim _{i \rightarrow \infty} \xi_{i}=\xi$, for any $\theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)$, we have

$$
\begin{aligned}
& \left|f\left(\phi_{\xi, \frac{2}{n}}(\theta)\right)-f(\theta)\right| \\
& \leq\left|f\left(\phi_{\xi, \frac{2}{n}}(\theta)\right)-f\left(\phi_{\xi_{i}, \frac{2}{n}}\left(\psi_{\xi, \xi_{i}}(\theta)\right)\right)\right|+\left|f\left(\phi_{\xi_{i}, \frac{2}{n}}\left(\psi_{\xi, \xi_{i}}(\theta)\right)\right)-f\left(\psi_{\xi, \xi_{i}}(\theta)\right)\right| \\
& \quad+\left|f\left(\psi_{\xi, \xi_{i}}(\theta)\right)-f(\theta)\right| \\
& =\left|f\left(\phi_{\xi, \frac{2}{n}}(\theta)\right)-f\left(\psi_{\xi, \xi_{i}}\left(\phi_{\xi, \frac{2}{n}}(\theta)\right)\right)\right|+\left|f\left(\psi_{\xi, \xi_{i}}(\theta)\right)-f(\theta)\right| .
\end{aligned}
$$

As $\xi_{i} \rightarrow \xi, \psi_{\xi, \xi_{i}}(\theta) \rightarrow \theta$; hence, by continuity of $f$,

$$
\left|f\left(\phi_{\xi, \frac{2}{n}}(\theta)\right)-f(\theta)\right|=0 \quad \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)
$$

which implies $\xi \in \Xi_{n}$.
Lemma 2.3. Suppose that for some $\xi \in S^{2}$ there exists $\alpha \in \mathbb{Q}$ such that $f\left(\phi_{\xi, \alpha}(\theta)\right)$ $=f(\theta) \quad \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)$. Then, there exists $n \geq 2$, such that $\xi \in \Xi_{n}$.
Proof. Let us write $\alpha=\frac{p}{q}$, where $p$ and $q$ are coprime integers. It is sufficient to show $\frac{2}{n}=m \frac{p}{q}+2 l$ for some $m, n, l \in \mathbb{Z}$. Indeed, this would imply that

$$
f\left(\phi_{\xi, \frac{2}{n}}(\theta)\right)=f\left(\phi_{\xi, m \frac{p}{q}+2 l}(\theta)\right)=f\left(\phi_{\xi, m \frac{p}{q}}(\theta)\right)=f(\theta) .
$$

But, since $p, q$ are coprime, there exist $k, r \in \mathbb{Z}$, such that $p k+q r=1$. If we set $n=q$, then

$$
\frac{2}{n}=\frac{2(p k+q r)}{q}=2 k \frac{p}{q}+2 r .
$$

Now, we define

$$
\lambda(\xi):=\left\{\alpha \in[0,2): f\left(\phi_{\xi, \alpha}(\theta)\right)=g(\theta) \quad \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)\right\} .
$$

In the case when $\xi \in \Xi_{n}, n \geq 2, \lambda(\xi)$ is a multi-valued function; on the other hand, if $\xi \in \Xi_{\text {con }}, \lambda(\xi)$ is a single-valued function; otherwise, if $\alpha, \beta \in \lambda(\xi)$ with $\alpha \neq \beta$,

$$
f\left(\phi_{\xi, \alpha}(\theta)\right)=g(\theta)=f\left(\phi_{\xi, \beta}(\theta)\right) \quad \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right),
$$

implying

$$
f\left(\phi_{\xi, \alpha-\beta}(\theta)\right)=f(\theta) \quad \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right) .
$$

If $\alpha-\beta$ is irrational, then $f(\theta) \equiv C \equiv g(\theta) \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)$, which means $\xi \in \Xi_{0}$; a contradiction. If $\alpha-\beta$ is rational, then by Lemma 2.3, $\xi \in \Xi_{n}$; a contradiction.

Lemma 2.4. Let $f, g, t$ be as in Theorem 1.4. Then $\Xi_{\text {con }}$ is open and $\lambda(\xi)$ is a continuous function on $\Xi_{\text {con }}$ if $\Xi_{\text {con }} \neq \emptyset$.

Proof. If $\Xi_{\text {con }}=\emptyset$, then $\Xi_{\text {con }}$ is open. Now assume that $\Xi_{\text {con }}$ is not open. There exists $\xi \in \Xi_{\text {con }}$, such that, for any $i \in \mathbb{N}$, there exists $\xi_{i} \in B_{\frac{1}{2}}(\xi) \cap \Xi_{n_{i}}$ for some $n_{i}$. If there are infinitely many $\xi_{i}$ that belong to $\Xi_{0}$, then $0 \in \lambda(\xi)$, that is, $\xi \in \Xi_{0}$; a contradiction. If there are infinitely many $\xi_{i}$, for which $n_{i} \neq 0$, then $\lambda\left(\xi_{i}\right)$ is a multi-valued function. Thus there exists $\alpha_{i} \in \lambda\left(\xi_{i}\right)$, such that $\left|\alpha_{i}-\lambda(\xi)\right|>\varepsilon$ for some $\varepsilon>0$. By compactness of $[0,2]$, there exists a subsequence $\xi_{i_{k}}$, such that $\lim _{k \rightarrow \infty} \alpha_{i_{k}}=\alpha$, where $|\alpha-\lambda(\xi)| \geq \varepsilon$. Set $\psi_{\xi, \xi_{i_{k}}}$ similarly to the ones defined in Lemma 2.2.

Then for any $\theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)$,

$$
\begin{aligned}
& \left|f\left(\phi_{\xi, \lambda(\xi)}(\theta)\right)-f\left(\phi_{\xi, \alpha}(\theta)\right)\right| \\
& \leq\left|f\left(\phi_{\xi, \lambda(\xi)}(\theta)\right)-g(\theta)\right|+\left|g(\theta)-g\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)\right| \\
& \quad+\left|g\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)-f\left(\phi_{\xi_{i_{k}}, \alpha_{i_{k}}}\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)\right)\right|+\left|f\left(\phi_{\xi_{i_{k}}, \alpha_{i_{k}}}\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)\right)-f\left(\phi_{\xi, \alpha_{i_{k}}}(\theta)\right)\right| \\
& =\left|g(\theta)-g\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)\right|+\left|f\left(\psi_{\xi, \xi_{i_{k}}}\left(\phi_{\xi, \alpha_{i_{k}}}(\theta)\right)\right)-f\left(\phi_{\xi, \alpha}(\theta)\right)\right| .
\end{aligned}
$$

As $k \rightarrow \infty$, we have $\psi_{\xi, \xi_{i_{k}}}(\theta) \rightarrow \theta$ and $\psi_{\xi, \xi_{i_{k}}}\left(\phi_{\xi, \alpha_{i_{k}}}(\theta)\right) \rightarrow \phi_{\xi, \alpha}(\theta)$; hence, by continuity of $f$ and $g$,

$$
\left|f\left(\phi_{\xi, \lambda(\xi)}(\theta)\right)-f\left(\phi_{\xi, \alpha}(\theta)\right)\right|=0 \quad \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right),
$$

implying

$$
\left|f\left(\phi_{\xi, \alpha}(\theta)\right)-g(\theta)\right|=0 \quad \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right) ;
$$

a contradiction.
For the continuity, since $\lambda(\xi)$ is a single-valued function when $\xi \in \Xi_{\text {con }}$, consider a sequence $\left\{\xi_{i}\right\}_{i=1}^{\infty} \in \Xi_{\text {con }}$, such that $\Xi_{\text {con }} \ni \xi=\lim _{i \rightarrow \infty} \xi_{i}$. By compactness of $[0,2]$, there exists a subsequence $\left\{\xi_{i_{k}}\right\}_{k=1}^{\infty}$, such that $\alpha=\lim _{k \rightarrow \infty} \lambda\left(\xi_{i_{k}}\right)$. Then for any $\theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)$,

$$
\begin{aligned}
& \left|f\left(\phi_{\xi, \alpha}(\theta)\right)-g(\theta)\right| \\
& \leq\left|f\left(\phi_{\xi, \alpha}(\theta)\right)-f\left(\phi_{\xi_{i_{k}}, \lambda\left(\xi_{i_{k}}\right)}\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)\right)\right|+\left|f\left(\phi_{\xi_{i_{k}}, \lambda\left(\xi_{i_{k}}\right)}\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)\right)-g\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)\right| \\
& \text { quad }+\left|g\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)-g(\theta)\right| \\
& \quad=\left|f\left(\phi_{\xi, \alpha}(\theta)\right)-f\left(\phi_{\xi_{i_{k}}, \lambda\left(\xi_{i_{k}}\right)}\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)\right)\right|+\left|g\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right)-g(\theta)\right| .
\end{aligned}
$$

As $k \rightarrow \infty$, we have $\phi_{\xi_{i_{k}}, \lambda\left(\xi_{i_{k}}\right)}\left(\psi_{\xi, \xi_{i_{k}}}(\theta)\right) \rightarrow \phi_{\xi, \alpha}(\theta)$ and $\psi_{\xi, \xi_{i_{k}}}(\theta) \rightarrow \theta$; hence, by continuity of $f$ and $g$,

$$
\left|f\left(\phi_{\xi, \alpha}(\theta)\right)-g(\theta)\right|=0 \quad \forall \theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)
$$

that is, $\lambda(\xi)=\alpha$. If $\left\{\lambda\left(\xi_{i}\right)\right\}_{i=1}^{\infty}$ has another subsequence with a different limit $\beta \neq \alpha$, then $\{\alpha, \beta\} \subset \lambda(\xi)$, contradicting the fact that $\xi \in \Xi_{\text {con }}$.
Lemma 2.5. Let $f, g, t$ be as in Theorem 1.4. Then either $\left\{\theta \in S^{2}: f(\theta)=\right.$ $g(\theta)\}=S^{2}$ or the set

$$
\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\} \cap\left[\left\{\theta \in S^{2}: \nabla_{S^{2}} f(\theta) \neq 0\right\} \cup\left\{\theta \in S^{2}: \nabla_{S^{2}} g(\theta) \neq 0\right\}\right]
$$

is not empty.
Here, $\nabla_{S^{2}}$ is the spherical gradient, that is, for a function $f$ on $S^{2}$,

$$
\left(\nabla_{S^{2}} f\right)(x /|x|)=\nabla(f(x /|x|)), \quad x \in \mathbb{R}^{3} /\{0\}
$$

where $f(x /|x|)$ is the 0-degree homogeneous extension of the function $f$ to $\mathbb{R}^{3} /\{0\}$ and $\nabla$ is the gradient in the ambient space $\mathbb{R}^{3}$.

Proof. First, the set $\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\}$ is not the whole sphere; otherwise without loss of generality let $f(\theta)<g(\theta)$. Then

$$
\begin{aligned}
& \int_{S^{2} \cap\left(\xi^{\perp}+t \xi\right)} g(\theta) d \theta=\int_{S^{2} \cap\left(\xi^{\perp}+t \xi\right)} f\left(\phi_{\xi}(\theta)\right) d \theta \\
& =\int_{S^{2} \cap\left(\xi^{\perp}+t \xi\right)} f(\theta) d \theta<\int_{S^{2} \cap\left(\xi^{\perp}+t \xi\right)} g(\theta) d \theta .
\end{aligned}
$$

Now assume

$$
\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\} \cap\left[\left\{\theta \in S^{2}: \nabla_{S^{2}} f(\theta) \neq 0\right\} \cup\left\{\theta \in S^{2}: \nabla_{S^{2}} g(\theta) \neq 0\right\}\right]=\emptyset .
$$

Then

$$
\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\} \subset\left\{\theta \in S^{2}: \nabla_{S^{2}} f(\theta)=0\right\} \cap\left\{\theta \in S^{2}: \nabla_{S^{2}} g(\theta)=0\right\}
$$

Since $f, g \in C^{2}\left(S^{2}\right)$, the set

$$
\Upsilon_{0}:=\left\{\theta \in S^{2}: \nabla_{S^{2}} f(\theta)=0\right\} \cap\left\{\theta \in S^{2}: \nabla_{S^{2}} g(\theta)=0\right\}
$$

is closed and $f$ and $g$ are constant in any connected subset of $\Upsilon_{0}$.
Assume there exists $x \in\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\}$. Choose the largest connected open neighbourhood $\mathcal{N}_{x}$ of $x$ in $\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\} \forall \theta \in S^{2}$. Then the closure of $\mathcal{N}_{x}$ is in $\Upsilon_{0}$ and the boundary of $\mathcal{N}_{x}$ is a subset of $\left\{\theta \in S^{2}: f(\theta)=g(\theta)\right\}$,
which implies $C_{1}=f=g=C_{2}$ in the closure of $\mathcal{N}_{x}$; a contradiction. Hence, $\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\}=\emptyset$.

Note that for $\xi \in \Xi_{\text {con }}$, since $\Xi_{\text {con }}$ is open, there exists an $\epsilon>0$, such that $B_{\epsilon}(\xi) \subset \Xi_{\text {con }}$. Then, for any point $\theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)$, we set $\eta=\phi_{\xi,-\lambda(\xi)}(\theta)$ and $\xi \in \eta^{\perp}+t \eta$ since $\langle\xi, \eta\rangle=t$; hence, $\left(\eta^{\perp}+t \eta\right) \cap B_{\epsilon}(\xi)$ is not empty. Thus, we define the curve

$$
\Lambda(\theta):=\bigcup_{\zeta \in\left(\eta^{\perp}+t \eta\right) \cap B_{\epsilon}(\xi)} \phi_{\zeta, \lambda(\zeta)}(\eta)
$$

passing through $\theta$ (see Figure 5).


Figure 5. The construction of $\Lambda(\theta)$.

We set $\left(\xi^{\perp}+t \xi\right)_{+}:=\left\{x \in \mathbb{R}^{3}:\langle x, \xi\rangle \geq t\right\}$ and int $\left(\left(\xi^{\perp}+t \xi\right)_{+}\right):=\left\{x \in \mathbb{R}^{3}:\right.$ $\langle x, \xi\rangle>t\}$.

Lemma 2.6. Let $f, g, t$ be as in Theorem 1.4 and $\xi \in \Xi_{\text {con }}$. If $\lambda(\xi) \neq 1$, then

$$
\Lambda(\theta) \cap S^{2} \cap \operatorname{int}\left(\left(\xi^{\perp}+t \xi\right)_{+}\right) \neq \emptyset .
$$

Proof. Without loss of generality, we can assume that $0<\lambda(\xi)<1$. The other case $1<\lambda(\xi)<2$ is similar. Since $\xi \in \Xi_{\text {con }}$ and $0<\lambda(\xi)<1$, by Lemma 2.4 there exists $0<\iota<1 / 2$ and a ball $B_{\epsilon}(\xi) \subset \Xi_{\text {con }}$ such that $\iota \leq \lambda(\zeta) \leq 1-\iota$ for any $\zeta \in B_{\epsilon}(\xi)$.

Now take any $\theta \in S^{2} \cap\left(\xi^{\perp}+t \xi\right)$ and define $\eta=\phi_{\xi,-\lambda(\xi)}(\theta)$. We set $\zeta=\phi_{\eta, \alpha}(\xi)$ for some small $\alpha>0$ and $\omega=\phi_{\zeta, \lambda(\zeta)}(\eta)$. Then we have

$$
\begin{aligned}
& \zeta \times \eta=\phi_{\eta, \alpha}(\xi) \times \eta \\
& =(\xi \cos (\alpha \pi)+(\eta \times \xi) \sin (\alpha \pi)+\eta\langle\eta, \xi\rangle(1-\cos (\alpha \pi))) \times \eta \\
& =\xi \times \eta \cos (\alpha \pi)+(\xi\langle\eta, \eta\rangle-\eta\langle\xi, \eta\rangle) \sin (\alpha \pi) \\
& =\xi \times \eta \cos (\alpha \pi)+(\xi-t \eta) \sin (\alpha \pi)
\end{aligned}
$$

and

$$
\begin{align*}
& \langle\xi, \zeta\rangle=\left\langle\xi, \phi_{\eta, \alpha}(\xi)\right\rangle \\
& =\langle\xi, \xi \cos (\alpha \pi)+(\eta \times \xi) \sin (\alpha \pi)+\eta\langle\eta, \xi\rangle(1-\cos (\alpha \pi))\rangle \\
& =\cos (\alpha \pi)+t^{2}(1-\cos (\alpha \pi)) \tag{1}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
&\langle\xi, \omega\rangle-t=\left\langle\xi, \phi_{\zeta, \lambda(\zeta)}(\eta)\right\rangle-t \\
&=\langle\xi, \eta \cos (\lambda(\zeta) \pi)+(\zeta \times \eta) \sin (\lambda(\zeta) \pi)+t \zeta(1-\cos (\lambda(\zeta) \pi))\rangle-t \\
&= t \cos (\lambda(\zeta) \pi)+\langle\xi, \xi \times \eta \cos (\alpha \pi)+(\xi-t \eta) \sin (\alpha \pi)\rangle \sin (\lambda(\zeta) \pi) \\
&+t(1-\cos (\lambda(\zeta) \pi))\left(\cos (\alpha \pi)+t^{2}(1-\cos (\alpha \pi))\right)-t \\
&= t \cos (\lambda(\zeta) \pi)+\left(1-t^{2}\right) \sin (\alpha \pi) \sin (\lambda(\zeta) \pi) \\
& \quad+t(1-\cos (\lambda(\zeta) \pi))\left(\cos (\alpha \pi)+t^{2}(1-\cos (\alpha \pi))\right)-t \\
&=\left(1-t^{2}\right) \sin (\alpha \pi) \sin (\lambda(\zeta) \pi)+t(1-\cos (\lambda(\zeta) \pi))\left(t^{2}-1\right)(1-\cos (\alpha \pi)) \\
&=\left(1-t^{2}\right)(\sin (\alpha \pi) \sin (\lambda(\zeta) \pi)-t(1-\cos (\lambda(\zeta) \pi))(1-\cos (\alpha \pi))) \\
& \geq\left(1-t^{2}\right)(\sin (\alpha \pi) \sin (\iota \pi)-t(1-\cos ((1-\iota) \pi))(1-\cos (\alpha \pi))) \\
&>0 \quad \text { for sufficiently small } \alpha .
\end{aligned}
$$

To show

$$
\sin (\alpha \pi) \sin (\iota \pi)-t(1-\cos ((1-\iota) \pi))(1-\cos (\alpha \pi))>0
$$

for sufficiently small $\alpha>0$, we used that for $a, b>0, x>0$ sufficiently small, and $h(x)=a \sin x-b(1-\cos x)$,

$$
h^{\prime}(x)=a \cos x-b \sin x>0
$$

and $h(0)=0$.
Hence, $\omega \in \Lambda(\theta) \cap S^{2} \cap \operatorname{int}\left(\left(\xi^{\perp}+t \xi\right)_{+}\right)$.
Proof of Theorem 1.4. Assume the set $\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\}$ is not empty. By Lemma 2.5 we have

$$
\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\} \cap\left[\left\{\theta \in S^{2}: \nabla_{S^{2}} f(\theta) \neq 0\right\} \cup\left\{\theta \in S^{2}: \nabla_{S^{2}} g(\theta) \neq 0\right\}\right] \neq \emptyset
$$

Without loss of generality, we can choose

$$
x \in\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\} \cap\left\{\theta \in S^{2}: \nabla_{S^{2}} f(\theta) \neq 0\right\}
$$

and therefore, there exists an open ball

$$
B_{\epsilon}(x) \subset\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\} \cap\left\{\theta \in S^{2}: \nabla_{S^{2}} f(\theta) \neq 0\right\}
$$

By the implicit function theorem (see [5, Section I-5]), the collection of local level sets of $f, \mathcal{L}(f):=\left\{\Theta_{\tau}\right\}_{a<\tau<b}$, is a collection of disjoint $C^{2}$ curves, where $\Theta_{\tau}:=$ $\left\{\theta \in S^{2}: f(\theta)=\tau\right\} \cap B_{\epsilon}(x)$. Here, $a=\inf _{\theta \in B_{\epsilon}(x)} f(\theta)$ and $b=\sup _{\theta \in B_{\epsilon}(x)} f(\theta)$.

For curves $\left\{\Theta_{\tau}\right\} \subset S^{2}$, consider their geodesic curvature $k_{g}(\cdot)$ (see [4] Section 17.4] for details). If for every $\eta \in \Theta_{\tau}$ and $\Theta_{\tau} \in \mathcal{L}(f)$, we have $k_{g}(\eta)=0$, then each $\Theta_{\tau}$ belongs to some great circle. Choose one of these great circles. It divides $S^{2}$ into two hemispheres. Fix one of these hemispheres and denote it by $S_{+}^{2}$. Consider all circles of the form $S^{2} \cap\left(\xi^{\perp}+t \xi\right)$ that are tangent to the curves $\Theta_{\tau}$ and $\xi \in S_{+}^{2}$. Denote by $\Sigma$ the set of such directions $\xi$.

Now consider the case when for some $\tau \in(a, b)$, there exists a $\theta \in \Theta_{\tau}$, such that $k_{g}(\theta) \neq 0$. Then by $C^{2}$ smoothness of $f$, there exists a smaller neighbourhood of $x$, which we will again denote by $B_{\epsilon}(x)$, and a collection of level sets in $B_{\epsilon}(x)$, such that $k_{g}(\eta) \neq 0$ for any $\eta \in \Theta_{\tau}$ and $a<\tau<b$. For each point $\eta \in \Theta_{\tau}$, consider the great circle which is tangent to $\Theta_{\tau}$ at $\eta$. Then $\left\{\Theta_{\tau}\right\}_{a<\tau<b}$ lie on one side of their tangent great circle. For each $\tau$ and each $\eta \in \Theta_{\tau}$ consider a circle $S^{2} \cap\left(\xi^{\perp}+t \xi\right)$
that is tangent to $\Theta_{\tau}$ at $\eta$ and lies on the other side with respect to the tangent great circle. Let $\Sigma$ be the set of such directions $\xi$ (see Figure (6).

Note that for each $\Theta_{\tau}$, these $\xi \in \Sigma$ form a parallel set of $\Theta_{\tau}$ on $S^{2}$, i.e., the envelope of a family of circles on $S^{2}$ with centres on $\Theta_{\tau}$ and of radius $\sqrt{2-2 t}$.


Figure 6. The construction of $\Sigma$.
Hence, the set $\Sigma$ is a union of such curves and thus contains non-empty interior. We claim $\Xi_{\text {con }} \cap \operatorname{int}(\Sigma) \neq \emptyset$; otherwise, $\operatorname{int}(\Sigma) \subset \Xi_{0} \cup\left(\bigcup_{n=2}^{\infty} \Xi_{n}\right)$, but int $(\Sigma) \cap \Xi_{0}=$ $\emptyset$, since $B_{\epsilon}(x) \subset\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\}$. Hence, int $(\Sigma) \subset \bigcup_{n=2}^{\infty} \Xi_{n}$, which implies that $\left(\bigcup_{n=2}^{\infty} \Xi_{n}\right) \cap \operatorname{int}(\Sigma)$ contains non-empty interior. By the Baire category theorem and Lemma 2.2, there exists some $k \in \mathbb{N}$, such that $\Xi_{k} \cap \operatorname{int}(\Sigma)$ contains non-empty interior.

Now assume $\xi \in \operatorname{int}\left(\Xi_{k} \cap \Sigma\right)$. Then, there exists $\delta>0$ such that $B_{\delta}(\xi) \subset$ $\operatorname{int}\left(\Xi_{k} \cap \Sigma\right)$. For any $\theta \in \xi^{\perp}+t \xi$, we have

$$
f(\eta)=f(\theta) \quad \forall \eta \in \Lambda_{\xi}(\theta):=\bigcup_{\zeta \in\left(\theta^{\perp}+t \theta\right) \cap B_{\delta}(\xi)} \phi_{\zeta, \frac{2}{k}}(\theta)
$$

and

$$
f(\omega)=f(\theta) \quad \forall \omega \in \Delta_{\xi}(\theta):=\bigcup_{\eta \in \Lambda_{\xi}(\theta)} \bigcup_{\vartheta \in\left(\eta^{\perp}+t \eta\right) \cap B_{\delta}(\xi)} \phi_{\vartheta,-\frac{2}{k}}(\eta) .
$$

Let us show that $\Delta_{\xi}(\theta)$ has non-empty interior. Note that for any $\eta \in \Lambda_{\xi}(\theta)$, by equation (1) we have

$$
\langle\theta, \eta\rangle=\cos (2 \pi / k)+t^{2}(1-\cos (2 \pi / k))=: \varsigma(t)
$$

where $-1<\varsigma(t)<1$. If $\varsigma(t)=0$, then $\Lambda_{\xi}(\theta) \subset S^{2} \cap \theta^{\perp}$. Fix $\eta \in \Lambda_{\xi}(\theta)$; then for each

$$
\omega \in \bigcup_{\vartheta \in\left(\eta^{\perp}+t \eta\right) \cap B_{\delta}(\xi)} \phi_{\vartheta,-\frac{2}{k}}(\eta),
$$

by equation (1) we have

$$
\langle\omega, \eta\rangle=\varsigma(t)=0
$$

which means $\bigcup_{\vartheta \in\left(\eta^{\perp}+t \eta\right) \cap B_{\delta}(\xi)} \phi_{\vartheta,-\frac{2}{k}}(\eta)$ is a curve passing through $\theta$ and contained in $S^{2} \cap \eta^{\perp}$. Since $\Lambda_{\xi}(\theta)$ is a continuous curve, by changing $\eta$ we see that $\Delta_{\xi}(\theta)$ has the shape of a sand dial, which we will refer to as a $\bowtie$ shape.

If $0<\varsigma(t)<1$, then

$$
\Lambda_{\xi}(\theta) \subset S^{2} \cap\left(\theta^{\perp}+\varsigma(t) \theta\right)
$$

Fix $\eta \in \Lambda_{\xi}(\theta)$; then $\bigcup_{\vartheta \in\left(\eta^{\perp}+t \eta\right) \cap B_{\delta}(\xi)} \phi_{\vartheta,-\frac{2}{k}}(\eta)$ gives a curve passing through $\theta$ and contained in $S^{2} \cap\left(\eta^{\perp}+\varsigma(t) \eta\right)$. Observe that for different $\eta \in \Lambda_{\xi}(\theta)$, we have different curves $\bigcup_{\vartheta \in\left(\eta^{\perp}+t \eta\right) \cap B_{\delta}(\xi)} \phi_{\vartheta,-\frac{2}{k}}(\eta)$ with the only common point $\theta$. Since these curves change continuously, the set $\Delta_{\xi}(\theta)$ again has a $\bowtie$ shape.

If $-1<\varsigma(t)<0$, use the same argument to show that $\Delta_{\xi}(\theta)$ has a $\bowtie$ shape. Therefore, $\Delta_{\xi}(\theta)$ is a set with non-empty interior on $S^{2}$.

Now to reach a contradiction, assume that $f$ is not constant on $S^{2} \cap\left(\xi^{\perp}+t \xi\right)$. Then $f$ takes on infinitely many values and so there are infinitely many disjoint sets $\Delta_{\xi}(\theta)$ with $m\left(\Delta_{\xi}(\theta)\right)=\nu>0$, where $\nu$ is a number independent of $\theta \in$ $S^{2} \cap\left(\xi^{\perp}+t \xi\right)$, which is impossible. Here $m$ is the Hausdorff measure on $S^{2}$. On the other hand, if $f$ is a constant on $S^{2} \cap\left(\xi^{\perp}+t \xi\right)$, then $\xi \in \Xi_{0}$, which contradicts $\operatorname{int}(\Sigma) \cap \Xi_{0}=\emptyset$. Thus, we have proved $\Xi_{\text {con }} \cap \operatorname{int}(\Sigma) \neq \emptyset$.

Now assume that for every $\xi \in \Xi_{\text {con }} \cap$ int $(\Sigma)$, we have $\lambda(\xi)=1$. Then, there exists $\delta>0$ such that $B_{\delta}(\xi) \subset \Xi_{\text {con }} \cap \operatorname{int}(\Sigma)$ and $\lambda(\zeta)=1$ for any $\zeta \in B_{\delta}(\xi)$. For any $\theta \in \xi^{\perp}+t \xi$, we have

$$
g(\eta)=f(\theta) \quad \forall \eta \in \Lambda_{\xi}(\theta):=\bigcup_{\zeta \in\left(\theta^{\perp}+t \theta\right) \cap B_{\delta}(\xi)} \phi_{\zeta, 1}(\theta)
$$

and

$$
f(\omega)=g(\eta)=f(\theta) \quad \forall \omega \in \Delta_{\xi}(\theta):=\bigcup_{\eta \in \Lambda_{\xi}(\theta)} \bigcup_{\vartheta \in\left(\eta^{\perp}+t \eta\right) \cap B_{\delta}(\xi)} \phi_{\vartheta, 1}(\eta) .
$$

Following the same argument as above, we have that $\Delta_{\xi}(\theta)$ is a set with non-empty interior on $S^{2}$. Therefore, $f$ is a constant on $\xi^{\perp}+t \xi$; otherwise, if $f$ takes on infinitely many values, then there are infinitely many disjoint sets $\Delta_{\xi}(\theta)$, where $m\left(\Delta_{\xi}(\theta)\right)=\nu>0$; a contradiction. But if $f$ is a constant on $\xi^{\perp}+t \xi$, then $\xi \in \Xi_{0}$, which contradicts $\xi \in \Xi_{\text {con }}$.

Finally, assume that there exists $\xi \in \Xi_{\text {con }} \cap \operatorname{int}(\Sigma)$ such that $\lambda(\xi) \neq 1$. Then by Lemma 2.4 there exists a neighbourhood $B_{\epsilon}(\xi) \subset \Xi_{\text {con }} \cap \operatorname{int}(\Sigma)$ and $\theta \in \Theta_{\tau} \in \mathcal{L}(f)$ for some $\tau$, such that $S^{2} \cap\left(\xi^{\perp}+t \xi\right)+\cap \Theta_{\tau}=\theta$. On the other hand, by Lemma 2.6

$$
\Lambda(\theta)=\bigcup_{\zeta \in\left(\eta^{\perp}+t \eta\right) \cap B_{\epsilon}(\xi)} \phi_{\zeta, \lambda(\zeta)}(\eta), \quad \text { where } \eta=\phi_{\xi,-\lambda(\xi)}(\theta)
$$

gives a curve such that $\Lambda(\theta) \cap S^{2} \cap \operatorname{int}\left(\left(\xi^{\perp}+t \xi\right)_{+}\right) \neq \emptyset$ and $f(\omega)=f(\theta)$ for any $\omega \in \Lambda(\theta)$. Thus, $\Lambda(\theta) \cup \Theta_{\tau}$ must be a level set of $f$ at value $\tau$ but it is not a 1-manifold; a contradiction.

Therefore, $\left\{\theta \in S^{2}: f(\theta) \neq g(\theta)\right\}=\emptyset$.
2.2. Congruent sections by non-central planes. Auxiliary results. We will use ideas of Section 2.1. However, some proofs will be different.
Definition 2.7. Let $K, L, B$ be as in Theorem 1.6 Define the following three subsets of $S^{2}$ :

$$
\begin{aligned}
& \Xi_{0}^{\prime}=\left\{\xi \in S^{2}: K \cap\left(\xi^{\perp}+t \xi\right)=L \cap\left(\xi^{\perp}+t \xi\right)\right\} ; \\
& \Xi_{n}^{\prime}=\left\{\xi \in S^{2}: \phi_{\xi, \frac{2}{n}}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)=L \cap\left(\xi^{\perp}+t \xi\right)\right\}, \quad n=2,3, \ldots ; \\
& \Xi_{\text {con }}^{\prime}=S^{2} \backslash\left(\Xi_{0}^{\prime} \cup\left(\bigcup_{n=2}^{\infty} \Xi_{n}^{\prime}\right)\right) .
\end{aligned}
$$

Using the same argument as above, it is easy to prove the following lemmas.

Lemma 2.8. $\Xi_{n}^{\prime}$ are closed for all $n=0,2,3, \ldots$.
Proof. First, set $d_{\mathrm{H}}(\cdot, \cdot)$ to be the Hausdorff distance on sets in $\mathbb{R}^{3}$. Given a sequence $\xi_{i} \in \Xi_{0}^{\prime}$ with $\lim _{i \rightarrow \infty} \xi_{i}=\xi$, we have

$$
\begin{aligned}
& d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), L \cap\left(\xi^{\perp}+t \xi\right)\right) \\
& \leq d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), K \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right)\right)+d_{\mathrm{H}}\left(K \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right), L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right)\right) \\
& \quad+d_{\mathrm{H}}\left(L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right), L \cap\left(\xi^{\perp}+t \xi\right)\right) \\
& =d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), K \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right)\right)+d_{\mathrm{H}}\left(L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right), L \cap\left(\xi^{\perp}+t \xi\right)\right) .
\end{aligned}
$$

As $\xi_{i} \rightarrow \xi, d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), K \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right)\right) \rightarrow 0$ and $d_{\mathrm{H}}\left(L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right), L \cap\left(\xi^{\perp}+t \xi\right)\right) \rightarrow$ 0 ; hence, $d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), L \cap\left(\xi^{\perp}+t \xi\right)\right)=0$, which implies $\xi \in \Xi_{0}^{\prime}$. Now we prove the closeness of $\Xi_{0}^{\prime}$.

Similarly, given a sequence $\xi_{i} \in \Xi_{n}^{\prime}$ with $\lim _{i \rightarrow \infty} \xi_{i}=\xi$, we have

$$
\begin{aligned}
& d_{\mathrm{H}}\left(\phi_{\xi, \frac{2}{n}}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right), L \cap\left(\xi^{\perp}+t \xi\right)\right) \\
& \leq d_{\mathrm{H}}\left(\phi_{\xi, \frac{2}{n}}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right), \phi_{\xi_{i}, \frac{2}{n}}\left(L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right)\right)\right) \\
& \quad+d_{\mathrm{H}}\left(\phi_{\xi_{i}, \frac{2}{n}}\left(L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right)\right), L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right)\right) \\
& \quad+d_{\mathrm{H}}\left(L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right), L \cap\left(\xi^{\perp}+t \xi\right)\right) \\
& =d_{\mathrm{H}}\left(\phi_{\xi, \frac{2}{n}}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right), \phi_{\xi_{i}, \frac{2}{n}}\left(L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right)\right)\right) \\
& \quad+d_{\mathrm{H}}\left(L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right), L \cap\left(\xi^{\perp}+t \xi\right)\right) .
\end{aligned}
$$

As $\xi_{i} \rightarrow \xi, d_{\mathrm{H}}\left(L \cap\left(\xi^{\perp}+t \xi\right), L \cap\left(\xi_{i}^{\perp}+t \xi_{i}\right)\right) \rightarrow 0$; hence,

$$
d_{\mathrm{H}}\left(\phi_{\xi, \frac{2}{n}}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right), L \cap\left(\xi^{\perp}+t \xi\right)\right)=0
$$

which implies $\xi \in \Xi_{n}^{\prime}$.
Now we define

$$
\lambda^{\prime}(\xi):=\left\{\alpha: K \cap\left(\xi^{\perp}+t \xi\right)=\phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)\right\}
$$

In the case when $\xi \in \Xi_{n}^{\prime}, n \geq 2, \lambda^{\prime}(\xi)$ is a multi-valued function; on the other hand, if $\xi \in \Xi_{\text {con }}^{\prime}, \lambda^{\prime}(\xi)$ is a single-valued function; otherwise, if $\alpha, \beta \in \lambda^{\prime}(\xi)$ with $\alpha \neq \beta$,

$$
\phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)=K \cap\left(\xi^{\perp}+t \xi\right)=\phi_{\xi, \beta}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)
$$

implying

$$
\phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)=\phi_{\xi, \beta}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right) .
$$

If $\alpha-\beta$ is irrational, then $L \cap\left(\xi^{\perp}+t \xi\right)$ is a disk, which means $\xi \in \Xi_{0}^{\prime}$; a contradiction. If $\alpha-\beta$ is rational, then by Lemma 2.3, $\xi \in \Xi_{n}^{\prime}$; a contradiction.
Lemma 2.9. Let $K, L, B$ be as in Theorem 1.6. Then $\Xi_{\text {con }}^{\prime}$ is open and $\lambda^{\prime}(\xi)$ is a continuous function on $\Xi_{\text {con }}^{\prime}$ if $\Xi_{\text {con }}^{\prime} \neq \emptyset$.

Proof. If $\Xi_{\text {con }}^{\prime}=\emptyset$, then $\Xi_{\text {con }}^{\prime}$ is open. Now assume that $\Xi_{\text {con }}^{\prime}$ is not open. There exists $\xi \in \Xi_{\text {con }}^{\prime}$, such that, for any $i \in \mathbb{N}$, there exists $\xi_{i} \in B_{\frac{1}{i}}(\xi) \cap \Xi_{n_{i}}^{\prime}$ for some $n_{i}$. If there are infinitely many $\xi_{i}$ that belong to $\Xi_{0}^{\prime}$, then $0 \in \lambda^{\prime}(\xi)$. If there are infinitely many $\xi_{i}$ for which $n_{i} \neq 0$, then $\lambda^{\prime}\left(\xi_{i}\right)$ is a multi-valued function. Thus there exists $\alpha_{i} \in \lambda^{\prime}\left(\xi_{i}\right)$, such that $\left|\alpha_{i}-\lambda^{\prime}(\xi)\right|>\varepsilon$ for some $\varepsilon>0$. By compactness of $[0,2]$,
there exists a subsequence $\xi_{i_{k}}$, such that $\lim _{k \rightarrow \infty} \alpha_{i_{k}}=\alpha$, where $\left|\alpha-\lambda^{\prime}(\xi)\right| \geq \varepsilon$. Then

$$
\begin{aligned}
& d_{\mathrm{H}}\left(\phi_{\xi, \lambda^{\prime}(\xi)}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right), \phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)\right) \\
& \leq d_{\mathrm{H}}\left(\phi_{\xi, \lambda^{\prime}(\xi)}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right), K \cap\left(\xi^{\perp}+t \xi\right)\right) \\
& \quad+d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), K \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right)\right) \\
& \quad+d_{\mathrm{H}}\left(K \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right), \phi{\xi_{i_{k}}, \alpha_{i_{k}}}_{\perp}\left(L \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right)\right)\right) \\
& \quad+d_{\mathrm{H}}\left(\phi_{\xi_{i_{k}}, \alpha_{i_{k}}}\left(L \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right)\right), \phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)\right) \\
& =d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), K \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right)\right) \\
& \quad+d_{\mathrm{H}}\left(\phi_{\xi_{i_{k}}, \alpha_{i_{k}}}\left(L \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right)\right), \phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)\right) .
\end{aligned}
$$

As $k \rightarrow \infty$, we have $\xi_{i_{k}} \rightarrow \xi$ and $\alpha_{i_{k}} \rightarrow \alpha$; hence,

$$
d_{\mathrm{H}}\left(\phi_{\xi, \lambda^{\prime}(\xi)}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right), \phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)\right)=0
$$

implying

$$
K \cap\left(\xi^{\perp}+t \xi\right)=\phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right) ;
$$

a contradiction.
For continuity, since $\lambda^{\prime}(\xi)$ is a single-valued function when $\xi \in \Xi_{\text {con }}^{\prime}$, consider a sequence $\left\{\xi_{i}\right\}_{i=1}^{\infty} \in \Xi_{\text {con }}^{\prime}$, such that $\Xi_{\text {con }}^{\prime} \ni \xi=\lim _{i \rightarrow \infty} \xi_{i}$. By compactness of $[0,2]$, there exists a subsequence $\left\{\xi_{i_{k}}\right\}_{k=1}^{\infty}$, such that $\alpha=\lim _{k \rightarrow \infty} \lambda^{\prime}\left(\xi_{i_{k}}\right)$. Then

$$
\begin{aligned}
& d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), \phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)\right) \\
& \leq d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), K \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right)\right) \\
& \quad+d_{\mathrm{H}}\left(K \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right), \phi_{\xi_{i_{k}}, \lambda^{\prime}\left(\xi_{i_{k}}\right)}\left(L \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right)\right)\right) \\
& \quad+d_{\mathrm{H}}\left(\phi_{\xi_{i_{k}}, \lambda^{\prime}\left(\xi_{i_{k}}\right)}\left(L \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right)\right), \phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)\right) \\
& =d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), K \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right)\right) \\
& \quad+d_{\mathrm{H}}\left(\phi_{\xi_{i_{k}}, \lambda^{\prime}\left(\xi_{i_{k}}\right)}\left(L \cap\left(\xi_{i_{k}}^{\perp}+t \xi_{i_{k}}\right)\right), \phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)\right) .
\end{aligned}
$$

As $k \rightarrow \infty$, we have $\lambda^{\prime}\left(\xi_{i_{k}}\right) \rightarrow \alpha$ and $\xi_{i_{k}} \rightarrow \xi$; hence,

$$
d_{\mathrm{H}}\left(K \cap\left(\xi^{\perp}+t \xi\right), \phi_{\xi, \alpha}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)\right)=0
$$

that is, $\lambda^{\prime}(\xi)=\alpha$. If $\left\{\lambda^{\prime}\left(\xi_{i}\right)\right\}_{i=1}^{\infty}$ has another subsequence with a different limit $\beta \neq \alpha$, then $\{\alpha, \beta\} \subset \lambda^{\prime}(\xi)$, contradicting $\xi \in \Xi_{\text {con }}^{\prime}$.

For a convex body $K$, we define its radial function in the direction of $\theta$ to be

$$
\rho_{K}(\theta):=\sup \{t: t \theta \in K\} .
$$

Lemma 2.10. Let $K, L, B$ be as in Theorem 1.6. Then either $\left\{\theta \in S^{2}: \rho_{K}(\theta)=\right.$ $\left.\rho_{L}(\theta)\right\}=S^{2}$ or the set

$$
\left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\} \cap\left[\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{K}(\theta) \neq 0\right\} \cup\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{L}(\theta) \neq 0\right\}\right]
$$

is not empty.
Proof. First, the set $\left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\}$ is not the whole sphere; otherwise without loss of generality let $\rho_{K}(\theta)<\rho_{L}(\theta) \forall \theta \in S^{2}$. This means that $K$ is strictly
inside $L$. Then

$$
\begin{aligned}
& \operatorname{vol}_{n-1}\left(K \cap\left(\xi^{\perp}+t \xi\right)\right)=\operatorname{vol}_{n-1}\left(\phi_{\xi}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)\right) \\
& =\operatorname{vol}_{n-1}\left(L \cap\left(\xi^{\perp}+t \xi\right)\right)>\operatorname{vol}_{n-1}\left(K \cap\left(\xi^{\perp}+t \xi\right)\right) .
\end{aligned}
$$

Now assume

$$
\begin{aligned}
& \left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\} \\
& \quad \cap\left[\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{K}(\theta) \neq 0\right\} \cup\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{L}(\theta) \neq 0\right\}\right]=\emptyset
\end{aligned}
$$

Then

$$
\begin{aligned}
\{\theta & \left.\in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\} \\
& \subset\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{K}(\theta)=0\right\} \cap\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{L}(\theta)=0\right\}
\end{aligned}
$$

Since $\rho_{K}, \rho_{L} \in C^{2}$, the set

$$
\Upsilon_{0}^{\prime}:=\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{K}(\theta)=0\right\} \cap\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{L}(\theta)=0\right\}
$$

is closed and $\rho_{K}$ and $\rho_{L}$ are constant in any connected subset of $\Upsilon_{0}^{\prime}$.
Assume there exists $x \in\left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\}$. Choose the largest connected open neighbourhood $\mathcal{N}_{x}$ of $x$ in $\left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\}$. Then the closure of $\mathcal{N}_{x}$ is in $\Upsilon_{0}^{\prime}$ and the boundary of $\mathcal{N}_{x}$ is a subset of $\left\{\theta \in S^{2}: \rho_{K}(\theta)=\rho_{L}(\theta)\right\}$, which implies $C_{1}=\rho_{K}=\rho_{L}=C_{2}$ in the closure of $\mathcal{N}_{x}$; a contradiction. Hence, $\left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\}=\emptyset$.

Note that for $\xi \in \Xi_{\text {con }}^{\prime}$, since $\Xi_{\text {con }}^{\prime}$ is open, there exists an $\epsilon>0$, such that $B_{\epsilon}(\xi) \subset \Xi_{\text {con }}^{\prime}$. Then, for any point $\theta \in S^{2}$ such that $\rho_{L}(\theta) \theta \in L \cap\left(\xi^{\perp}+t \xi\right)$, we set $\eta=\phi_{\xi, \lambda^{\prime}(\xi)}(\theta)$. Thus, we define the curve

$$
\Lambda^{\prime}(\theta):=\left\{\phi_{\zeta,-\lambda^{\prime}(\zeta)}(\eta): \zeta \in B_{\epsilon}(\xi) \text { and } \rho_{L}(\theta) \eta \in \zeta^{\perp}+t \zeta\right\}
$$

passing through $\theta$ (see Figure 77).


Figure 7. The construction of $\Lambda^{\prime}(\theta)$.

Lemma 2.11. Let $K, L, B$ be as in Theorem 1.6 and $\xi \in \Xi_{\text {con. }}^{\prime}$. If $\lambda^{\prime}(\xi) \neq 1$, then

$$
\left\{\rho_{L}(\theta) u: u \in \Lambda^{\prime}(\theta)\right\} \cap \operatorname{int}\left(\left(\xi^{\perp}+t \xi\right)_{+}\right) \neq \emptyset
$$

Proof. Without loss of generality, we can assume that $0<\lambda^{\prime}(\xi)<1$. The other case $1<\lambda^{\prime}(\xi)<2$ is similar. Since $\xi \in \Xi_{\text {con }}^{\prime}$ and $0<\lambda^{\prime}(\xi)<1$, by Lemma 2.9 there exists $0<\iota^{\prime}<\frac{1}{2}$ and a ball $B_{\epsilon}(\xi) \subset \Xi_{\text {con }}^{\prime}$ such that $\iota^{\prime} \leq \lambda^{\prime}(\zeta) \leq 1-\iota^{\prime}$ for any $\zeta \in B_{\epsilon}(\xi)$.

Now take any $\theta \in S^{2}$ such that $\rho_{L}(\theta) \theta \in L \cap\left(\xi^{\perp}+t \xi\right)$ and define $\eta=\phi_{\xi, \lambda^{\prime}(\xi)}(\theta)$. We set $\zeta=\phi_{\eta,-\alpha}(\xi)$ for small $\alpha>0$ and $\omega=\phi_{\zeta,-\lambda^{\prime}(\zeta)}(\eta)$; then we have

$$
\langle\zeta, \eta\rangle=\left\langle\phi_{\eta,-\alpha}(\xi), \eta\right\rangle=\langle\xi, \eta\rangle=\frac{t}{\rho_{K}(\eta)}=\frac{t}{\rho_{L}(\theta)} \in(0,1) .
$$

Hence, $\rho_{L}(\theta) \eta \in \zeta^{\perp}+t \zeta$,

$$
\begin{aligned}
& \zeta \times \eta=\phi_{\eta,-\alpha}(\xi) \times \eta \\
& =(\xi \cos (-\alpha \pi)+(\eta \times \xi) \sin (-\alpha \pi)+\eta\langle\eta, \xi\rangle(1-\cos (-\alpha \pi))) \times \eta \\
& =\xi \times \eta \cos (\alpha \pi)-(\xi\langle\eta, \eta\rangle-\eta\langle\xi, \eta\rangle) \sin (\alpha \pi) \\
& =\xi \times \eta \cos (\alpha \pi)-\left(\xi-\frac{t}{\rho_{L}(\theta)} \eta\right) \sin (\alpha \pi)
\end{aligned}
$$

and

$$
\begin{align*}
& \langle\xi, \zeta\rangle=\left\langle\xi, \phi_{\eta,-\alpha}(\xi)\right\rangle \\
& =\langle\xi, \xi \cos (-\alpha \pi)+(\eta \times \xi) \sin (-\alpha \pi)+\eta\langle\eta, \xi\rangle(1-\cos (-\alpha \pi))\rangle \\
& =\cos (\alpha \pi)+\frac{t^{2}}{\rho_{L}^{2}(\theta)}(1-\cos (\alpha \pi)) \tag{2}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
& \rho_{L}(\theta)\langle\xi, \omega\rangle-t \\
&= \rho_{L}(\theta)\left\langle\xi, \eta \cos \left(-\lambda^{\prime}(\zeta) \pi\right)+(\zeta \times \eta) \sin \left(-\lambda^{\prime}(\zeta) \pi\right)\right. \\
&\left.+\frac{t}{\rho_{L}(\theta)} \zeta\left(1-\cos \left(-\lambda^{\prime}(\zeta) \pi\right)\right)\right\rangle-t \\
&= t \cos \left(\lambda^{\prime}(\zeta) \pi\right)-\rho_{L}(\theta)\left\langle\xi, \xi \times \eta \cos (\alpha \pi)-\left(\xi-\frac{t}{\rho_{L}(\theta)} \eta\right) \sin (\alpha \pi)\right\rangle \sin \left(\lambda^{\prime}(\zeta) \pi\right) \\
&+t\left(1-\cos \left(\lambda^{\prime}(\zeta) \pi\right)\right)\left(\cos (\alpha \pi)+\frac{t^{2}}{\rho_{L}^{2}(\theta)}(1-\cos (\alpha \pi))\right)-t \\
&= t \cos \left(\lambda^{\prime}(\zeta) \pi\right)+\rho_{L}(\theta)\left(1-\frac{t^{2}}{\rho_{L}^{2}(\theta)}\right) \sin (\alpha \pi) \sin \left(\lambda^{\prime}(\zeta) \pi\right) \\
&+t\left(1-\cos \left(\lambda^{\prime}(\zeta) \pi\right)\right)\left(\cos (\alpha \pi)+\frac{t^{2}}{\rho_{L}^{2}(\theta)}(1-\cos (\alpha \pi))\right)-t \\
&=\left(1-\frac{t^{2}}{\rho_{L}^{2}(\theta)}\right) \rho_{L}(\theta) \sin (\alpha \pi) \sin \left(\lambda^{\prime}(\zeta) \pi\right) \\
&-t\left(1-\cos \left(\lambda^{\prime}(\zeta) \pi\right)\right)\left(1-\frac{t^{2}}{\rho_{L}^{2}(\theta)}\right)(1-\cos (\alpha \pi)) \\
&=\left(1-\frac{t^{2}}{\rho_{L}^{2}(\theta)}\right)\left(\rho_{L}(\theta) \sin \left(\lambda^{\prime}(\zeta) \pi\right) \sin (\alpha \pi)-t\left(1-\cos \left(\lambda^{\prime}(\zeta) \pi\right)\right)(1-\cos (\alpha \pi))\right) \\
& \geq\left(1-\frac{t^{2}}{\rho_{L}^{2}(\theta)}\right)\left(\rho_{L}(\theta) \sin \left(\iota^{\prime} \pi\right) \sin (\alpha \pi)-t\left(1-\cos \left(\left(1-\iota^{\prime}\right) \pi\right)\right)(1-\cos (\alpha \pi))\right)
\end{aligned}
$$

$>0$ for sufficiently small $\alpha>0$.
Hence, $\rho_{L}(\theta) \omega \in\left\{\rho_{L}(\theta) u: u \in \Lambda^{\prime}(\theta)\right\} \cap \operatorname{int}\left(\left(\xi^{\perp}+t \xi\right)_{+}\right)$.

Proof of Theorem 1.6. Assume $\left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\} \neq \emptyset$. By Lemma 2.10, we have

$$
\begin{aligned}
& \left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\} \\
& \quad \cap\left[\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{K}(\theta) \neq 0\right\} \cup\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{L}(\theta) \neq 0\right\}\right] \neq \emptyset
\end{aligned}
$$

Without loss of generality, we can choose

$$
x \in\left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\} \cap\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{L}(\theta) \neq 0\right\},
$$

Therefore there exists an open ball

$$
B_{\epsilon}(x) \subset\left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\} \cap\left\{\theta \in S^{2}: \nabla_{S^{2}} \rho_{L}(\theta) \neq 0\right\} .
$$

By the implicit function theorem, the collection of local level sets of $\rho_{L}, \mathcal{L}^{\prime}(L):=$ $\left\{\Theta_{\tau}^{\prime}\right\}_{a^{\prime}<\tau<b^{\prime}}$, is a collection of disjoint $C^{2}$ curves, where $\Theta_{\tau}^{\prime}:=\left\{\theta \in S^{2}: \rho_{L}(\theta)=\right.$ $\tau\} \cap B_{\epsilon}(x)$. Here, $a^{\prime}=\inf _{\theta \in B_{\epsilon}(x)} \rho_{L}(\theta)$ and $b^{\prime}=\sup _{\theta \in B_{\epsilon}(x)} \rho_{L}(\theta)$.

For curves $\left\{\Theta_{\tau}^{\prime}\right\} \subset S^{2}$, consider their geodesic curvature $k_{g}(\cdot)$. If for every $\eta \in \Theta_{\tau}^{\prime}$ and $\Theta_{\tau}^{\prime} \in \mathcal{L}^{\prime}(L)$, we have $k_{g}(\eta)=0$, then each $\Theta_{\tau}^{\prime}$ belongs to some great circle. Choose one of these great circles. It divides $S^{2}$ into two hemispheres. Fix one of these hemispheres and denote it by $S_{+}^{2}$. Consider all circles of the form $S^{2} \cap\left(\xi^{\perp}+\frac{t}{\tau} \xi\right)$ that are tangent to the curves $\Theta_{\tau}$ and $\xi \in S_{+}^{2}$. Denote by $\Sigma^{\prime}$ the set of such directions $\xi$.

Now consider the case when for some $\tau \in\left(a^{\prime}, b^{\prime}\right)$, there exists a $\theta \in \Theta_{\tau}^{\prime}$, such that $k_{g}(\theta) \neq 0$. Then by $C^{2}$ smoothness of $\rho_{L}$, there exists a smaller neighbourhood of $x$, which we will again denote by $B_{\epsilon}(x)$, and a collection of level sets in $B_{\epsilon}(x)$, such that $k_{g}(\eta) \neq 0$ for any $\eta \in \Theta_{\tau}^{\prime}$ and $a^{\prime}<\tau<b^{\prime}$. For each point $\eta \in \Theta_{\tau}^{\prime}$, consider the great circle which is tangent to $\Theta_{\tau}^{\prime}$ at $\eta$. Then $\left\{\Theta_{\tau}^{\prime}\right\}_{a^{\prime}<\tau<b^{\prime}}$ lie on one side of their tangent great circle. For each $\tau$ and each $\eta \in \Theta_{\tau}^{\prime}$ consider a circle $S^{2} \cap\left(\xi^{\perp}+\frac{t}{\tau} \xi\right)$ that is tangent to $\Theta_{\tau}^{\prime}$ at $\eta$ and lies on the other side with respect to the tangent great circle. Let $\Sigma^{\prime}$ be the set of such directions $\xi$.

Note that for each $\Theta_{\tau}^{\prime}$, these $\xi$ form a parallel set of $\Theta_{\tau}^{\prime}$ on $S^{2}$, which we denote by $\mathcal{C}_{\tau}^{\prime}$. This is the envelope of a family of circles on $S^{2}$ with centres at $\Theta_{\tau}^{\prime}$ and of radius $\frac{t}{\tau}$. We claim that for different values of $\tau \in\left(a^{\prime}, b^{\prime}\right)$, the corresponding $\mathcal{C}_{\tau}^{\prime}$ do not coincide. Otherwise, for some $\tau_{1} \in\left(a^{\prime}, b^{\prime}\right)$, the envelope of a family of tangent planes of $\frac{1}{\tau_{1}} B$ at the points on $\frac{t}{\tau_{1}} \mathcal{C}_{\tau_{1}}^{\prime}$ intersects $S^{2}$ along $\Theta_{\tau_{1}}^{\prime}$, i.e.,

$$
\Theta_{\tau_{1}}^{\prime}=\text { Envelope }\left\{\bigcup_{\xi \in \mathcal{C}_{\tau_{1}}^{\prime}} H_{\frac{t}{\tau_{1}} \xi, \frac{1}{\tau_{1}} B}\right\} \cap S^{2}
$$

where $H_{\frac{t}{\tau_{1}} \xi, \frac{1}{\tau_{1}} B}$ is the tangent plane to $\frac{1}{\tau_{1}} B$ at the point $\frac{t}{\tau_{1}} \xi$ and Envelope $\{\cdot\}$ is the envelope of a one-parameter family of curves. Hence, multiplying both sides by $\tau_{1}$, we obtain

$$
\partial L \supset \tau_{1} \Theta_{\tau_{1}}^{\prime}=\text { Envelope }\left\{\bigcup_{\xi \in \mathcal{C}_{\tau_{1}}^{\prime}} H_{t \xi, B}\right\} \cap \tau_{1} S^{2} .
$$

On the other hand, assume that for a different value $\left(a^{\prime}, b^{\prime}\right) \ni \tau_{2} \neq \tau_{1}$, we have

$$
\tau_{2} \Theta_{\tau_{2}}^{\prime}=\text { Envelope }\left\{\bigcup_{\xi \in \mathcal{C}_{\tau_{1}}^{\prime}} H_{t \xi, B}\right\} \cap \partial L
$$

However, Envelope $\left\{\bigcup_{\xi \in \mathcal{C}_{\tau_{1}}^{\prime}} H_{t \xi, B}\right\}$ is a ruled surface (i.e., comprised of straight lines), which cannot intersect $\partial L$ along two different curves. So $\mathcal{C}_{\tau_{1}}^{\prime}$ and $\mathcal{C}_{\tau_{2}}^{\prime}$ do not coincide. We conclude that by the continuity of $\mathcal{C}_{\tau}^{\prime}$ with respect to $\tau$, the set $\Sigma^{\prime}$ is a union of $\mathcal{C}_{\tau}^{\prime}$ and thus contains non-empty interior.

Now we claim $\Xi_{\text {con }}^{\prime} \cap \operatorname{int}\left(\Sigma^{\prime}\right) \neq \emptyset$; otherwise, int $\left(\Sigma^{\prime}\right) \subset \Xi_{0}^{\prime} \cup\left(\bigcup_{n=2}^{\infty} \Xi_{n}\right)$, but $\operatorname{int}\left(\Sigma^{\prime}\right) \cap \Xi_{0}^{\prime}=\emptyset$, since $B_{\epsilon}(x) \subset\left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\}$. Hence, int $\left(\Sigma^{\prime}\right) \subset$ $\bigcup_{n=2}^{\infty} \Xi_{n}^{\prime}$, which implies that $\left(\bigcup_{n=2}^{\infty} \Xi_{n}^{\prime}\right) \cap \operatorname{int}(\Sigma)$ contains non-empty interior. By the Baire category theorem and Lemma [2.8, there exists some $k \in \mathbb{N}$, such that $\Xi_{k} \cap \operatorname{int}\left(\Sigma^{\prime}\right)$ contains non-empty interior.

Assume $\xi \in \operatorname{int}\left(\Xi_{k}^{\prime} \cap \Sigma^{\prime}\right)$. Then, there exists $\delta>0$ such that $B_{\delta}(\xi) \subset \operatorname{int}\left(\Xi_{k}^{\prime} \cap \Sigma^{\prime}\right)$. For any $\rho_{L}(\theta) \theta \in \xi^{\perp}+t \xi$,

$$
\rho_{L}(\eta)=\rho_{L}(\theta) \quad \forall \eta \in \Lambda_{\xi}^{\prime}(\theta):=\left\{\phi_{\zeta, \frac{2}{k}}(\theta): \rho_{L}(\theta) \theta \in \zeta^{\perp}+t \zeta, \zeta \in B_{\delta}(\xi)\right\}
$$

and

$$
\begin{aligned}
\rho_{L}(\omega)=\rho_{L}(\eta) & =\rho_{L}(\theta) \\
\forall \omega \in \Delta_{\xi}^{\prime}(\theta): & =\left\{\phi_{\vartheta,-\frac{2}{k}}(\eta): \eta \in \Lambda_{\xi}^{\prime}(\theta), \rho_{L}(\theta) \eta \in \vartheta^{\perp}+t \vartheta, \vartheta \in B_{\delta}(\xi)\right\}
\end{aligned}
$$

Let us show that $\Delta_{\xi}^{\prime}(\theta)$ has non-empty interior. Note that for any $\eta \in \Lambda_{\xi}^{\prime}(\theta)$, by equation (2) we have

$$
\langle\theta, \eta\rangle=\cos (2 \pi / k)+\frac{t^{2}}{\rho_{L}^{2}(\theta)}(1-\cos (2 \pi / k))=: \varsigma^{\prime}(t)
$$

where $-1<\varsigma^{\prime}(t)<1$. If $\varsigma^{\prime}(t)=0$, then $\Lambda_{\xi}^{\prime}(\theta) \subset S^{2} \cap \theta^{\perp}$. Fix $\eta \in \Lambda_{\xi}^{\prime}(\theta)$; then for each

$$
\omega \in\left\{\phi_{\vartheta,-\frac{2}{k}}(\eta): \rho_{L}(\theta) \eta \in \vartheta^{\perp}+t \vartheta, \vartheta \in B_{\delta}(\xi)\right\}
$$

by equation (2) we have

$$
\langle\omega, \eta\rangle=\varsigma^{\prime}(t)=0
$$

which means $\left\{\phi_{\vartheta,-\frac{2}{k}}(\eta): \rho_{L}(\theta) \eta \in \vartheta^{\perp}+t \vartheta, \vartheta \in B_{\delta}(\xi)\right\}$ is a curve passing through $\theta$ and contained in $S^{2} \cap \eta^{\perp}$. Since $\Lambda_{\xi}^{\prime}(\theta)$ is a continuous curve, by changing $\eta$ we see that $\Delta_{\xi}^{\prime}(\theta)$ has the shape of a sand dial, which we will refer to as a $\bowtie$ shape.

If $0<\varsigma^{\prime}(t)<1$, then $\Lambda_{\xi}^{\prime}(\theta) \subset S^{2} \cap\left(\theta^{\perp}+\varsigma(t) \theta\right)$. Fix $\eta \in \Lambda_{\xi}^{\prime}(\theta)$; then $\left\{\phi_{\vartheta,-\frac{2}{k}}(\eta)\right.$ : $\left.\rho_{L}(\theta) \eta \in \vartheta^{\perp}+t \vartheta, \vartheta \in B_{\delta}(\xi)\right\}$ gives a curve passing through $\theta$ and contained in $S^{2} \cap\left(\eta^{\perp}+\varsigma^{\prime}(t) \eta\right)$. Observe that for different $\eta \in \Lambda_{\xi}^{\prime}(\theta)$, we have different curves $\left\{\phi_{\vartheta,-\frac{2}{k}}(\eta): \rho_{L}(\theta) \eta \in \vartheta^{\perp}+t \vartheta, \vartheta \in B_{\delta}(\xi)\right\}$ with the only common point $\theta$. Since these curves change continuously, the set $\Delta_{\xi}^{\prime}(\theta)$ again has a $\bowtie$ shape.

If $-1<\varsigma^{\prime}(t)<0$, use the same argument to show that $\Delta_{\xi}^{\prime}(\theta)$ has a $\bowtie$ shape. Therefore, $\Delta_{\xi}^{\prime}(\theta)$ is a set with non-empty interior on $S^{2}$; hence, it is not a 1manifold.

Now to reach a contradiction, assume that $\nabla_{S^{2}} \rho_{L}(\theta)=0$ for every $\theta \in S^{2}$ such that $\rho_{L}(\theta) \theta \in L \cap\left(\xi^{\perp}+t \xi\right)$; then $L \cap\left(\xi^{\perp}+t \xi\right)$ is a disk, $\xi \in \Xi_{0}^{\prime}$, which contradicts $\operatorname{int}\left(\Sigma^{\prime}\right) \cap \Xi_{0}^{\prime}=\emptyset$.

On the other hand, if $\nabla_{S^{2}} \rho_{L}(\theta) \neq 0$ for some point $\theta$ satisfying

$$
\rho_{L}(\theta) \theta \in L \cap\left(\xi^{\perp}+t \xi\right)
$$

then by the implicit function theorem, the level set of $\rho_{L}$ passing through $\theta$ on $S^{2}$ is a 1 -manifold; a contradiction. Thus, we have shown that $\Xi_{\operatorname{con}}^{\prime} \cap \operatorname{int}\left(\Sigma^{\prime}\right) \neq \emptyset$.

Now assume that for every $\xi \in \Xi_{\text {con }}^{\prime} \cap \operatorname{int}\left(\Sigma^{\prime}\right), \lambda^{\prime}(\xi)=1$. Then, there exists $\delta>0$ such that $B_{\delta}(\xi) \subset \operatorname{int}\left(\Xi_{\text {con }}^{\prime} \cap \Sigma^{\prime}\right)$ and $\lambda^{\prime}(\zeta)=1$ for any $\zeta \in B_{\delta}(\xi)$. For any $\theta \in S^{2}$ such that $\rho_{L}(\theta) \theta \in \xi^{\perp}+t \xi$, we have

$$
\rho_{K}(\eta)=\rho_{L}(\theta) \quad \forall \eta \in \Lambda_{\xi}^{\prime}(\theta):=\left\{\phi_{\zeta, 1}(\theta): \rho_{L}(\theta) \theta \in \zeta^{\perp}+t \zeta, \zeta \in B_{\delta}(\xi)\right\}
$$

and

$$
\begin{aligned}
& \rho_{L}(\omega)=\rho_{K}(\eta)=\rho_{L}(\theta) \\
& \quad \forall \omega \in \Delta_{\xi}^{\prime}(\theta):=\left\{\phi_{\vartheta, 1}(\eta): \eta \in \Lambda_{\xi}^{\prime}(\theta), \rho_{L}(\theta) \eta \in \vartheta^{\perp}+t \vartheta, \vartheta \in B_{\delta}(\xi)\right\} .
\end{aligned}
$$

Following the same argument as above, we have that $\Delta_{\xi}^{\prime}(\theta)$ is a set with nonempty interior on $S^{2}$; hence, it is not a 1-manifold. If $\nabla_{S^{2}} \rho_{L}(\theta)=0$, for every $\theta$ such that $\rho_{L}(\theta) \theta \in L \cap\left(\xi^{\perp}+t \xi\right)$, then $L \cap\left(\xi^{\perp}+t \xi\right)$ is a disk; a contradiction.

If $\nabla_{S^{2}} \rho_{L}(\theta) \neq 0$ for some point $\theta$ satisfying $\rho_{L}(\theta) \theta \in L \cap\left(\xi^{\perp}+t \xi\right)$, then by the implicit function theorem, the level set of $\rho_{L}$ passing through $\theta$ on $S^{2}$ is a 1-manifold; a contradiction.

Finally, consider the case when there exists $\xi \in \operatorname{int}\left(\Xi_{\text {con }}^{\prime} \cap \Sigma^{\prime}\right)$ such that $\lambda^{\prime}(\xi) \neq 1$. Then, there exists a neighbourhood $B_{\epsilon}(\xi) \in \Xi_{\text {con }}^{\prime} \cap$ int $\left(\Sigma^{\prime}\right)$ and $\theta \in \Theta_{\tau}^{\prime} \in \mathcal{L}^{\prime}(L)$ for some $\tau$, such that $\left(\xi^{\perp}+t \xi\right)_{+} \cap \Theta_{\tau}^{\prime}=\theta$. On the other hand, by Lemma 2.11

$$
\Lambda^{\prime}(\theta)=\left\{\phi_{\zeta,-\lambda^{\prime}(\zeta)}(\eta): \zeta \in B_{\epsilon}(\xi) \text { and } \rho_{L}(\theta) \eta \in \zeta^{\perp}+t \zeta\right\}
$$

where $\eta=\phi_{\xi, \lambda^{\prime}(\xi)}(\theta)$, is a curve such that $\left\{\rho_{L}(\theta) u: u \in \Lambda^{\prime}(\theta)\right\} \cap \operatorname{int}\left(\left(\xi^{\perp}+t \xi\right)_{+}\right) \neq \emptyset$ and $\rho_{L}(\vartheta)=\rho_{L}(\theta)$ for any $\vartheta \in \Lambda^{\prime}(\theta)$; however, $\Lambda^{\prime}(\theta) \cup \Theta_{\tau}^{\prime} \subset \mathcal{L}^{\prime}(L)$ must be a level set of $\rho_{L}$ in $\mathcal{L}^{\prime}(L)$ that is not a 1-manifold; a contradiction.

Therefore, $\left\{\theta \in S^{2}: \rho_{K}(\theta) \neq \rho_{L}(\theta)\right\}=\emptyset$.

## Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Vladyslav Yaskin, for fruitful discussions. Thanks are also due to the referee for the critical reading of the manuscript.

## References

[1] M. Angeles Alfonseca, Michelle Cordier, and Dmitry Ryabogin, On bodies with directly congruent projections and sections, Israel J. Math. 215 (2016), no. 2, 765-799. MR3552295
[2] Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR2251886
[3] V. Golubyatnikov, Uniqueness questions in reconstruction of multidimensional objects from tomography type projection data, Inverse and Ill-posed problems series, Utrecht-Boston-KolnTokyo, 2000.
[4] Alfred Gray, Elsa Abbena, and Simon Salamon, Modern differential geometry of curves and surfaces with Mathematica ${ }^{\circledR}$, 3rd ed., Studies in Advanced Mathematics, Chapman \& Hall/CRC, Boca Raton, FL, 2006. MR 2253203
[5] Serge Lang, Introduction to differentiable manifolds, 2nd ed., Universitext, Springer-Verlag, New York, 2002. MR 1931083
[6] Sergii Myroshnychenko and Dmitry Ryabogin, On polytopes with congruent projections or sections, Adv. Math. 325 (2018), 482-504. MR 3742596
[7] Dmitry Ryabogin, On the continual Rubik's cube, Adv. Math. 231 (2012), no. 6, 3429-3444. MR2980504
[8] Dmitry Ryabogin, A lemma of Nakajima and Süss on convex bodies, Amer. Math. Monthly 122 (2015), no. 9, 890-892. MR3418213
[9] J. Sacco, Geometric tomography via conic sections, MSc Thesis, University of Alberta, 2011.
[10] Rolf Schneider, Functions on a sphere with vanishing integrals over certain subspheres, J. Math. Anal. Appl. 26 (1969), 381-384. MR0237723

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China

Email address: nzhang2@ualberta.ca


[^0]:    Received by the editors May 8, 2017, and, in revised form, July 22, 2017.
    2010 Mathematics Subject Classification. Primary 52A20, 52A38.
    Key words and phrases. Convex body, congruent sections, unique determination.

