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ON BODIES WITH CONGRUENT SECTIONS BY CONES

OR NON-CENTRAL PLANES

N. ZHANG

Abstract. Let K and L be two convex bodies in R3, such that their sections
by cones {x ∈ R3 : x · ξ = t|x|} or non-central planes with a fixed distance
from the origin are directly congruent. We prove that if their boundaries are
of class C2, then K and L coincide.

1. Introduction and main results

This paper is motivatied by the following problem (see, for example, the book
of R. J. Gardner “Geometric tomography” [2, Page 289]).

Problem 1.1. Suppose that 2 ≤ k ≤ n − 1 and that K and L are star bodies
in Rn such that the section K ∩ H is congruent to L ∩ H (see Figure 1) for all
H ∈ G(n, k). Do K and L coincide up to a reflection only?

Figure 1. Congruent sections by central planes.

Here, K ∩ H being congruent to L ∩ H means that there exists an orthogonal
transformation ϕ in H such that ϕ(K ∩H) is a translate of L ∩H. The answer is
affirmative in the case when K∩H is a translate of L∩H for every H (see Gardner
[2, Theorem 7.1.1] and Ryabogin [8]). If K ∩ H is a rotation of L ∩ H for each
H and k = 2, Ryabogin [7] gave an affirmative answer. For the higher dimension,
some partial results were obtained by Alfonseca, Cordier, and Ryabogin in [1] and
Myroshnychenko and Ryabogin in [6]. Several other results can be found in the
book of Golubyatnikov [3]. In general, this problem is still open. Below we study
two versions of this problem.

Problem 1.2. Let K,L ⊂ Rn be star bodies and t ∈ (0, 1). Assume that for every
ξ ∈ Sn−1 there is a rigid motion φξ such that K ∩ Ct(ξ) = φξ(L ∩ Ct(ξ)) (see
Figure 2). Does it follow that K = L?
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Figure 2. Congruent sections by cones.

Here, for t ∈ (0, 1), we define

Ct(ξ) := {x ∈ Rn : 〈x, ξ〉 = t|x|}
to be a cone in the direction of ξ. For some special values of t, Problem 1.2 has an
affirmative answer (cf. Schneider [10]; see also Sacco [9] for details).

Problem 1.3. Let K,L ⊂ Rn be convex bodies containing a ball B in their in-
teriors. Assume that for every ξ ∈ Sn−1 there is a rigid motion φξ such that
K ∩ (ξ⊥ + tξ) = φξ(L ∩ (ξ⊥ + tξ)) (see Figure 3). Does it follow that K = L?

Figure 3. Congruent sections by non-central planes.

Here and below, B is the ball with centre at the origin of radius t, t > 0.
In this paper, we solve Problem 1.2 in R3 in the class of C2 star bodies, i.e., star

bodies with C2 boundaries.

Theorem 1.4. Let f, g ∈ C2(S2) and t ∈ (0, 1). Assume that for every ξ ∈ S2

there is a rotation φξ around ξ such that

f(φξ(θ)) = g(θ)

for all θ ∈ S2 ∩ (ξ⊥ + tξ). Then f = g.

The case t ∈ (0, 1) is more difficult than the case t = 0, for, in general, there is no
injectivity of the corresponding Spherical Radon transform. And the smoothness
of the function is necessary when creating disjoint C2 level sets of the function.



ON BODIES WITH CONGRUENT SECTIONS 8741

As a corollary of Theorem 1.4, we get a positive answer to a version of Prob-
lem 1.2.

Corollary 1.5. Let K,L ⊂ R3 be C2 star bodies and t ∈ (0, 1). Assume that for
every ξ ∈ Sn−1 there is a rotation φξ around ξ such that K∩Ct(ξ) = φξ(L∩Ct(ξ)).
Then K = L.

We also solve a version of Problem 1.3 in R3.

Theorem 1.6. Let K,L ⊂ R3 be C2 convex bodies containing a ball B in their
interiors. Assume that for every ξ ∈ S2 there is a rotation φξ around ξ such that
K ∩ (ξ⊥ + tξ) = φξ(L ∩ (ξ⊥ + tξ)). Then K = L.

2. Proofs of main results

For a unit vector ξ ∈ S2, we define an open ball on S2 with centre at ξ to be

Bε(ξ) := {θ ∈ S2 : ‖θ − ξ‖ < ε},

where ‖ · ‖ is the Euclidean distance. We also define φξ = φξ,α ∈ SO(3) to be the
rotation around ξ by an angle α in the counterclockwise direction. Namely, for any
θ ∈ S2,

φξ,α(θ) = θ cos(απ) + (ξ × θ) sin(απ) + ξ〈ξ, θ〉(1− cos(απ)),

where ξ × θ, 〈ξ, θ〉 are usual vector and scalar products in R3.

2.1. Congruent sections by cones. Auxiliary results. In order to prove the
theorem, we assume the opposite, that is, by Lemma 2.5, there exists an x ∈ S2

such that f(x) 	= g(x) and ∇S2f(x) 	= 0, which gives a neighbourhood of x on
S2 containing local level sets of f . By the C2 smoothness of f and the implicit
function theorem, those level sets are a collection of disjoint C2 curves. Then, the√
2− t-distance is parallel to the sets of those C2 curves forming a subset of S2

with non-empty interior, whose intersection with Ξcon is not empty. By Lemmas
2.4 and 2.6, the level set Θτ ∪Λ(θ) of f is not C2 curve for some τ ; a contradiction.
(See Figure 4.)

Figure 4. The level set Θτ ∪ Λ(θ) is not C2 curve.

The details of the proof are organized as follows.
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Definition 2.1. Let f, g, t be as in Theorem 1.4. Define the following three subsets
of S2:

Ξ0 = {ξ ∈ S2 : f(θ) = g(θ) ∀θ ∈ S2 ∩ (ξ⊥ + tξ)};
Ξn = {ξ ∈ S2 : f(φξ, 2

n
(θ)) = f(θ) ∀θ ∈ S2 ∩ (ξ⊥ + tξ)}, n = 2, 3, . . . ;

Ξcon = S2\(Ξ0 ∪ (
∞⋃
n=2

Ξn)).

Lemma 2.2. Ξn are closed for all n = 0, 2, 3, . . . .

Proof. First, for any pair of directions ξ1 and ξ2, we define the map ψξ1,ξ2 .
If ξ1 is not parallel to ξ2, then consider the great circle passing through ξ1, ξ2,

which intersects ξ⊥1 + tξ1 and ξ⊥2 + tξ2 at θ11, θ12 and θ21, θ22, respectively. The
directions θ11, θ12 are chosen in such a way that the triple θ11, θ12, ξ1 × ξ2 has
a positive orientation. The same is assumed to hold for θ21, θ22. For any point
θ ∈ S2 ∩ (ξ⊥1 + tξ1), there exists φξ1,α ∈ SO(3), such that θ = φξ1,α(θ11). We define
ψξ1,ξ2(θ) := φξ2,α(θ21).

If ξ1 is parallel to ξ2, we define ψξ1,ξ2(θ) = θ. Note that for any θ ∈ S2∩(ξ⊥1 +tξ1),
since ξ2 × θ21 = ξ1 × θ11 and 〈ξ2, θ21〉 = 〈ξ1, θ11〉 = t, we have

‖ψξ1,ξ2(θ)− θ‖ = ‖φξ2,α(θ21)− φξ1,α(θ11)‖
= ‖θ21 cos(απ) + (ξ2 × θ21) sin(απ) + ξ2〈ξ2, θ21〉(1− cos(απ))

− θ11 cos(απ)− (ξ1 × θ11) sin(απ)− ξ1〈ξ1, θ11〉(1− cos(απ))‖
= ‖θ21 cos(απ) + tξ2(1− cos(απ))− θ11 cos(απ)− tξ1(1− cos(απ))‖
≤ ‖θ21 cos(απ)− θ11 cos(απ)‖+ ‖tξ2(1− cos(απ))− tξ1(1− cos(απ))‖
≤ ‖θ21 − θ11‖+ 2‖ξ1 − ξ2‖
= 3‖ξ1 − ξ2‖

and

φξ2,β(ψξ1,ξ2(θ)) = ψξ1,ξ2(φξ1,β(θ)) for any β.

Given a sequence ξi ∈ Ξ0 with limi→∞ ξi = ξ, define ψξ,ξi as similar to the above.
For any θ ∈ S2 ∩ (ξ⊥ + tξ), we have

|f(θ)− g(θ)|
≤ |f(θ)− f(ψξ,ξi(θ))|+ |f(ψξ,ξi(θ))− g(ψξ,ξi(θ))|+ |g(ψξ,ξi(θ))− g(θ)|
= |f(θ)− f(ψξ,ξi(θ))|+ |g(ψξ,ξi(θ))− g(θ)|.

As ξi → ξ, ψξ,ξi(θ) → θ; hence, by continuity of f and g,

|f(θ)− g(θ)| = 0 ∀θ ∈ S2 ∩ (ξ⊥ + tξ),

which implies ξ ∈ Ξ0. Now we prove the closeness of Ξ0.
Similarly, given a sequence ξi ∈ Ξn with limi→∞ ξi = ξ, for any θ ∈ S2∩(ξ⊥+tξ),

we have

|f(φξ, 2
n
(θ))− f(θ)|

≤ |f(φξ, 2
n
(θ))− f(φξi,

2
n
(ψξ,ξi(θ)))|+ |f(φξi,

2
n
(ψξ,ξi(θ)))− f(ψξ,ξi(θ))|

+ |f(ψξ,ξi(θ))− f(θ)|
= |f(φξ, 2

n
(θ))− f(ψξ,ξi(φξ, 2

n
(θ)))|+ |f(ψξ,ξi(θ))− f(θ)|.
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As ξi → ξ, ψξ,ξi(θ) → θ; hence, by continuity of f ,

|f(φξ, 2
n
(θ))− f(θ)| = 0 ∀θ ∈ S2 ∩ (ξ⊥ + tξ),

which implies ξ ∈ Ξn. �

Lemma 2.3. Suppose that for some ξ ∈ S2 there exists α ∈ Q such that f(φξ,α(θ))
= f(θ) ∀θ ∈ S2 ∩ (ξ⊥ + tξ). Then, there exists n ≥ 2, such that ξ ∈ Ξn.

Proof. Let us write α = p
q , where p and q are coprime integers. It is sufficient to

show 2
n = mp

q + 2l for some m,n, l ∈ Z. Indeed, this would imply that

f(φξ, 2
n
(θ)) = f(φξ,m p

q+2l(θ)) = f(φξ,m p
q
(θ)) = f(θ).

But, since p, q are coprime, there exist k, r ∈ Z, such that pk + qr = 1. If we set
n = q, then

2

n
=

2(pk + qr)

q
= 2k

p

q
+ 2r. �

Now, we define

λ(ξ) := {α ∈ [0, 2) : f(φξ,α(θ)) = g(θ) ∀θ ∈ S2 ∩ (ξ⊥ + tξ)}.
In the case when ξ ∈ Ξn, n ≥ 2, λ(ξ) is a multi-valued function; on the other hand,
if ξ ∈ Ξcon, λ(ξ) is a single-valued function; otherwise, if α, β ∈ λ(ξ) with α 	= β,

f(φξ,α(θ)) = g(θ) = f(φξ,β(θ)) ∀θ ∈ S2 ∩ (ξ⊥ + tξ),

implying

f(φξ,α−β(θ)) = f(θ) ∀θ ∈ S2 ∩ (ξ⊥ + tξ).

If α−β is irrational, then f(θ) ≡ C ≡ g(θ) ∀θ ∈ S2∩(ξ⊥+tξ), which means ξ ∈ Ξ0;
a contradiction. If α− β is rational, then by Lemma 2.3, ξ ∈ Ξn; a contradiction.

Lemma 2.4. Let f, g, t be as in Theorem 1.4. Then Ξcon is open and λ(ξ) is a
continuous function on Ξcon if Ξcon 	= ∅.

Proof. If Ξcon = ∅, then Ξcon is open. Now assume that Ξcon is not open. There
exists ξ ∈ Ξcon, such that, for any i ∈ N, there exists ξi ∈ B 1

i
(ξ) ∩ Ξni

for some

ni. If there are infinitely many ξi that belong to Ξ0, then 0 ∈ λ(ξ), that is, ξ ∈ Ξ0;
a contradiction. If there are infinitely many ξi, for which ni 	= 0, then λ(ξi) is a
multi-valued function. Thus there exists αi ∈ λ(ξi), such that |αi − λ(ξ)| > ε for
some ε > 0. By compactness of [0, 2], there exists a subsequence ξik , such that
limk→∞ αik = α, where |α − λ(ξ)| ≥ ε. Set ψξ,ξik

similarly to the ones defined in
Lemma 2.2.

Then for any θ ∈ S2 ∩ (ξ⊥ + tξ),

|f(φξ,λ(ξ)(θ))− f(φξ,α(θ))|
≤ |f(φξ,λ(ξ)(θ))− g(θ)|+ |g(θ)− g(ψξ,ξik

(θ))|
+ |g(ψξ,ξik

(θ))− f(φξik ,αik
(ψξ,ξik

(θ)))|+ |f(φξik ,αik
(ψξ,ξik

(θ)))− f(φξ,αik
(θ))|

= |g(θ)− g(ψξ,ξik
(θ))|+ |f(ψξ,ξik

(φξ,αik
(θ)))− f(φξ,α(θ))|.

As k → ∞, we have ψξ,ξik
(θ) → θ and ψξ,ξik

(φξ,αik
(θ)) → φξ,α(θ); hence, by

continuity of f and g,

|f(φξ,λ(ξ)(θ))− f(φξ,α(θ))| = 0 ∀θ ∈ S2 ∩ (ξ⊥ + tξ),
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implying
|f(φξ,α(θ))− g(θ)| = 0 ∀θ ∈ S2 ∩ (ξ⊥ + tξ);

a contradiction.
For the continuity, since λ(ξ) is a single-valued function when ξ ∈ Ξcon, consider

a sequence {ξi}∞i=1 ∈ Ξcon, such that Ξcon � ξ = limi→∞ ξi. By compactness of
[0, 2], there exists a subsequence {ξik}∞k=1, such that α = limk→∞ λ(ξik). Then for
any θ ∈ S2 ∩ (ξ⊥ + tξ),

|f(φξ,α(θ))− g(θ)|
≤ |f(φξ,α(θ))− f(φξik ,λ(ξik )

(ψξ,ξik
(θ)))|+ |f(φξik ,λ(ξik )

(ψξ,ξik
(θ)))− g(ψξ,ξik

(θ))|
quad+ |g(ψξ,ξik

(θ))− g(θ)|
= |f(φξ,α(θ))− f(φξik ,λ(ξik )

(ψξ,ξik
(θ)))|+ |g(ψξ,ξik

(θ))− g(θ)|.
As k → ∞, we have φξik ,λ(ξik )

(ψξ,ξik
(θ)) → φξ,α(θ) and ψξ,ξik

(θ) → θ; hence, by

continuity of f and g,

|f(φξ,α(θ))− g(θ)| = 0 ∀θ ∈ S2 ∩ (ξ⊥ + tξ),

that is, λ(ξ) = α. If {λ(ξi)}∞i=1 has another subsequence with a different limit
β 	= α, then {α, β} ⊂ λ(ξ), contradicting the fact that ξ ∈ Ξcon. �
Lemma 2.5. Let f, g, t be as in Theorem 1.4. Then either {θ ∈ S2 : f(θ) =
g(θ)} = S2 or the set

{θ ∈ S2 : f(θ) 	= g(θ)} ∩ [{θ ∈ S2 : ∇S2f(θ) 	= 0} ∪ {θ ∈ S2 : ∇S2g(θ) 	= 0}]
is not empty.

Here, ∇S2 is the spherical gradient, that is, for a function f on S2,

(∇S2f) (x/|x|) = ∇ (f(x/|x|)) , x ∈ R3/{0},
where f(x/|x|) is the 0-degree homogeneous extension of the function f to R3/{0}
and ∇ is the gradient in the ambient space R3.

Proof. First, the set {θ ∈ S2 : f(θ) 	= g(θ)} is not the whole sphere; otherwise
without loss of generality let f(θ) < g(θ). Then∫

S2∩(ξ⊥+tξ)

g(θ) dθ =

∫
S2∩(ξ⊥+tξ)

f(φξ(θ)) dθ

=

∫
S2∩(ξ⊥+tξ)

f(θ) dθ <

∫
S2∩(ξ⊥+tξ)

g(θ) dθ.

Now assume

{θ ∈ S2 : f(θ) 	= g(θ)} ∩ [{θ ∈ S2 : ∇S2f(θ) 	= 0} ∪ {θ ∈ S2 : ∇S2g(θ) 	= 0}] = ∅.
Then

{θ ∈ S2 : f(θ) 	= g(θ)} ⊂ {θ ∈ S2 : ∇S2f(θ) = 0} ∩ {θ ∈ S2 : ∇S2g(θ) = 0}.
Since f, g ∈ C2(S2), the set

Υ0 := {θ ∈ S2 : ∇S2f(θ) = 0} ∩ {θ ∈ S2 : ∇S2g(θ) = 0}
is closed and f and g are constant in any connected subset of Υ0.

Assume there exists x ∈ {θ ∈ S2 : f(θ) 	= g(θ)}. Choose the largest connected
open neighbourhood Nx of x in {θ ∈ S2 : f(θ) 	= g(θ)} ∀θ ∈ S2. Then the closure
of Nx is in Υ0 and the boundary of Nx is a subset of {θ ∈ S2 : f(θ) = g(θ)},
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which implies C1 = f = g = C2 in the closure of Nx; a contradiction. Hence,
{θ ∈ S2 : f(θ) 	= g(θ)} = ∅. �

Note that for ξ ∈ Ξcon, since Ξcon is open, there exists an ε > 0, such that
Bε(ξ) ⊂ Ξcon. Then, for any point θ ∈ S2 ∩ (ξ⊥ + tξ), we set η = φξ,−λ(ξ)(θ) and

ξ ∈ η⊥ + tη since 〈ξ, η〉 = t; hence, (η⊥ + tη)∩Bε(ξ) is not empty. Thus, we define
the curve

Λ(θ) :=
⋃

ζ∈(η⊥+tη)∩Bε(ξ)

φζ,λ(ζ)(η)

passing through θ (see Figure 5).

Figure 5. The construction of Λ(θ).

We set (ξ⊥ + tξ)+ := {x ∈ R3 : 〈x, ξ〉 ≥ t} and int ((ξ⊥ + tξ)+) := {x ∈ R3 :
〈x, ξ〉 > t}.

Lemma 2.6. Let f, g, t be as in Theorem 1.4 and ξ ∈ Ξcon. If λ(ξ) 	= 1, then

Λ(θ) ∩ S2 ∩ int ((ξ⊥ + tξ)+) 	= ∅.

Proof. Without loss of generality, we can assume that 0 < λ(ξ) < 1. The other
case 1 < λ(ξ) < 2 is similar. Since ξ ∈ Ξcon and 0 < λ(ξ) < 1, by Lemma 2.4 there
exists 0 < ι < 1/2 and a ball Bε(ξ) ⊂ Ξcon such that ι ≤ λ(ζ) ≤ 1 − ι for any
ζ ∈ Bε(ξ).

Now take any θ ∈ S2 ∩ (ξ⊥ + tξ) and define η = φξ,−λ(ξ)(θ). We set ζ = φη,α(ξ)
for some small α > 0 and ω = φζ,λ(ζ)(η). Then we have

ζ × η = φη,α(ξ)× η

= (ξ cos(απ) + (η × ξ) sin(απ) + η〈η, ξ〉(1− cos(απ)))× η

= ξ × η cos(απ) + (ξ〈η, η〉 − η〈ξ, η〉) sin(απ)
= ξ × η cos(απ) + (ξ − tη) sin(απ)

and

〈ξ, ζ〉 = 〈ξ, φη,α(ξ)〉
= 〈ξ, ξ cos(απ) + (η × ξ) sin(απ) + η〈η, ξ〉(1− cos(απ))〉
= cos(απ) + t2(1− cos(απ)).(1)
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Therefore,

〈ξ, ω〉 − t = 〈ξ, φζ,λ(ζ)(η)〉 − t

= 〈ξ, η cos(λ(ζ)π) + (ζ × η) sin(λ(ζ)π) + tζ(1− cos(λ(ζ)π))〉 − t

= t cos(λ(ζ)π) + 〈ξ, ξ × η cos(απ) + (ξ − tη) sin(απ)〉 sin(λ(ζ)π)
+ t(1− cos(λ(ζ)π))(cos(απ) + t2(1− cos(απ)))− t

= t cos(λ(ζ)π) + (1− t2) sin(απ) sin(λ(ζ)π)

+ t(1− cos(λ(ζ)π))(cos(απ) + t2(1− cos(απ)))− t

= (1− t2) sin(απ) sin(λ(ζ)π) + t(1− cos(λ(ζ)π))(t2 − 1)(1− cos(απ))

= (1− t2)(sin(απ) sin(λ(ζ)π)− t(1− cos(λ(ζ)π))(1− cos(απ)))

≥ (1− t2)(sin(απ) sin(ιπ)− t(1− cos((1− ι)π))(1− cos(απ)))

> 0 for sufficiently small α.

To show

sin(απ) sin(ιπ)− t(1− cos((1− ι)π))(1− cos(απ)) > 0

for sufficiently small α > 0, we used that for a, b > 0, x > 0 sufficiently small, and
h(x) = a sinx− b(1− cosx),

h′(x) = a cosx− b sinx > 0

and h(0) = 0.
Hence, ω ∈ Λ(θ) ∩ S2 ∩ int ((ξ⊥ + tξ)+). �

Proof of Theorem 1.4. Assume the set {θ ∈ S2 : f(θ) 	= g(θ)} is not empty. By
Lemma 2.5, we have

{θ ∈ S2 : f(θ) 	= g(θ)} ∩ [{θ ∈ S2 : ∇S2f(θ) 	= 0} ∪ {θ ∈ S2 : ∇S2g(θ) 	= 0}] 	= ∅.
Without loss of generality, we can choose

x ∈ {θ ∈ S2 : f(θ) 	= g(θ)} ∩ {θ ∈ S2 : ∇S2f(θ) 	= 0},
and therefore, there exists an open ball

Bε(x) ⊂ {θ ∈ S2 : f(θ) 	= g(θ)} ∩ {θ ∈ S2 : ∇S2f(θ) 	= 0}.
By the implicit function theorem (see [5, Section I-5]), the collection of local level

sets of f , L(f) := {Θτ}a<τ<b, is a collection of disjoint C2 curves, where Θτ :=
{θ ∈ S2 : f(θ) = τ} ∩Bε(x). Here, a = infθ∈Bε(x) f(θ) and b = supθ∈Bε(x) f(θ).

For curves {Θτ} ⊂ S2, consider their geodesic curvature kg(·) (see [4, Section
17.4] for details). If for every η ∈ Θτ and Θτ ∈ L(f), we have kg(η) = 0, then each
Θτ belongs to some great circle. Choose one of these great circles. It divides S2

into two hemispheres. Fix one of these hemispheres and denote it by S2
+. Consider

all circles of the form S2 ∩ (ξ⊥ + tξ) that are tangent to the curves Θτ and ξ ∈ S2
+.

Denote by Σ the set of such directions ξ.
Now consider the case when for some τ ∈ (a, b), there exists a θ ∈ Θτ , such that

kg(θ) 	= 0. Then by C2 smoothness of f , there exists a smaller neighbourhood of
x, which we will again denote by Bε(x), and a collection of level sets in Bε(x), such
that kg(η) 	= 0 for any η ∈ Θτ and a < τ < b. For each point η ∈ Θτ , consider the
great circle which is tangent to Θτ at η. Then {Θτ}a<τ<b lie on one side of their
tangent great circle. For each τ and each η ∈ Θτ consider a circle S2 ∩ (ξ⊥ + tξ)



ON BODIES WITH CONGRUENT SECTIONS 8747

that is tangent to Θτ at η and lies on the other side with respect to the tangent
great circle. Let Σ be the set of such directions ξ (see Figure 6).

Note that for each Θτ , these ξ ∈ Σ form a parallel set of Θτ on S2, i.e., the
envelope of a family of circles on S2 with centres on Θτ and of radius

√
2− 2t.

Figure 6. The construction of Σ.

Hence, the set Σ is a union of such curves and thus contains non-empty interior.
We claim Ξcon∩ int (Σ) 	= ∅; otherwise, int (Σ) ⊂ Ξ0∪(

⋃∞
n=2 Ξn), but int (Σ)∩Ξ0 =

∅, since Bε(x) ⊂ {θ ∈ S2 : f(θ) 	= g(θ)}. Hence, int (Σ) ⊂
⋃∞

n=2 Ξn, which
implies that (

⋃∞
n=2 Ξn)∩int (Σ) contains non-empty interior. By the Baire category

theorem and Lemma 2.2, there exists some k ∈ N, such that Ξk ∩ int (Σ) contains
non-empty interior.

Now assume ξ ∈ int (Ξk ∩ Σ). Then, there exists δ > 0 such that Bδ(ξ) ⊂
int (Ξk ∩ Σ). For any θ ∈ ξ⊥ + tξ, we have

f(η) = f(θ) ∀η ∈ Λξ(θ) :=
⋃

ζ∈(θ⊥+tθ)∩Bδ(ξ)

φζ, 2k
(θ)

and

f(ω) = f(θ) ∀ω ∈ Δξ(θ) :=
⋃

η∈Λξ(θ)

⋃
ϑ∈(η⊥+tη)∩Bδ(ξ)

φϑ,− 2
k
(η).

Let us show that Δξ(θ) has non-empty interior. Note that for any η ∈ Λξ(θ), by
equation (1) we have

〈θ, η〉 = cos(2π/k) + t2(1− cos(2π/k)) =: ς(t),

where −1 < ς(t) < 1. If ς(t) = 0, then Λξ(θ) ⊂ S2 ∩ θ⊥. Fix η ∈ Λξ(θ); then for
each

ω ∈
⋃

ϑ∈(η⊥+tη)∩Bδ(ξ)

φϑ,− 2
k
(η),

by equation (1) we have

〈ω, η〉 = ς(t) = 0,

which means
⋃

ϑ∈(η⊥+tη)∩Bδ(ξ)
φϑ,− 2

k
(η) is a curve passing through θ and contained

in S2 ∩ η⊥. Since Λξ(θ) is a continuous curve, by changing η we see that Δξ(θ) has
the shape of a sand dial, which we will refer to as a �� shape.

If 0 < ς(t) < 1, then

Λξ(θ) ⊂ S2 ∩ (θ⊥ + ς(t)θ).
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Fix η ∈ Λξ(θ); then
⋃

ϑ∈(η⊥+tη)∩Bδ(ξ)
φϑ,− 2

k
(η) gives a curve passing through θ

and contained in S2 ∩ (η⊥ + ς(t)η). Observe that for different η ∈ Λξ(θ), we have
different curves

⋃
ϑ∈(η⊥+tη)∩Bδ(ξ)

φϑ,− 2
k
(η) with the only common point θ. Since

these curves change continuously, the set Δξ(θ) again has a �� shape.
If −1 < ς(t) < 0, use the same argument to show that Δξ(θ) has a �� shape.

Therefore, Δξ(θ) is a set with non-empty interior on S2.
Now to reach a contradiction, assume that f is not constant on S2 ∩ (ξ⊥ + tξ).

Then f takes on infinitely many values and so there are infinitely many disjoint
sets Δξ(θ) with m(Δξ(θ)) = ν > 0, where ν is a number independent of θ ∈
S2 ∩ (ξ⊥ + tξ), which is impossible. Here m is the Hausdorff measure on S2. On
the other hand, if f is a constant on S2 ∩ (ξ⊥ + tξ), then ξ ∈ Ξ0, which contradicts
int (Σ) ∩ Ξ0 = ∅. Thus, we have proved Ξcon ∩ int (Σ) 	= ∅.

Now assume that for every ξ ∈ Ξcon ∩ int (Σ), we have λ(ξ) = 1. Then, there
exists δ > 0 such that Bδ(ξ) ⊂ Ξcon ∩ int (Σ) and λ(ζ) = 1 for any ζ ∈ Bδ(ξ). For
any θ ∈ ξ⊥ + tξ, we have

g(η) = f(θ) ∀η ∈ Λξ(θ) :=
⋃

ζ∈(θ⊥+tθ)∩Bδ(ξ)

φζ,1(θ)

and

f(ω) = g(η) = f(θ) ∀ω ∈ Δξ(θ) :=
⋃

η∈Λξ(θ)

⋃
ϑ∈(η⊥+tη)∩Bδ(ξ)

φϑ,1(η).

Following the same argument as above, we have that Δξ(θ) is a set with non-empty
interior on S2. Therefore, f is a constant on ξ⊥ + tξ; otherwise, if f takes on
infinitely many values, then there are infinitely many disjoint sets Δξ(θ), where
m(Δξ(θ)) = ν > 0; a contradiction. But if f is a constant on ξ⊥ + tξ, then ξ ∈ Ξ0,
which contradicts ξ ∈ Ξcon.

Finally, assume that there exists ξ ∈ Ξcon ∩ int (Σ) such that λ(ξ) 	= 1. Then by
Lemma 2.4 there exists a neighbourhood Bε(ξ) ⊂ Ξcon ∩ int (Σ) and θ ∈ Θτ ∈ L(f)
for some τ , such that S2 ∩ (ξ⊥ + tξ)+ ∩Θτ = θ. On the other hand, by Lemma 2.6

Λ(θ) =
⋃

ζ∈(η⊥+tη)∩Bε(ξ)

φζ,λ(ζ)(η), where η = φξ,−λ(ξ)(θ),

gives a curve such that Λ(θ) ∩ S2 ∩ int ((ξ⊥ + tξ)+) 	= ∅ and f(ω) = f(θ) for any
ω ∈ Λ(θ). Thus, Λ(θ) ∪ Θτ must be a level set of f at value τ but it is not a
1-manifold; a contradiction.

Therefore, {θ ∈ S2 : f(θ) 	= g(θ)} = ∅. �
2.2. Congruent sections by non-central planes. Auxiliary results. We will
use ideas of Section 2.1. However, some proofs will be different.

Definition 2.7. Let K,L,B be as in Theorem 1.6. Define the following three
subsets of S2:

Ξ′
0 = {ξ ∈ S2 : K ∩ (ξ⊥ + tξ) = L ∩ (ξ⊥ + tξ)};

Ξ′
n = {ξ ∈ S2 : φξ, 2

n
(L ∩ (ξ⊥ + tξ)) = L ∩ (ξ⊥ + tξ)}, n = 2, 3, . . . ;

Ξ′
con = S2\(Ξ′

0 ∪ (
∞⋃
n=2

Ξ′
n)).

Using the same argument as above, it is easy to prove the following lemmas.
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Lemma 2.8. Ξ′
n are closed for all n = 0, 2, 3, . . . .

Proof. First, set dH(·, ·) to be the Hausdorff distance on sets in R3. Given a sequence
ξi ∈ Ξ′

0 with limi→∞ ξi = ξ, we have

dH(K ∩ (ξ⊥ + tξ), L ∩ (ξ⊥ + tξ))

≤ dH(K ∩ (ξ⊥ + tξ),K ∩ (ξ⊥i + tξi)) + dH(K ∩ (ξ⊥i + tξi), L ∩ (ξ⊥i + tξi))

+ dH(L ∩ (ξ⊥i + tξi), L ∩ (ξ⊥ + tξ))

= dH(K ∩ (ξ⊥ + tξ),K ∩ (ξ⊥i + tξi)) + dH(L ∩ (ξ⊥i + tξi), L ∩ (ξ⊥ + tξ)).

As ξi → ξ, dH(K∩(ξ⊥+tξ),K∩(ξ⊥i +tξi)) → 0 and dH(L∩(ξ⊥i +tξi), L∩(ξ⊥+tξ)) →
0; hence, dH(K ∩ (ξ⊥+ tξ), L∩ (ξ⊥+ tξ)) = 0, which implies ξ ∈ Ξ′

0. Now we prove
the closeness of Ξ′

0.
Similarly, given a sequence ξi ∈ Ξ′

n with limi→∞ ξi = ξ, we have

dH(φξ, 2
n
(L ∩ (ξ⊥ + tξ)), L ∩ (ξ⊥ + tξ))

≤ dH(φξ, 2
n
(L ∩ (ξ⊥ + tξ)), φξi,

2
n
(L ∩ (ξ⊥i + tξi)))

+ dH(φξi,
2
n
(L ∩ (ξ⊥i + tξi)), L ∩ (ξ⊥i + tξi))

+ dH(L ∩ (ξ⊥i + tξi), L ∩ (ξ⊥ + tξ))

= dH(φξ, 2
n
(L ∩ (ξ⊥ + tξ)), φξi,

2
n
(L ∩ (ξ⊥i + tξi)))

+ dH(L ∩ (ξ⊥i + tξi), L ∩ (ξ⊥ + tξ)).

As ξi → ξ, dH(L ∩ (ξ⊥ + tξ), L ∩ (ξ⊥i + tξi)) → 0; hence,

dH(φξ, 2
n
(L ∩ (ξ⊥ + tξ)), L ∩ (ξ⊥ + tξ)) = 0,

which implies ξ ∈ Ξ′
n. �

Now we define

λ′(ξ) := {α : K ∩ (ξ⊥ + tξ) = φξ,α(L ∩ (ξ⊥ + tξ))}.

In the case when ξ ∈ Ξ′
n, n ≥ 2, λ′(ξ) is a multi-valued function; on the other hand,

if ξ ∈ Ξ′
con, λ

′(ξ) is a single-valued function; otherwise, if α, β ∈ λ′(ξ) with α 	= β,

φξ,α(L ∩ (ξ⊥ + tξ)) = K ∩ (ξ⊥ + tξ) = φξ,β(L ∩ (ξ⊥ + tξ))

implying

φξ,α(L ∩ (ξ⊥ + tξ)) = φξ,β(L ∩ (ξ⊥ + tξ)).

If α−β is irrational, then L∩(ξ⊥+tξ) is a disk, which means ξ ∈ Ξ′
0; a contradiction.

If α− β is rational, then by Lemma 2.3, ξ ∈ Ξ′
n; a contradiction.

Lemma 2.9. Let K,L,B be as in Theorem 1.6. Then Ξ′
con is open and λ′(ξ) is a

continuous function on Ξ′
con if Ξ′

con 	= ∅.

Proof. If Ξ′
con = ∅, then Ξ′

con is open. Now assume that Ξ′
con is not open. There

exists ξ ∈ Ξ′
con, such that, for any i ∈ N, there exists ξi ∈ B 1

i
(ξ)∩Ξ′

ni
for some ni. If

there are infinitely many ξi that belong to Ξ′
0, then 0 ∈ λ′(ξ). If there are infinitely

many ξi for which ni 	= 0, then λ′(ξi) is a multi-valued function. Thus there exists
αi ∈ λ′(ξi), such that |αi − λ′(ξ)| > ε for some ε > 0. By compactness of [0, 2],
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there exists a subsequence ξik , such that limk→∞ αik = α, where |α − λ′(ξ)| ≥ ε.
Then

dH(φξ,λ′(ξ)(L ∩ (ξ⊥ + tξ)), φξ,α(L ∩ (ξ⊥ + tξ)))

≤ dH(φξ,λ′(ξ)(L ∩ (ξ⊥ + tξ)),K ∩ (ξ⊥ + tξ))

+ dH(K ∩ (ξ⊥ + tξ),K ∩ (ξ⊥ik + tξik))

+ dH(K ∩ (ξ⊥ik + tξik), φξik ,αik
(L ∩ (ξ⊥ik + tξik)))

+ dH(φξik ,αik
(L ∩ (ξ⊥ik + tξik)), φξ,α(L ∩ (ξ⊥ + tξ)))

= dH(K ∩ (ξ⊥ + tξ),K ∩ (ξ⊥ik + tξik))

+ dH(φξik ,αik
(L ∩ (ξ⊥ik + tξik)), φξ,α(L ∩ (ξ⊥ + tξ))).

As k → ∞, we have ξik → ξ and αik → α; hence,

dH(φξ,λ′(ξ)(L ∩ (ξ⊥ + tξ)), φξ,α(L ∩ (ξ⊥ + tξ))) = 0,

implying

K ∩ (ξ⊥ + tξ) = φξ,α(L ∩ (ξ⊥ + tξ));

a contradiction.
For continuity, since λ′(ξ) is a single-valued function when ξ ∈ Ξ′

con, consider a
sequence {ξi}∞i=1 ∈ Ξ′

con, such that Ξ′
con � ξ = limi→∞ ξi. By compactness of [0, 2],

there exists a subsequence {ξik}∞k=1, such that α = limk→∞ λ′(ξik). Then

dH(K ∩ (ξ⊥ + tξ), φξ,α(L ∩ (ξ⊥ + tξ)))

≤ dH(K ∩ (ξ⊥ + tξ),K ∩ (ξ⊥ik + tξik))

+ dH(K ∩ (ξ⊥ik + tξik), φξik ,λ
′(ξik )

(L ∩ (ξ⊥ik + tξik)))

+ dH(φξik ,λ
′(ξik )

(L ∩ (ξ⊥ik + tξik)), φξ,α(L ∩ (ξ⊥ + tξ)))

= dH(K ∩ (ξ⊥ + tξ),K ∩ (ξ⊥ik + tξik))

+ dH(φξik ,λ
′(ξik )

(L ∩ (ξ⊥ik + tξik)), φξ,α(L ∩ (ξ⊥ + tξ))).

As k → ∞, we have λ′(ξik) → α and ξik → ξ; hence,

dH(K ∩ (ξ⊥ + tξ), φξ,α(L ∩ (ξ⊥ + tξ))) = 0,

that is, λ′(ξ) = α. If {λ′(ξi)}∞i=1 has another subsequence with a different limit
β 	= α, then {α, β} ⊂ λ′(ξ), contradicting ξ ∈ Ξ′

con. �

For a convex body K, we define its radial function in the direction of θ to be

ρK(θ) := sup{t : tθ ∈ K}.

Lemma 2.10. Let K,L,B be as in Theorem 1.6. Then either {θ ∈ S2 : ρK(θ) =
ρL(θ)} = S2 or the set

{θ ∈ S2 : ρK(θ) 	= ρL(θ)} ∩ [{θ ∈ S2 : ∇S2ρK(θ) 	= 0} ∪ {θ ∈ S2 : ∇S2ρL(θ) 	= 0}]

is not empty.

Proof. First, the set {θ ∈ S2 : ρK(θ) 	= ρL(θ)} is not the whole sphere; otherwise
without loss of generality let ρK(θ) < ρL(θ) ∀θ ∈ S2. This means that K is strictly
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inside L. Then

voln−1(K ∩ (ξ⊥ + tξ)) = voln−1(φξ(L ∩ (ξ⊥ + tξ)))

= voln−1(L ∩ (ξ⊥ + tξ)) > voln−1(K ∩ (ξ⊥ + tξ)).

Now assume

{θ ∈ S2 : ρK(θ) 	= ρL(θ)}
∩ [{θ ∈ S2 : ∇S2ρK(θ) 	= 0} ∪ {θ ∈ S2 : ∇S2ρL(θ) 	= 0}] = ∅.

Then

{θ ∈ S2 : ρK(θ) 	= ρL(θ)}
⊂ {θ ∈ S2 : ∇S2ρK(θ) = 0} ∩ {θ ∈ S2 : ∇S2ρL(θ) = 0}.

Since ρK , ρL ∈ C2, the set

Υ′
0 := {θ ∈ S2 : ∇S2ρK(θ) = 0} ∩ {θ ∈ S2 : ∇S2ρL(θ) = 0}

is closed and ρK and ρL are constant in any connected subset of Υ′
0.

Assume there exists x ∈ {θ ∈ S2 : ρK(θ) 	= ρL(θ)}. Choose the largest connected
open neighbourhood Nx of x in {θ ∈ S2 : ρK(θ) 	= ρL(θ)}. Then the closure of
Nx is in Υ′

0 and the boundary of Nx is a subset of {θ ∈ S2 : ρK(θ) = ρL(θ)},
which implies C1 = ρK = ρL = C2 in the closure of Nx; a contradiction. Hence,
{θ ∈ S2 : ρK(θ) 	= ρL(θ)} = ∅. �

Note that for ξ ∈ Ξ′
con, since Ξ′

con is open, there exists an ε > 0, such that
Bε(ξ) ⊂ Ξ′

con. Then, for any point θ ∈ S2 such that ρL(θ)θ ∈ L ∩ (ξ⊥ + tξ), we set
η = φξ,λ′(ξ)(θ). Thus, we define the curve

Λ′(θ) := {φζ,−λ′(ζ)(η) : ζ ∈ Bε(ξ) and ρL(θ)η ∈ ζ⊥ + tζ}

passing through θ (see Figure 7).

Figure 7. The construction of Λ′(θ).

Lemma 2.11. Let K,L,B be as in Theorem 1.6 and ξ ∈ Ξ′
con. If λ′(ξ) 	= 1, then

{ρL(θ)u : u ∈ Λ′(θ)} ∩ int ((ξ⊥ + tξ)+) 	= ∅.

Proof. Without loss of generality, we can assume that 0 < λ′(ξ) < 1. The other
case 1 < λ′(ξ) < 2 is similar. Since ξ ∈ Ξ′

con and 0 < λ′(ξ) < 1, by Lemma 2.9
there exists 0 < ι′ < 1

2 and a ball Bε(ξ) ⊂ Ξ′
con such that ι′ ≤ λ′(ζ) ≤ 1− ι′ for any

ζ ∈ Bε(ξ).
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Now take any θ ∈ S2 such that ρL(θ)θ ∈ L∩ (ξ⊥+ tξ) and define η = φξ,λ′(ξ)(θ).
We set ζ = φη,−α(ξ) for small α > 0 and ω = φζ,−λ′(ζ)(η); then we have

〈ζ, η〉 = 〈φη,−α(ξ), η〉 = 〈ξ, η〉 = t

ρK(η)
=

t

ρL(θ)
∈ (0, 1).

Hence, ρL(θ)η ∈ ζ⊥ + tζ,

ζ × η = φη,−α(ξ)× η

= (ξ cos(−απ) + (η × ξ) sin(−απ) + η〈η, ξ〉(1− cos(−απ)))× η

= ξ × η cos(απ)− (ξ〈η, η〉 − η〈ξ, η〉) sin(απ)

= ξ × η cos(απ)− (ξ − t

ρL(θ)
η) sin(απ),

and

〈ξ, ζ〉 = 〈ξ, φη,−α(ξ)〉
= 〈ξ, ξ cos(−απ) + (η × ξ) sin(−απ) + η〈η, ξ〉(1− cos(−απ))〉

= cos(απ) +
t2

ρ2L(θ)
(1− cos(απ)).(2)

Therefore,

ρL(θ)〈ξ, ω〉 − t

= ρL(θ)〈ξ, η cos(−λ′(ζ)π) + (ζ × η) sin(−λ′(ζ)π)

+
t

ρL(θ)
ζ(1− cos(−λ′(ζ)π))〉 − t

= t cos(λ′(ζ)π)− ρL(θ)〈ξ, ξ × η cos(απ)− (ξ − t

ρL(θ)
η) sin(απ)〉 sin(λ′(ζ)π)

+ t(1− cos(λ′(ζ)π))(cos(απ) +
t2

ρ2L(θ)
(1− cos(απ)))− t

= t cos(λ′(ζ)π) + ρL(θ)(1−
t2

ρ2L(θ)
) sin(απ) sin(λ′(ζ)π)

+ t(1− cos(λ′(ζ)π))(cos(απ) +
t2

ρ2L(θ)
(1− cos(απ)))− t

= (1− t2

ρ2L(θ)
)ρL(θ) sin(απ) sin(λ

′(ζ)π)

− t(1− cos(λ′(ζ)π))(1− t2

ρ2L(θ)
)(1− cos(απ))

= (1− t2

ρ2L(θ)
)(ρL(θ) sin(λ

′(ζ)π) sin(απ)− t(1− cos(λ′(ζ)π))(1− cos(απ)))

≥ (1− t2

ρ2L(θ)
)(ρL(θ) sin(ι

′π) sin(απ)− t(1− cos((1− ι′)π))(1− cos(απ)))

> 0 for sufficiently small α > 0.

Hence, ρL(θ)ω ∈ {ρL(θ)u : u ∈ Λ′(θ)} ∩ int ((ξ⊥ + tξ)+). �
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Proof of Theorem 1.6. Assume {θ ∈ S2 : ρK(θ) 	= ρL(θ)} 	= ∅. By Lemma 2.10, we
have

{θ ∈ S2 : ρK(θ) 	= ρL(θ)}
∩ [{θ ∈ S2 : ∇S2ρK(θ) 	= 0} ∪ {θ ∈ S2 : ∇S2ρL(θ) 	= 0}] 	= ∅.

Without loss of generality, we can choose

x ∈ {θ ∈ S2 : ρK(θ) 	= ρL(θ)} ∩ {θ ∈ S2 : ∇S2ρL(θ) 	= 0},
Therefore there exists an open ball

Bε(x) ⊂ {θ ∈ S2 : ρK(θ) 	= ρL(θ)} ∩ {θ ∈ S2 : ∇S2ρL(θ) 	= 0}.
By the implicit function theorem, the collection of local level sets of ρL, L′(L) :=

{Θ′
τ}a′<τ<b′ , is a collection of disjoint C2 curves, where Θ′

τ := {θ ∈ S2 : ρL(θ) =
τ} ∩Bε(x). Here, a′ = infθ∈Bε(x) ρL(θ) and b′ = supθ∈Bε(x) ρL(θ).

For curves {Θ′
τ} ⊂ S2, consider their geodesic curvature kg(·). If for every

η ∈ Θ′
τ and Θ′

τ ∈ L′(L), we have kg(η) = 0, then each Θ′
τ belongs to some great

circle. Choose one of these great circles. It divides S2 into two hemispheres. Fix
one of these hemispheres and denote it by S2

+. Consider all circles of the form

S2 ∩ (ξ⊥ + t
τ ξ) that are tangent to the curves Θτ and ξ ∈ S2

+. Denote by Σ′ the
set of such directions ξ.

Now consider the case when for some τ ∈ (a′, b′), there exists a θ ∈ Θ′
τ , such that

kg(θ) 	= 0. Then by C2 smoothness of ρL, there exists a smaller neighbourhood of
x, which we will again denote by Bε(x), and a collection of level sets in Bε(x), such
that kg(η) 	= 0 for any η ∈ Θ′

τ and a′ < τ < b′. For each point η ∈ Θ′
τ , consider the

great circle which is tangent to Θ′
τ at η. Then {Θ′

τ}a′<τ<b′ lie on one side of their
tangent great circle. For each τ and each η ∈ Θ′

τ consider a circle S2 ∩ (ξ⊥ + t
τ ξ)

that is tangent to Θ′
τ at η and lies on the other side with respect to the tangent

great circle. Let Σ′ be the set of such directions ξ.
Note that for each Θ′

τ , these ξ form a parallel set of Θ′
τ on S2, which we denote

by C′
τ . This is the envelope of a family of circles on S2 with centres at Θ′

τ and of
radius t

τ . We claim that for different values of τ ∈ (a′, b′), the corresponding C′
τ do

not coincide. Otherwise, for some τ1 ∈ (a′, b′), the envelope of a family of tangent
planes of 1

τ1
B at the points on t

τ1
C′
τ1 intersects S2 along Θ′

τ1 , i.e.,

Θ′
τ1 = Envelope

⎧⎨
⎩

⋃
ξ∈C′

τ1

H t
τ1

ξ, 1
τ1

B

⎫⎬
⎭ ∩ S2,

where H t
τ1

ξ, 1
τ1

B is the tangent plane to 1
τ1
B at the point t

τ1
ξ and Envelope{·} is

the envelope of a one-parameter family of curves. Hence, multiplying both sides by
τ1, we obtain

∂L ⊃ τ1Θ
′
τ1 = Envelope

⎧⎨
⎩

⋃
ξ∈C′

τ1

Htξ,B

⎫⎬
⎭ ∩ τ1S

2.

On the other hand, assume that for a different value (a′, b′) � τ2 	= τ1, we have

τ2Θ
′
τ2 = Envelope

⎧⎨
⎩

⋃
ξ∈C′

τ1

Htξ,B

⎫⎬
⎭ ∩ ∂L.
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However, Envelope
{⋃

ξ∈C′
τ1

Htξ,B

}
is a ruled surface (i.e., comprised of straight

lines), which cannot intersect ∂L along two different curves. So C′
τ1 and C′

τ2 do not
coincide. We conclude that by the continuity of C′

τ with respect to τ , the set Σ′ is
a union of C′

τ and thus contains non-empty interior.
Now we claim Ξ′

con ∩ int (Σ′) 	= ∅; otherwise, int (Σ′) ⊂ Ξ′
0 ∪

(⋃∞
n=2 Ξn

)
, but

int (Σ′) ∩ Ξ′
0 = ∅, since Bε(x) ⊂ {θ ∈ S2 : ρK(θ) 	= ρL(θ)}. Hence, int (Σ′) ⊂⋃∞

n=2 Ξ
′
n, which implies that

(⋃∞
n=2 Ξ

′
n

)
∩ int (Σ) contains non-empty interior. By

the Baire category theorem and Lemma 2.8, there exists some k ∈ N, such that
Ξk ∩ int (Σ′) contains non-empty interior.

Assume ξ ∈ int (Ξ′
k∩Σ′). Then, there exists δ > 0 such that Bδ(ξ) ⊂ int (Ξ′

k∩Σ′).
For any ρL(θ)θ ∈ ξ⊥ + tξ,

ρL(η) = ρL(θ) ∀η ∈ Λ′
ξ(θ) := {φζ, 2k

(θ) : ρL(θ)θ ∈ ζ⊥ + tζ, ζ ∈ Bδ(ξ)}

and

ρL(ω) = ρL(η) = ρL(θ)

∀ω ∈ Δ′
ξ(θ) := {φϑ,− 2

k
(η) : η ∈ Λ′

ξ(θ), ρL(θ)η ∈ ϑ⊥ + tϑ, ϑ ∈ Bδ(ξ)}.

Let us show that Δ′
ξ(θ) has non-empty interior. Note that for any η ∈ Λ′

ξ(θ), by

equation (2) we have

〈θ, η〉 = cos(2π/k) +
t2

ρ2L(θ)
(1− cos(2π/k)) =: ς ′(t),

where −1 < ς ′(t) < 1. If ς ′(t) = 0, then Λ′
ξ(θ) ⊂ S2 ∩ θ⊥. Fix η ∈ Λ′

ξ(θ); then for
each

ω ∈ {φϑ,− 2
k
(η) : ρL(θ)η ∈ ϑ⊥ + tϑ, ϑ ∈ Bδ(ξ)},

by equation (2) we have

〈ω, η〉 = ς ′(t) = 0,

which means {φϑ,− 2
k
(η) : ρL(θ)η ∈ ϑ⊥ + tϑ, ϑ ∈ Bδ(ξ)} is a curve passing through

θ and contained in S2 ∩ η⊥. Since Λ′
ξ(θ) is a continuous curve, by changing η we

see that Δ′
ξ(θ) has the shape of a sand dial, which we will refer to as a �� shape.

If 0 < ς ′(t) < 1, then Λ′
ξ(θ) ⊂ S2 ∩ (θ⊥+ ς(t)θ). Fix η ∈ Λ′

ξ(θ); then {φϑ,− 2
k
(η) :

ρL(θ)η ∈ ϑ⊥ + tϑ, ϑ ∈ Bδ(ξ)} gives a curve passing through θ and contained in
S2 ∩ (η⊥ + ς ′(t)η). Observe that for different η ∈ Λ′

ξ(θ), we have different curves

{φϑ,− 2
k
(η) : ρL(θ)η ∈ ϑ⊥ + tϑ, ϑ ∈ Bδ(ξ)} with the only common point θ. Since

these curves change continuously, the set Δ′
ξ(θ) again has a �� shape.

If −1 < ς ′(t) < 0, use the same argument to show that Δ′
ξ(θ) has a �� shape.

Therefore, Δ′
ξ(θ) is a set with non-empty interior on S2; hence, it is not a 1-

manifold.
Now to reach a contradiction, assume that ∇S2ρL(θ) = 0 for every θ ∈ S2 such

that ρL(θ)θ ∈ L∩ (ξ⊥ + tξ); then L∩ (ξ⊥ + tξ) is a disk, ξ ∈ Ξ′
0, which contradicts

int (Σ′) ∩ Ξ′
0 = ∅.

On the other hand, if ∇S2ρL(θ) 	= 0 for some point θ satisfying

ρL(θ)θ ∈ L ∩ (ξ⊥ + tξ),

then by the implicit function theorem, the level set of ρL passing through θ on S2

is a 1-manifold; a contradiction. Thus, we have shown that Ξ′
con ∩ int (Σ′) 	= ∅.
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Now assume that for every ξ ∈ Ξ′
con ∩ int (Σ′), λ′(ξ) = 1. Then, there exists

δ > 0 such that Bδ(ξ) ⊂ int (Ξ′
con ∩ Σ′) and λ′(ζ) = 1 for any ζ ∈ Bδ(ξ). For any

θ ∈ S2 such that ρL(θ)θ ∈ ξ⊥ + tξ, we have

ρK(η) = ρL(θ) ∀η ∈ Λ′
ξ(θ) := {φζ,1(θ) : ρL(θ)θ ∈ ζ⊥ + tζ, ζ ∈ Bδ(ξ)}

and

ρL(ω) = ρK(η) = ρL(θ)

∀ω ∈ Δ′
ξ(θ) := {φϑ,1(η) : η ∈ Λ′

ξ(θ), ρL(θ)η ∈ ϑ⊥ + tϑ, ϑ ∈ Bδ(ξ)}.
Following the same argument as above, we have that Δ′

ξ(θ) is a set with non-

empty interior on S2; hence, it is not a 1-manifold. If ∇S2ρL(θ) = 0, for every θ
such that ρL(θ)θ ∈ L ∩ (ξ⊥ + tξ), then L ∩ (ξ⊥ + tξ) is a disk; a contradiction.

If ∇S2ρL(θ) 	= 0 for some point θ satisfying ρL(θ)θ ∈ L ∩ (ξ⊥ + tξ), then by
the implicit function theorem, the level set of ρL passing through θ on S2 is a
1-manifold; a contradiction.

Finally, consider the case when there exists ξ ∈ int (Ξ′
con∩Σ′) such that λ′(ξ) 	= 1.

Then, there exists a neighbourhood Bε(ξ) ∈ Ξ′
con ∩ int (Σ′) and θ ∈ Θ′

τ ∈ L′(L) for
some τ , such that (ξ⊥ + tξ)+ ∩Θ′

τ = θ. On the other hand, by Lemma 2.11

Λ′(θ) = {φζ,−λ′(ζ)(η) : ζ ∈ Bε(ξ) and ρL(θ)η ∈ ζ⊥ + tζ},
where η = φξ,λ′(ξ)(θ), is a curve such that {ρL(θ)u : u ∈ Λ′(θ)}∩int ((ξ⊥+tξ)+) 	= ∅
and ρL(ϑ) = ρL(θ) for any ϑ ∈ Λ′(θ); however, Λ′(θ) ∪Θ′

τ ⊂ L′(L) must be a level
set of ρL in L′(L) that is not a 1-manifold; a contradiction.

Therefore, {θ ∈ S2 : ρK(θ) 	= ρL(θ)} = ∅. �

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Vladyslav Yaskin, for
fruitful discussions. Thanks are also due to the referee for the critical reading of
the manuscript.

References

[1] M. Angeles Alfonseca, Michelle Cordier, and Dmitry Ryabogin, On bodies with directly con-
gruent projections and sections, Israel J. Math. 215 (2016), no. 2, 765–799. MR3552295

[2] Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its
Applications, vol. 58, Cambridge University Press, New York, 2006. MR2251886

[3] V. Golubyatnikov, Uniqueness questions in reconstruction of multidimensional objects from
tomography type projection data, Inverse and Ill-posed problems series, Utrecht-Boston-Koln-

Tokyo, 2000.
[4] Alfred Gray, Elsa Abbena, and Simon Salamon, Modern differential geometry of curves

and surfaces with Mathematica�, 3rd ed., Studies in Advanced Mathematics, Chapman &
Hall/CRC, Boca Raton, FL, 2006. MR2253203

[5] Serge Lang, Introduction to differentiable manifolds, 2nd ed., Universitext, Springer-Verlag,
New York, 2002. MR1931083

[6] Sergii Myroshnychenko and Dmitry Ryabogin, On polytopes with congruent projections or
sections, Adv. Math. 325 (2018), 482–504. MR3742596

[7] Dmitry Ryabogin, On the continual Rubik’s cube, Adv. Math. 231 (2012), no. 6, 3429–3444.
MR2980504

[8] Dmitry Ryabogin, A lemma of Nakajima and Süss on convex bodies, Amer. Math. Monthly
122 (2015), no. 9, 890–892. MR3418213

[9] J. Sacco, Geometric tomography via conic sections, MSc Thesis, University of Alberta, 2011.
[10] Rolf Schneider, Functions on a sphere with vanishing integrals over certain subspheres, J.

Math. Anal. Appl. 26 (1969), 381–384. MR0237723

https://www.ams.org/mathscinet-getitem?mr=3552295
https://www.ams.org/mathscinet-getitem?mr=2251886
https://www.ams.org/mathscinet-getitem?mr=2253203
https://www.ams.org/mathscinet-getitem?mr=1931083
https://www.ams.org/mathscinet-getitem?mr=3742596
https://www.ams.org/mathscinet-getitem?mr=2980504
https://www.ams.org/mathscinet-getitem?mr=3418213
https://www.ams.org/mathscinet-getitem?mr=0237723


8756 N. ZHANG

School of Mathematics and Statistics, Huazhong University of Science and Tech-

nology, Wuhan 430074, Hubei, People’s Republic of China

Email address: nzhang2@ualberta.ca


	1. Introduction and main results
	2. Proofs of main results
	2.1. Congruent sections by cones. Auxiliary results
	2.2. Congruent sections by non-central planes. Auxiliary results

	Acknowledgments
	References

