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SHARP STRICHARTZ ESTIMATES

FOR WATER WAVES SYSTEMS

HUY QUANG NGUYEN

Abstract. Water waves are well-known to be dispersive at the linearization
level. Considering the fully nonlinear systems, we prove for reasonably smooth
solutions the optimal Strichartz estimates for pure gravity waves and the semi-
classical Strichartz estimates for gravity-capillary waves for both 2D and 3D
waves. Here, by optimal we mean the gains of regularity (over the Sobolev
embedding from Sobolev spaces to Hölder spaces) obtained for the linearized
systems. Our proofs combine the paradifferential reductions of Alazard-Burq-
Zuily with a dispersive estimate using a localized wave package type parametrix
of Koch-Tataru.

1. Introduction

Water waves systems govern the dynamic of an interface between a fluid domain
and the vacuum. It is well-known that these systems are dispersive; i.e., waves at
different frequencies propagate at different speeds. For approximate models of water
waves in certain regimes such as Kadomtsev-Petviashvili equations, Korteweg-de
Vries equations, Schrödinger equations, wave equations, etc., dispersive properties
have been extensively studied. For the fully nonlinear system of water waves,
dispersive properties are however less understood.

On the one hand, in the global dynamic, dispersive properties have been consid-
ered in establishing the existence of global (or almost global) solutions for small,
localized, smooth data by the works of Wu [26, 27], Germain-Masmoudi-Shatah
[12, 13], Ionescu-Pusateri [17, 18], Alazard-Delort [5], and Ifrim-Tataru [15, 16]. On
the other hand, in the local dynamic, dispersive properties and more precisely
Strichartz estimates have been exploited in proving the existence of local-in-time
solutions with rough, generic data initiated by the work of Alazard-Burq-Zuily [4]
and then followed by de Poyferré-Nguyen [10,11], and Nguyen [23]. Prior to these,
a Strichartz estimate was proved for 2D gravity-capillary waves by Christianson-
Hur-Staffilani [9]. It is worth noting that [9] allows overturning waves. Unlike the
case of semilinear Schrödinger (wave) equations, water waves systems are quasilin-
ear in nature, and thus how much regularity one can gain in Strichartz estimates
depends also on the smoothness of solutions under consideration. In other words,
in terms of dispersive analysis (for generic solutions), the nonlinear systems are not
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obviously dictated by their linearizations. In fact, the Strichartz estimates proved
in [4,11,23] are nonoptimal compared to the linearized systems. We address in this
paper the following problem:

At which level of regularity do solutions to the fully nonlinear systems of water
waves obey the same Strichartz estimates as their linearizations?

Remark first that due to the systematic use of symbolic calculus in the framework
of semi-classical analysis in [4, 11, 23] we were not able to reach sharp Strichartz
estimates by simply adapting the method there to the case of sufficiently smooth
solutions.

In this paper, we choose to work on the Zakharov-Craig-Sulem formulation of
water waves, which is recalled now.

1.1. The Zakharov-Craig-Sulem formulation of water waves. We consider
an incompressible inviscid fluid with unit density moving in a time-dependent do-
main

Ω = {(t, x, y) ∈ [0, T ]×Rd ×R : (x, y) ∈ Ωt},
where each Ωt is a domain located underneath a free surface

Σt = {(x, y) ∈ Rd ×R : y = η(t, x)}
and above a fixed bottom Γ = ∂Ωt \ Σt. We also assume that Ω satisfies

Condition (H). Each Ωt is the intersection of the half space

Ω1,t = {(x, y) ∈ Rd ×R : y < η(t, x)}
and an open connected set Ω2 containing a fixed strip around Σt; i.e., there exists
h > 0 such that for all t ∈ [0, T ],

{(x, y) ∈ Rd ×R : η(x)− h ≤ y ≤ η(t, x)} ⊂ Ω2.

Assume that the velocity field v admits a potential φ : Ω → R, i.e., v = ∇φ.
Using the Zakharov formulation, we introduce the trace of φ on the free surface

ψ(t, x) = φ(t, x, η(t, x)).

Then φ(t, x, y) is the unique variational solution of

(1.1) Δφ = 0 in Ωt, φ(t, x, η(t, x)) = ψ(t, x).

The Dirichlet-Neumann operator is then defined by

G(η)ψ =
√
1 + |∇xη|2

(∂φ
∂n

⏐⏐⏐
Σ

)
= (∂yφ)(t, x, η(t, x))−∇xη(t, x) · (∇xφ)(t, x, η(t, x)).

The gravity-capillary waves (see [20]) problem consists of solving the following sys-
tem of (η, ψ):

(1.2)

⎧⎨⎩
∂tη = G(η)ψ,

∂tψ + gη + σH(η) +
1

2
|∇xψ|2 −

1

2

(∇xη · ∇xψ +G(η)ψ)2

1 + |∇xη|2
= 0,

where σ is the surface tension coefficient and H(η) is the mean curvature of the
free surface:

H(η) = − div

(
∇η√

1 + |∇η|2

)
.
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In the regime of large wavelengths, one can discard the effect of surface tension by
taking σ = 0 in the system (1.3) to obtain the system of pure gravity water waves

(1.3)

⎧⎨⎩
∂tη = G(η)ψ,

∂tψ + gη +
1

2
|∇xψ|2 −

1

2

(∇xη · ∇xψ +G(η)ψ)2

1 + |∇xη|2
= 0.

The physical dimensions are d = 1, 2. For terminology, when d = 1 (respectively
d = 2) we call (1.2), (1.3) the 2D (respectively 3D) waves systems. It is important
to introduce the vertical and horizontal components of the trace of the velocity on
Σ, which can be expressed in terms of η and ψ:

(1.4) B = (vy)|Σ =
∇xη · ∇xψ +G(η)ψ

1 + |∇xη|2
, V = (vx)|Σ = ∇xψ −B∇xη.

We recall also that the Taylor coefficient defined by a = −∂P
∂y

⏐⏐
Σ
can be defined in

terms of η, ψ,B, V only (see section 4.2 in [3]).

1.2. Known results and main theorems.

1.2.1. Pure gravity water waves. For the system (1.3) of pure gravity water waves,
the only existent Strichartz estimate, to our knowledge, is [4], where the authors
proved Strichartz estimates for rough solutions with a gain of

(1.5) μ =
1

24
− when d = 1, μ =

1

12
− when d ≥ 2.

The starting point of this result is the symmetrization of (1.2) into a quasilinear
paradifferential equation of the following form (see Appendix A for the paradiffer-
ential calculus theory and Theorem 2.2 below for a precise reduction statement):

(1.6) (∂t + TV · ∇+ iTγ)u = f ∈ L∞
t Hs

x, s > 1 +
d

2
,

where γ is a symbol of order 1
2 .

Let us now look at the linearization of (1.3) (take g = 1 and infinite depth)
around the rest state (0, 0): {

∂tη − |Dx|ψ = 0,

∂tψ + η = 0,

which is equivalent to, after imposing u := η + i|Dx|
1
2ψ,

(1.7) ∂tu+ i|Dx|
1
2u = 0.

For this Schrödinger-type dispersive equation we can prove classically the Strichartz
estimates

(1.8) ‖u‖
LpW s− d

2
+μopt,∞ ≤ C(s, d) ‖u(0)‖Hs ,

{
μopt =

1
8 , p = 4 if d = 1,

μopt =
1
4−, p = 2 if d ≥ 2,

from which the estimates for the original unknowns η, ψ can be recovered. Our first
result states that the fully nonlinear system (1.3) enjoys Strichartz estimates with
the same gain as in (1.8) for solutions slightly smoother than the energy threshold
in [3].
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Notation 1.1. Denote

Hs = Hs+ 1
2 (Rd)×Hs+ 1

2 (Rd)×Hs(Rd)×Hs(Rd),

Ws = W r+ 1
2 ,∞(Rd)×W r+ 1

2 ,∞(Rd)×W r,∞(Rd)×W r,∞(Rd).

Theorem 1.2. Let d = 1, 2 and consider a solution (η, ψ) of (1.3) on the time
interval I = [0, T ], T < +∞, such that Ω satisfies condition (H) (see section 1.1)
and

(η, ψ,B, V ) ∈ C([0, T ];Hs).

(see [3, Theorem 1.2]). Define{
s(d) = 5

3 + d
2 , μopt(d) =

1
8 , p(d) = 4 if d = 1,

s(d) = 2 + d
2 , μopt(d) =

1
4−, p(d) = 2 if d ≥ 2.

Then for any s > s(d) we have

(η, ψ,B, V ) ∈ Lp(d)(I;Ws−d
2+μopt(d),∞).

1.2.2. Gravity-capillary waves. Let us now look at the linearization of (1.2) (with
infinite depth) around the rest state (0, 0),{

∂tη − |Dx|ψ = 0,

∂tψ −Δη = −gη,

or, equivalently, with Φ = |Dx|
1
2 η + iψ,

(1.9) ∂tΦ+ i|Dx|
3
2Φ = −igη,

for which one can easily prove the following Strichartz estimates:
(1.10)

‖Φ‖
LpW s− d

2
+μopt,∞ ≤ C(s, d)(‖Φ(0)‖Hs+g ‖η‖Hs),

{
μopt =

3
8 , p = 4 if d = 1,

μopt =
3
4−, p = 2 if d ≥ 2.

Note that (1.10) is valid for all g ≥ 0. Turning to the nonlinear case, in high
dimensions (d ≥ 2) the geometry can be nontrivial, and hence trapping can occur.
As a consequence, natural dispersive estimates expected are the ones constructed

at small time-scales which are tailored to the frequencies. The propagator e−it|Dx|
3
2

has the speed of propagation of order |ξ| 12 . Hence, for time |t| < |ξ|− 1
2 , we do not

expect to encounter any problems due to the global geometry. This leads to the
so-called semi-classical Strichartz estimate. This terminology appeared in [8] for a
study of the Schrödinger equations on compact manifolds. To realize this heuristic
argument, one multiplies both sides of (1.9) by h

3
2 with h = 2−j , j ∈ N, and

makes a change of temporal variables t = h
1
2 σ, u(σ, x) = Φ(h

1
2 σ, x) to derive the

semi-classical equation

(1.11) h∂σu+ |hDx|
3
2 u = 0.

Then the optimal dispersive estimates for (1.11) imply the semi-classical Strichartz
estimates for (1.9) with a loss of 1

8 derivatives when d = 1 and 1
4 derivatives when

d ≥ 2.
In [1] it was proved that if

(1.12) (η, ψ) ∈ C([0, T ];Hs+ 1
2 ×Hs), s > 2 +

d

2
,
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then system (1.2) can be symmetrized into a single equation analogous to its lin-
earization (1.9):

(1.13) (∂t + TV · ∇+ iTγ)u = f ∈ L∞Hs, γ ∈ Γ
3
2 ,

from which the local wellposedness was obtain at this regularity level (1.12). Using
this reduction, Alazard-Burq-Zuily [2] established, for 2D waves, the semi-classical
Strichartz estimate at the threshold (1.12) and the classical (optimal) Strichartz
estimate when s > 5+ 1

2 . We remark that in [1], the semi-classical gain is achieved
due to the fact that after a para change of variables (see [2, Proposition 3.4]), the
highest order term Tγu in (1.13) is converted into the simple Fourier multiplier

|Dx|
3
2 . Unfortunately, such a reduction cannot work for the 3D case, and hence the

semi-classical Strichartz estimate in this case is much more difficult to establish,
especially at the regularity level (1.12). In the present paper, we aim to investigate
the semi-classical Strichartz estimate for (1.2) when d ≥ 2, assuming that the
solution is slightly smoother than (1.12) (1/2 derivatives). Our second result reads
as follows.

Theorem 1.3. Let d ≥ 2 and 0 < T < ∞. Consider a solution (η, ψ) of (1.2) on
the time interval I = [0, T ] such that Ω satisfies condition (H) and

(η, ψ) ∈ C([0, T ];Hs+ 1
2 (Rd)×Hs(Rd)).

If s > 5
2 + d

2 , then for every ε > 0, there holds

(η, ψ) ∈ L2([0, T ];W s+1−ε−d
2 ,∞(Rd)×W s+ 1

2−ε− d
2 ,∞(Rd)).

Remark 1.4. Our proof of Theorem 1.3 works equally for the 2D waves (d = 1)

when (η, ψ) ∈ C([0, T ];Hs+ 1
2 (R) × Hs(R)) with s > 5

2 + 1
2 . On the other hand,

using the paracomposition reduction of Proposition 3.4 in [2] we can indeed improve
the preceding regularity to s > 2 + 1

2 , which is the same as Theorem 1.1 in [2].

Remark 1.5. Theorem 1.3 still holds for capillary waves, i.e., (σ, g) = (1, 0), because
the reduction in Theorem 2.1 below is still valid for capillary waves, and the gravity
term gη appearing in (1.2) contributes to a lower order term.

1.2.3. On the proof of the main results. In [4,11] the authors worked completely in
the semi-classical formalism and proved dispersive estimates using the approxima-
tion WKB method. This allowed the authors to prove Strichartz estimates with
nontrivial gains even for very rough backgrounds. However, we emphasize that
with this method, we were not able to reach the classical or semi-classical level as
in Theorems 1.2 and 1.3. The dispersive estimates for principally normal pseudo-
differential operators in [19] require more regularity (C2) of the symbols to control
the Hamiltonian flow and apply the FBI transform technique. This allows us to
obtain sharp dispersive estimates when the characteristic set of the symbol has
maximal nonvanishing principal curvatures.

For the proof of our main results, we shall combine the paradifferential reduction
in the works of Alazard-Burq-Zuily with the phase transform method in the work
[19] of Koch-Tataru. Notice that the latter works effectively for operators of order 1
after renormalizing. For gravity-capillary waves (see (1.13)) the dispersive term has
order 3

2 , and thus the semi-classical time-scale brings it to the one of order 1 and
hence leads to the semi-classical Strichartz estimate in Theorem 1.3. For the pure
gravity waves (1.6), one observes that the dispersive term iTγ has order 1

2 , which
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is lower than that of the transport term TV · ∇. Here, we follow [4], suppressing
this transport term by straightening the vector field ∂t + TV · ∇ and then making
another change of spatial variables to convert it to an operator of order 1. However,
the new symbol then is not in the standard form p(x, ξ) to apply phase transforms,
and other technical issues appear. Thus, the proof of Theorem 1.2 requires much
more care.

2. Preliminaries

2.1. Symmetrization of system (1.3). We first recall the symmetrization of sys-
tem (1.3) to a single quasilinear equation, performed in [1]. This reduction requires
the following symbols:

• Symbols of the Dirichlet-Neumann operator

λ(1) :=
√
(1 + |∇η|2)|ξ|2 − (∇η · ξ)2,

λ(0) :=
1 + |∇η|2
2λ(1)

{
div(α(1)∇η) + i∇ξλ

(1) · ∇xα
(1)
}
, α(1) :=

λ(1) + i∇η · ξ
1 + |∇η|2 .

• Symbol of the mean-curvature operator:

�(2) := (1 + |∇η|2)− 1
2

(
|ξ|2 − (∇η · ξ)2

1 + |∇η|2

)
.

• Symbols using for symmetrization

q :=
(
1 + (∇xη)

2
)− 1

2 , p =
(
1 + (∇xη)

2
)− 5

4 |ξ| 12 + p(−
1
2 ),

where p(−
1
2 ) := F (∇xη, ξ)∂

α
x η, with |α| = 2 and F ∈ C∞(Rd×Rd \{0};C)

homogeneous of order − 1
2 in ξ.

• Symbols in the symmetrized equation:

γ :=
√
l(2)λ(1) =

(
|ξ|2 (1 + |∇η|2)− (∇η · ξ)2

1 + |∇η|2

) 3
4

,

ω := − i

2
(∂ξ · ∂x)

√
l(2)λ(1), ω1 :=

√
l(2)

λ(1)


λ(0)

2
.

Define the good unknown U := ψ − TBη. The following result was proved in [1].

Theorem 2.1 ([1, Corollary 4.9]). Let s > 2+ d
2 and let (η, ψ) ∈ C0([0, T ];Hs+ 1

2 ×
Hs) be a solution to (1.2) such that Ω satisfies condition (H). The complex-valued
function u := Tpη + iTqU then solves the paradifferential equation

(2.1) ∂tu+ TV · ∇u+ iTγ+ω+ω1
u = f,

where there exists a nondecreasing function F : R+ × R+ → R+ independent of
(η, ψ) such that

(2.2) ‖f‖L∞([0,T ];Hs) ≤ F
(
‖(η, ψ)‖

L∞([0,T ];Hs+1
2 ×Hs)

)
.
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2.2. Symmetrization of system (1.2). Define first the principle symbol of the
Dirichlet-Neumann operator

λ =
((

1 + |∇η|2
)
|ξ|2 −
(
ξ · ∇η
)2) 1

2

.

Next, set ζ = ∇η and introduce

Us := 〈Dx〉s V + Tζ〈Dx〉s B, ζs := 〈Dx〉s ζ.

Theorem 2.2 ([3, Proposition 4.10]). Let s > 1 + d
2 and let

(η, ψ) ∈ C0([0, T ];Hs+ 1
2 ×Hs)

be a solution to (1.3) such that condition (H) is fulfilled and the velocity trace is

(B, V ) ∈ C0([0, T ];Hs+ 1
2 ×Hs),

and there exists c0 > 0 such that a(t, x) ≥ c0 for all (t, x) ∈ [0, T ] ×Rd. Then the
complex-valued function

u := 〈Dx〉−s (Us − iT√
a/λ

ζs)

solves the paradifferential equation

(2.3) ∂tu+ TV · ∇u+ iTγu = f,

where γ =
√
aλ and

‖a− g‖
L∞([0,T ];Hs− 1

2 )
+ ‖f‖L∞([0,T ];Hs) ≤ F

(
‖(η, ψ)‖

Hs+1
2
, ‖(V,B)‖Hs

)
.

Remark 2.3. The change of variables (η, ψ) �→ u in Theorem 2.1 and (η, ψ,B, V ) �→
u in Theorem 2.2 are essentially “invertible” in the sense that one can recover
Sobolev estimates and Hölder estimates for (η, ψ,B, V ) from those for u by virtue
of the symbolic calculus for paradifferential operators contained in Theorem A.5.

2.3. Para- and pseudo-differential operators. Since the paradifferential set-
ting is not suitable for proving dispersive estimates, we shall change it into the
pseudo-differential setting, whose standard definitions are recalled here.

Definition 2.4.
(1) For any m ∈ R, 0 ≤ δ1, δ2, ρ ≤ 1, we denote by Sm

ρ,δ1,δ2
the class of all

symbols a(x, y, ξ) : (Rd)3 → C satisfying∣∣∣∂α
x ∂

β
y ∂

γ
ξ a(x, y, ξ)

∣∣∣ ≤ Cα,β,γ(1 + |ξ|)m+δ1|α|+δ2|β|−ρ|γ|.

The corresponding pseudo-differential operator is defined by

Op(a)u(x) =

∫
Rd

ei(x−y)ξa(x, y, ξ)u(y)dydξ.

When a : (Rd)2 → C we consider it as a symbol in Sm
ρ,δ1,0

that does not depend on
y and rename Sm

ρ,δ1,0
≡ Sm

ρ,δ1
.

(2) For any symbol a(x, ξ) ∈ Sm
ρ,δ the Weyl quantization Opw(a) ≡ aw(x,Dx) is

defined by Opw(a)u(x) = Op(b)u(x) with b(x, y, ξ) := a(x+y
2 , ξ) ∈ Sm

ρ,δ,δ.

We shall later need to transform the operators Op(a) to Opw(a). This is done
by means of the following result, which can be easily deduced from [25, Proposition
0.3.A].
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Proposition 2.5. For any symbol a ∈ Sm
ρ,δ with m ∈ R, 0 ≤ δ < ρ ≤ 1, there

exists a symbol b ∈ Sm
ρ,δ such that Opw(a) = Op(b). Moreover, we have the following

asymptotic expansion in the sense of symbolic calculus:

b(x, ξ) ∼
∑
|α|≥0

(−i)|α|

α!2|α|
∂α
x ∂

α
ξ a(x, ξ).

Remark that for all α ∈ Nd, ∂α
x ∂

α
ξ a(x, ξ) ∈ S

m−(ρ−δ)|α|
ρ,δ .

Now, let a ∈ Γm
r , r > 0, be a paradifferential symbol (see Definition A.3) and

define

(2.4) ∀j ∈ Z, ∀δ > 0, Sjδ(a)(x, ξ) = ψ(2−jδDx)a(x, ξ),

the spatial regularization of the symbol a, where ψ is the Littlewood-Paley function
defined in (A.1). We first prove a Bernstein’s type inequality for Sjδ(a).

Lemma 2.6. If a ∈ Γm
ρ , then for all α, β ∈ Nd, |α| ≥ ρ, there exists a constant

Cα,β such that for all (x, ξ) ∈ R2d,

|∂α
x ∂

β
ξ Sjδ(a)(x, ξ)| ≤ Cα,β2

jδ(|α|−ρ)‖∂β
ξ a(·, ξ)‖W ρ,∞(Rd).

Proof. If |α| = ρ the estimate is obvious by writing ∂α
x ∂

β
ξ Sjδ(a) as a convolution of

∂α
x ∂

β
ξ a with a kernel. Consider now the case |α| > ρ. Recall the dyadic partition

of unity (A.2): 1 =
∑∞

k=0Δk where each Δk is spectrally supported in the annulus
{2k−1 ≤ |ξ| ≤ 2k+1}. Using this partition, we can write

∂α
x ∂

β
ξ Sjδ(a)(x, ξ) =

+∞∑
k=0

Δk∂
α
xψ(2

−jδDx)∂
β
ξ a(x, ξ) :=

+∞∑
k=0

uk.

If 1
22

k ≥ 2jδ, then Δkψ(2
−jδDx) = 0. Therefore

∂α
x ∂

β
ξ Sjδ(a)(x, ξ) =

2+[jδ]∑
k=0

uk.

Now, introducing ϕ1(ξ) ∈ C∞
c (Rd), supported in { 1

3 ≤ ξ| ≤ 3} one has

uk = 2k|α|ϕ1(2
−kDx)ψ(2

−jδDx)Δk∂
β
ξ a(x, ξ).

Consequently,

‖uk‖L∞(Rd) ≤ 2k|α|‖ΔkD
β
ξ a(·, ξ)‖L∞(Rd) ≤ C2k|α|2−kρ‖∂β

ξ a(·, ξ)‖W ρ,∞(Rd).

It follows that

‖∂α
x ∂

β
ξ Sjδ(a)(x, ξ)‖L∞(Rd) ≤ C

2+[jδ]∑
k=0

2k(|α|−ρ)‖Dβ
ξ a(·, ξ)‖W ρ,∞(Rd).

Finally, since |α| − ρ > 0 we deduce that

‖∂α
x ∂

β
ξ Sjδ(a)(x, ξ)‖L∞(Rd) ≤ C2jδ(|α|−ρ)‖∂β

ξ a(·, ξ)‖W ρ,∞(Rd),

which concludes the proof. �

We show in the next proposition that after localizing a distribution u in fre-
quency, one can go from paradifferential operators to pseudo-differential operators
when acting on u.
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Proposition 2.7. For every j ∈ N∗, define

Rju := TaΔju− Sj−3(a)(x,Dx)Δju.

Then Rju is spectrally supported (see Definition A.2) in an annulus {c−1
1 2j−1 ≤

|ξ| ≤ c12
j+1}, and for every μ ∈ R we have

‖Rju‖Hμ−m+r(Rd) ≤ CMm
r (a) ‖u‖Hμ(Rd) ,

where the constants c1, C > 0, are independent of a, u, j.

Proof. Recall first the definition (A.5) of Tau, where we have � = 1 on the support
of ϕj (see Definition A.1) for any j ≥ 1, so

Rju = TaΔju− Sj−3(a)(x,Dx)�(Dx)Δju.

In the following proof we shall use the presentation of Métivier [22] on pseudo-
differential and paradifferential operators. To be compatible with [22] we also abuse
notation: by Γm

r we denote the class of symbols a satisfying the growth condition
(A.3) for any ξ ∈ Rd and by Mm

0 the semi-norm (A.4) where the supremum is
taken over ξ ∈ Rd.

(1) By definition (A.5) it holds that Tav = Op(σa�)v, where Op(σa�) denotes
the classical pseudo-differential operator with symbol

σa(x, ξ)�(ξ) = χ(Dx, ξ)a(x, ξ)�(ξ).

Hence Rju = Op(aj)u with

aj(x, ξ) = σa(x, ξ)�(ξ)ϕj(ξ)− Sj−3(a)(x, ξ)�(ξ)ϕj(ξ).

Now, we write

aj =
(
σa�ϕj − a�ϕj

)
+
(
a�ϕj − Sj−3(a)�ϕj

)
= a1j + a2j .

Applying Proposition 5.8(ii) in [22] gives a1j ∈ Γm−r
0 and (remark that (ϕj)j is

bounded in Γ0
r)

Mm−r
0 (a1j) ≤ CMm

r (a�ϕj) ≤ CMm
r (aρ).

On the other hand, if we denote b = a�ϕ, then a2j(x, ξ) = b(x, ξ)−ψj−3(Dx, ξ)b(x, ξ).

Taking into account the fact that suppϕj ⊂ B(0, C2j) we may estimate

|a2j(x, ξ)| ≤
∑

k≥j−2

|Δjb(x, ξ)| ≤
∑

k≥j−2

2−kr ‖b(·, ξ)‖W r,∞

≤ C2−jr ‖b(·, ξ)‖W r,∞ = C2−jr|ϕj(ξ)| ‖a(·, ξ)�(ξ)‖W r,∞

≤ C(1 + |ξ|)m−rMm
r (a�), ∀ξ ∈ Rd.

Estimates for |∂α
ξ a

2
j | can be derived along the same lines. Thus, a2j ∈ Γm−r

0 and

hence aj ∈ Γm−r
0 ; moreover

Mm−r
0 (aj) ≤ CMm

r (a�).

(2) Property (A.7) implies in particular that

Fx(σa)(η, ξ) = 0 for |η| ≥ ε2(1 + |ξ|).
Here, we denote by Fx the Fourier transform with respect to the spatial variable x.

On the other hand, by definition of the smoothing operator,

FxSj−3(a)(x, ξ)�(ξ)ϕj(ξ) = ψ(2−(j−3)η)Fxa(η, ξ)�(ξ)ϕ(2
−jξ),
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which is vanishing if |η| ≥ 1
2 (1+ |ξ|). Indeed, if either |ξ| > 2j+1 or |ξ| ≤ 2j−1, then

ϕ(2−jξ) = 0. Considering 2j−1 < |ξ| ≤ 2j+1 then |η| ≥ 1
2 (1 + |ξ|) > 2j−2 and thus

ψ(2−(j−3)η) = 0. We have proved the existence of 0 < ε < 1 such that

(2.5) Fxaj(η, ξ) = 0 for |η| ≥ ε(1 + |ξ|).

(3) By the spectral property (2.5) one can use Bernstein’s inequalities (see [22,
Corollary 4.1.7]) to prove that aj is a pseudo-differential symbol in the class Sm−r

1,1 .

Then, applying [22, Theorem 4.3.5] we conclude that

‖Rju‖Hμ−m+r(Rd) = ‖Op(aj)u‖Hμ−m+r(Rd) ≤ CMm−r
0 (aj) ‖u‖Hμ(Rd) .

Finally, the Fourier transform of Rju reads

F(Rju)(ξ) =

∫
Rd

Fx(aj)(ξ − η, η)û(η)dη.

Using the spectral localization property (2.5) and the fact that Fx(aj)(ξ − η, η)
contains the factor ϕj(η) we conclude that the spectrum of Rju is contained in an
annulus of size 2j as claimed. �

2.4. A result of Koch-Tataru. In this section, we recall the dispersive estimates
proved by Koch-Tataru [19] based on the technique of FBI transform on phase
space. These estimates were established for the following class of operators.

Definition 2.8. For λ > 1, m ∈ R, and k = 0, 1, . . . consider classes of symbols
p : T ∗Rd → C, denoted by λmSk

λ, which satisfy

(2.6)

∣∣∣∂α
x ∂

β
ξ p(x, ξ)

∣∣∣ ≤ cα,βλ
m−|β| |α| ≤ k,∣∣∣∂α

x ∂
β
ξ p(x, ξ)

∣∣∣ ≤ cα,βλ
m+ |α|−k

2 −|β| |α| ≥ k.

The mentioned result reads as follows.

Proposition 2.9 ([19, Proposition 4.7]). Let p(σ, x, ξ) ∈ λS2
λ be a real symbol

in (x, ξ), uniformly in σ ∈ [0, 1]. Assume that p satisfies the following curvature
condition:

(A) For each (σ, x, ξ) ∈ [0, 1] ×Rd × Cλ, | det ∂2
ξp| � λ−d, where Cλ = {c−1λ ≤

|ξ| ≤ cλ}.
Denote by S(σ, σ0) the flow maps of Dσ + Opw(p). Then for any χ ∈ S0

λ such
that for all x ∈ Rd, χ(x, ·) compactly supported in C′

λ = {c′−1λ ≤ |ξ| ≤ c′λ} with
1 < c′ < c, we have

‖S(σ, σ0)(χ(x,Dx)v0)‖L∞ � λ
d
2 |σ − σ0|

−d
2 ‖v0‖L1 ∀σ, σ0 ∈ [0, 1].

Remark 2.10. In the statement of [19, Proposition 4.7], condition (A) is stated for
(x, ξ) ∈ Bλ := {|x| ≤ 1, |ξ| ≤ λ}, and correspondingly, χ is supported in B. In
addition, the usual quantization χ(x,Dx) is replaced by the Weyl quantization χw.
However, one can easily inspect its proof to see that if (A) is fulfilled globally in x,
then we have the above variant.
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2.5. Remarks on the symbolic calculus for λmSk
λ. Let a ∈ λmSk

m, k ≥ 0, and
suppose that on the support of a(x, ξ), λ−1|ξ| ∼ 1. It follows by definition of λmSk

λ

that a ∈ Sm
1, 12

. Observe however that when k ≥ 1, a behaves better than a general

symbol in Sm
1, 12

. In this section we present some enhanced properties of λmSk
λ with

k ≥ 1.
First, we are concerned with the relation between the Weyl quantization and the

usual quantization. According to Proposition 2.5, for a ∈ Sm
1, 12

there holds

Opw(a)−Op(a) = Op(r), r ∈ S
m− 1

2

1, 12
.

In fact, we have

Opw(a) = Op(ã), ã(x, y, ξ) = a(
x+ y

2
, ξ)

and

ã(x, y, ξ) = a(x+
y − x

2
, ξ) = a(x, ξ) +

1

2

∫ 1

0

(∂xa)(x+ s
y − x

2
, ξ)ds (y − x).

It follows that

(2.7) Opw(a)−Op(a) = Op(r),

with

(2.8) r(x, y, ξ) = − i

2

∫ 1

0

(∂ξ∂xa)(x+ s
y − x

2
, ξ)ds.

We now show that in fact r is of order m− 1 as in the case a ∈ Sm
1,0.

Lemma 2.11. Let a ∈ λmSk
λ, k ≥ 1, satisfy λ−1|ξ| ∼ 1 on the support of a(x, ξ).

Then we have the relation (2.7)-(2.8) with r ∈ Sm−1
1, 12 ,

1
2

.

Proof. For all α, β, ν ∈ Nd we have

|∂α
x ∂

β
y ∂

ν
ξ r(x, y, ξ)| ≤

{
Cα,β,νλ

m−|ν|−1�λ−1|ξ|∼1(ξ) if |α|+ |β|+ 1 ≤ k,

Cα,β,νλ
m+ |α|+1+|β|−k

2 −|ν|−1�λ−1|ξ|∼1(ξ) if |α|+ |β|+ 1 ≥ k.

Since k ≥ 1,
|α|+ 1 + |β| − k

2
≤ |α|+ |β|

2
.

Consequently, it holds that

|∂α
x ∂

β
y ∂

ν
ξ r(x, y, ξ)| ≤ Cα,β,ν(1 + |ξ|)(m−1)+ |α|+|β|

2 −|ν| ∀α, β, ν ∈ Nd.

In other words, r ∈ Sm−1
1, 12 ,

1
2

. �

For the composition rule we prove the following lemma.

Lemma 2.12. Let p ∈ Sn
1,0 and a ∈ λmSk

λ, k ≥ 1, satisfy λ−1|ξ| ∼ 1 on the support
of a(x, ξ). Then we have

Op(p) ◦Op(a)−Op(pa) = Op(r)

with r ∈ Sn+m−1
1, 12

.
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Proof. According to [25, Proposition 0.3.C], one has Op(p) ◦Op(a) = Op(b) with

b ∼
∑
|α|≥0

(−i)|α|

α!
∂α
ξ p(x, ξ) · ∂α

x a(x, ξ)

in the sense of symbol asymptotic. The general term in the above expansion belongs

to S
n+m− |α|

2

1, 12
; hence

(b− pa)−
∑
|α|=1

(−i)|α|

α!
∂α
ξ p(x, ξ) · ∂α

x a(x, ξ) ∈ Sn+m−1
1, 12

.

It then suffices to show that cα := ∂α
ξ p(x, ξ) · ∂α

x a(x, ξ) ∈ Sn+m−1
1, 12

for |α| = 1 or,

again, ∂α
x a(x, ξ) ∈ Sm

1, 12
for |α| = 1. The latter follows along the same lines as in

the proof of Lemma 2.11. �

In the same spirit we have the following result on adjoint operators, taking into
account [25, Proposition 0.3.B].

Lemma 2.13. Let a ∈ λmSk
λ, k ≥ 1, satisfy λ−1|ξ| ∼ 1 on the support of a(x, ξ).

Then we have

Op∗(a)−Op(ā) = Op(r),

with r ∈ Sm−1
1, 12

and ā the complex conjugate of a.

Notation 2.14. Throughout this article, we write A � B if there exists a constant
C > 0 such that A ≤ CB, where C may depend on the coefficients of the equations
under consideration. If the constant C involved has some explicit dependency, say,
on some quantity μ, we emphasize this by denoting A �μ B.

3. Proof of Theorem 1.3

Throughout this section, the dimension d is greater than or equal to 2, and
s > 5

2 + d
2 is a Sobolev index.

3.1. Littlewood-Paley reduction. We shall prove Strichartz estimates for solu-
tion u to (2.1), which is a quasilinear paradifferential equation with time-dependent
coefficients. Remark that since

(η, ψ) ∈ C0([0, T ];Hs+ 1
2 ×Hs),

we have

V ∈ C0([0, T ];Hs−1), γ(·, ξ) ∈ C0([0, T ];Hs− 1
2 ).

The first step in our proof consists of localizing (2.1) at frequency 2j using the
Littlewood-Paley decomposition (cf. Definition A.1(1)). For every j ≥ 0, the
dyadic piece Δju solves

(3.1) (∂t + TV · ∇+ iTγ+ω)Δju = F 1
j ,

with

(3.2) F 1
j := Δjf − iΔj(Tω1

u) + i [Tγ ,Δj ]u+ i [Tω,Δj ]u+ [TV ,Δj ] · ∇u.
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Remark that for each j ≥ 1, Δju is spectrally supported in {2j−1 ≤ |ξ| ≤ 2j+1}.
In view of Proposition 2.7 and the facts that γ ∈ Γ

3
2
3
2

, ω ∈ Γ
1
2
1
2

, and V · ξ ∈ Γ1
1,

equation (3.1) can be rewritten as

(3.3) (∂t + Sj−3(V ) · ∇+ iSj−3(γ)(x,Dx))Δju = F 2
j ,

with

(3.4) F 2
j := F 1

j +Rj ;

Rju is spectrally supported in an annulus {c−1
1 2j−1 ≤ |ξ| ≤ c12

j+1} and satisfies

(3.5) ‖Rj‖Hs � ‖u‖Hs .

Next, we use (2.4) to smooth out the symbols by δ = 1
2 derivative.

Now, let 1
2 < c1 < c2 < c3, Ck := {(2ck)−1 ≤ |ξ| ≤ 2ck}, k = 1, 2, 3, and

ϕ̃ ∈ C∞, supp ϕ̃ ⊂ C3, ϕ̃ ≡ 1 on C2.

Then, equation (3.3) is equivalent to

(3.6) LjΔju :=
(
∂t + S(j−3) 1

2
(V ) · ∇ϕ̃(2−jDx)

+iS(j−3) 1
2
(γ)(x,Dx)ϕ̃(2

−jDx) + iS(j−3) 1
2
(ω)(x,Dx)ϕ̃(2

−jDx)
)
Δju = Fj ,

with

(3.7) Fj = F 2
j + F 3

j := F 2
j + i
(
S(j−3) 1

2
γ(x,Dx)− Sj−3γ(x,Dx)

)
Δju

+ i
(
S(j−3) 1

2
ω(x,Dx)− Sj−3ω(x,Dx)

)
Δju+

(
S(j−3) 1

2
(V )− Sj−3(V )

)
· ∇Δju.

3.2. Semi-classical time-scale. Observe that the highest order operator on the
left-hand side of (3.3) has order 3

2 , which does not match the result in [19] that we
want to apply. Therefore, we reduce it to an operator of order 1 by multiplying
both sides by h

1
2 , where

h := 2−j ,

then making a change of temporal variables t = h
1
2 σ. For this purpose, let us reset

the symbols in this new time-scale:

Γh(σ, x, ξ) = h
1
2S(j−3) 1

2
(γ)(h

1
2 σ, x, ξ)ϕ̃(hξ),(3.8)

Ωh(σ, x, ξ) = h
1
2S(j−3) 1

2
(ω)(h

1
2 σ, x, ξ)ϕ̃(hξ),(3.9)

Vh(σ, x, ξ) = h
1
2S(j−3) 1

2
(V )(h

1
2 σ, x) · ξϕ̃(hξ).(3.10)

Next, set

wh(σ, x) = Δju(h
1
2 σ, x), Gh(σ, x) = −ih

1
2Fj(h

1
2 σ, x).

Equation (3.6) is then equivalent to

(3.11) (Dt + Γh(σ, x,Dx) + Ωh(σ, x,Dx) + Vh(σ, x,Dx))wh(σ, x) = Gh(σ, x).

In what follows, we shall prove the classical Strichartz estimate for (3.11), from
which the semi-classical Strichartz estimate for (3.6) follows.
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We now replace the pseudo-differential operators in (3.11) by the corresponding
Weyl operators using Proposition 2.5. Denote

(3.12)
R1

h :=
(
Op(Γh) + Op(Ωh)

)
−Opw(Γh),

R2
h := Op(Vh)−Opw(Vh).

Let us note that ω = − i
2∂ξ · ∂xγ. With this notation (3.11) becomes

(3.13)
Lhwh(σ, x) := (Dt + Γw

h (σ, x,Dx) + V w
h (σ, x,Dx))wh(σ, x)

= Gh(σ, x)−R1
h(σ, x)wh(σ, x)−R2

h(σ, x)wh(σ, x).

3.3. Classical Strichartz estimate for (3.11) (⇔ (3.13)). In this step, we show
that Proposition 2.9 can be applied to the real symbol

ph := Γh + Vh.

Set λ = h−1 = 2j . First, the characteristic set of γ has maximal (d) nonvanishing
principal curvatures.

Proposition 3.1. Let C be a fixed annulus in Rd.
(1) There exists an absolute constant Cd > 0 such that with c0 =

Cd(1 + ‖∇η‖L∞(I×Rd)) we have

(3.14) sup
(t,x,ξ)∈I×Rd×C

∣∣det ∂2
ξγ(t, x, ξ)

∣∣ ≥ c0.

(2) For any 0 < δ ≤ 1 there exists j0 ∈ N large enough such that

(3.15) sup
(t,x,ξ)∈I×Rd×C

∣∣det ∂2
ξSjδ(γ)(t, x, ξ)

∣∣ ≥ c0.

Proof. (1) For the proof of part (1), we refer to [4, Corollary 4.7]. Part (2) is a
consequence of part (1), because Sjδ(γ) is a small perturbation of γ when j is large
enough (see for instance [4, Proposition 4.5]). �
Lemma 3.2.

(1) We have Γh ∈ λS2
λ, Vh ∈ λ

3
4S2

λ, and hence ph ∈ λS2
λ.

(2) There exists h0 > 0 small enough such that for 0 < h ≤ h0, the symbol ph
satisfies condition (A) in Proposition 2.9 with Cλ = λC2.

Proof. (1) Since γ ∈ W 2,∞ and V ∈ W
3
2 ,∞ in x, assertion (1) follows easily from

Lemma 2.6 and the fact that on the support of ϕ̃(hξ) we have |ξ| ∼ λ.
(2) Let ξ ∈ λC2. We have ϕ̃(hξ) = 1; hence ∂2

ξVh vanishes. On the other hand,

noticing that γ is homogeneous of order 3
2 in ξ, we have

∂2
ξΓh(σ, x, ξ) = ∂2

ξ

(
h

1
2S(j−3) 1

2
(γ)(h

1
2σ, x, ξ)

)
= h
(
∂2
ξS(j−3) 1

2
(γ)
)
(h

1
2σ, x, hξ).

Therefore, in view of (3.15), condition (A) is verified. �
Calling Sh(σ, σ0) the flow map of the evolution operator Lh = Dσ + Opw(ph)

(see (3.13)), we have the following.

Lemma 3.3. If v0h is spectrally supported in λC1 =
{
(2c1)

−1h−1 ≤ |ξ| ≤ 2c1h
−1
}
,

then
(i) ∥∥Sh(σ, σ0)v

0
h

∥∥
L∞(Rd)

� h− d
2 |σ − σ0|−

d
2
∥∥v0h∥∥L1(Rd)

for all σ, σ0 ∈ [0, 1], and 0 < h ≤ h0;
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(ii) with q > 2 and 2
q = d

2 − d
r ,∥∥Sh(·, 0)v0h
∥∥
Lq([0,1],Lr)

� h
−1
q

∥∥v0h∥∥L2 .

Proof. In view of Lemma 3.2, (i) is a direct consequence of Proposition 2.9 if one
chooses

χ(ξ) ∈ C∞, suppχ ⊂ {(2c1,2)−1λ ≤ |ξ| ≤ 2c1,2λ}, c1 < c1,2 < c2, χ ≡ 1 in C1.

For (ii) we remark that since Opw(Γh) and Opw(Vh) are self-adjoint, Sh(σ, σ0) is
isometric in L2. This combined with the dispersive estimate in (i) and a standard
TT ∗ argument (see the abstract semi-classical Strichartz estimate in [28, Theorem
10.7]) yields (ii). �
Lemma 3.4. For any μ ∈ R, the operators Sh(σ, τ ) are bounded on Hμ(Rd)
uniformly in τ, σ ∈ I.

Proof. The proof proceeds using standard energy estimates. However, more care is
required since we are not working on standard operators of the class Sm

1,0. Without
loss of generality we assume that τ = 0 and let f(σ, x) be a solution of

(∂σ + iOpw(ph)) f(σ, x) = 0, f(0, x) = f0(x).

We first apply Lemma 2.11 to obtain

Opw(ph) = Op(ph) + Op(rh), rh ∈ S0
1, 12 ,

1
2
.

Then f solves the problem

(∂σ + iOp(ph) + iOp(rh)) f(σ, x) = 0, f(0, x) = f0(x).

Let μ ∈ R and set fμ := 〈Dx〉μf . Then
d

dσ
‖fμ‖2L2 = −i〈(Op(ph)−Op∗(ph)) f

μ, fμ〉+ 2
〈F, fμ〉,

where
F := −i [〈Dx,Op(ph)〉μ] f − i〈Dx〉μ Op(rh)f.

According to Lemma 2.12, [〈Dx〉μ,Op(ph)] ∈ Sμ

1, 12
. This combined with the fact

that rh ∈ S0
1, 12 ,

1
2

gives

‖F‖L2 � ‖f‖Hμ .

On the other hand, since ph is real, Lemma 2.13 implies that

Op(ph)−Op∗(ph) ∈ S0
1, 12

.

Consequently, ∥∥(Op(p0h)−Op∗(p0h)
)
fμ
∥∥
L2 � ‖fμ‖L2 .

Finally, we conclude using Gronwall’s inequality that

‖f(σ)‖Hμ � ‖f0‖Hμ ∀σ ∈ I.

�
Proposition 3.5. If wh is a solution to (3.11) with wh(0) = w0

h and

supp ŵh, supp ŵ0
h ⊂ λC1,

then we have for any ε > 0,

‖wh‖
L2+ε([0,1],W s− d

2
+ 1

2
−ε,∞)

�ε

∥∥w0
h

∥∥
Hs + ‖Gh‖L1([0,1],Hs) + h

1
2 ‖wh‖L1([0,1],Hs) .
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Proof. To simplify notation, we write Sh(σ, τ ) = S(σ, τ ). If wh is a solution to
(3.11), it is also a solution to (3.13). By Duhamel’s formula,

wh(σ, 0) = Sh(σ, 0)w
0
h +

∫ σ

0

S(σ, τ )[Gh(τ )]dτ −
∫ σ

0

S(σ, τ )[(R1
hwh +R2

hwh)(τ )]dτ.

Let us call (I) and (II), respectively, the first and the second integral on the right-

hand side. Choosing c1 large enough such that supp Ĝh ⊂ λC1, Lemma 3.3(ii)
gives∥∥Sh(σ, 0)w

0
h

∥∥
Lq([0,1],Lr)

� h− 1
q

∥∥w0
h

∥∥
L2 , ‖(I)‖Lq([0,1],Lr) � h− 1

q ‖Gh‖L1([0,1];L2) .

For (II) we set

bαh =
(−i)|α|

α!2|α|
∂α
x ∂

α
ξ Γh(σ, x, ξ) |α| ≥ 2; cαh =

(−i)|α|

α!2|α|
∂α
x ∂

α
ξ Vh(σ, x, ξ) |α| ≥ 1.

Since γ is W 2,∞ in x, by applying Lemma 2.6 we have for |α| ≥ 2,∥∥∂μ
x∂

ν
ξ (∂

α
x ∂

α
ξ Γh)
∥∥ � (1 + |ξ|)1+

|μ|+|α|−2
2 −(|ν|+|α|) � (1 + |ξ|)−

|α|
2 + |μ|

2 −|ν|,

hence bαh ∈ S
− |α|

2

1, 12
. Similarly, as V ∈ W 1,∞ it holds that cαh ∈ S

− |α|
2

1, 12
for |α| ≥ 1 .

Taking q > 2 and 2
q = d

2 − d
r , we claim that uniformly in τ ∈ [0, 1],

(3.16)
∥∥S(σ, τ )[(R1

hwh)(τ )]
∥∥
Lq

σLr
x

� h− 1
q+1 ‖wh(τ )‖L2

x
.

Indeed, by the asymptotic expansion in Proposition 2.5,

R1
h =

N−1∑
|α|=2

Op(bαh) + Op(rNh ), rNh ∈ S
1−N

2

1, 12
∀N ≥ 3.

If we choose c1 large enough, then each Op(bαhwh)(τ ) is spectrally supported in λC1

(and so is wh) so that Lemma 3.3(ii) can be applied to get

(3.17) ‖S(σ, τ )[Op(bαh)wh(τ )]‖Lq
σLr

x
≤ h− 1

q ‖Op(bαh)wh‖L2
x

� h− 1
q+

|α|
2 ‖wh(τ )‖L2

x
.

For Op(rNh ) we use the Sobolev embedding H
d
2 ↪→ Lr, ∀r ∈ [2,+∞), to estimate

‖S(σ, τ )[Op(rNh )wh(τ )]‖Lr
x

� ‖S(σ, τ )[Op(rNh )wh(τ )]‖
H

d
2
x

.

On the other hand, we know from Lemma 3.4 that S(σ, τ ) is bounded from Hμ to
Hμ uniformly in σ, τ ∈ [0, 1] for all μ ∈ R. Hence

(3.18) ‖S(σ, τ )[Op(rNh )wh(τ )]‖Lr
x

� h−1+N
2 − d

2 ‖wh(τ )‖L2
x
.

Choosing N = N(d) large enough, we obtain the claim (3.16) from (3.17) and
(3.18).

By the same argument, we have uniformly in τ ∈ [0, 1],∥∥S(σ, τ )[(R2
hwh)(τ )]

∥∥
Lq

σLr
x

� h− 1
q+

1
2 ‖wh(τ )‖L2

x
.

Putting together the above estimates leads to

‖wh‖LqLr ≤ h− 1
q

(∥∥w0
h

∥∥
L2 + ‖Gh‖L1([0,1];L2) + h

1
2 ‖wh‖L1L2

)
.
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Taking q = 2 + ε, then h
−1
q ≤ h

−1
2 . We multiply both sides by h−s+ 1

2 and use the
frequency localization of wh, w0

h to get

‖wh‖
L2+εW s− 1

2
,r �ε

∥∥w0
h

∥∥
Hs + ‖Gh‖L1Hs + h

1
2 ‖wh‖L1Hs .

We write s− 1
2 = (d2 − 1 + ε) + (s− d

2 + 1
2 − ε) where d

2 − 1 + ε > d
2 − 1 + ε

2+ε = d
r .

The Sobolev embedding W s− 1
2 ,r ↪→ W s− d

2+
1
2−ε,∞ then concludes the proof. �

3.4. Semi-classical Strichartz estimate for (3.6). From the preceding proposi-
tion, one deduces the corresponding Strichartz estimate for uj ≡ Δju as a solution

of (3.6) via the change of temporal variables wh(σ, x) = uj(h
1
2 σ, x) as follows.

Corollary 3.6. If uj is a solution to (3.6), i.e., Ljuj = Fj with data u0
j and

uj , u0
j , Fj spectrally supported in 2jC1, then uj satisfies

‖uj‖
L2+ε(Ij ;W

s− d
2
+ 3

4
−ε,∞)

�ε

∥∥u0
j

∥∥
Hs + ‖Fj‖L1(Ij ;Hs) + ‖uj‖L1(Ij ;Hs) ,

with Ij = [0, 2−
j
2 ] = [0, h

1
2 ] and ε > 0.

The next step consists of gluing the estimates on small time-scales above to derive
an estimate on the whole interval of time [0, T ] at the price of losing 1

4 derivatives.

Corollary 3.7. If uj is a solution to Ljuj = Fj with data u0
j and uj , u0

j , Fj

spectrally supported in C1
h, then uj satisfies, with I = [0, T ] and ε > 0,

‖uj‖
L2(I;W s− d

2
+ 1

2
−ε,∞)

�ε ‖Fj‖
L2(I;Hs− 1

2 )
+ ‖uj‖L∞(I,Hs) .

Proof. Let χ ∈ C∞
0 (0, 2) be equal to one on [ 12 ,

3
2 ]. For 0 ≤ k ≤ [Th− 1

2 ]− 2 define

Ij,k = [kh
1
2 , (k + 2)h

1
2 ), χj,k(t) = χ

( t− kh
1
2

h
1
2

)
, uj,k = χj,k(t)uj .

Then each uj,k is a solution to

Ljuj,k = χj,kFj + h− 1
2χ′
( t− kh

1
2

h
1
2

)
uj , uj,k(t = kh

1
2 ) = 0,

from which we deduce by virtue of Corollary 3.6 that

‖uj,k‖
L2(Ij,k;W

s− d
2
+ 3

4
−ε,∞)

�ε ‖Fj‖L1(Ij,k;Hs) + h− 1
2 ‖uj‖L1(Ij,k;Hs) .

Noticing that χj,k = 1 on
(
(k + 1

2 )h
1
2 , (k + 3

2 )h
1
2

)
we get

‖uj,k‖
L2(((k+ 1

2 )h
1
2 ,(k+ 3

2 )h
1
2 );W s− d

2
+ 3

4
−ε,∞)

�ε ‖Fj‖L1(Ij,k;Hs) + h− 1
2 ‖uj‖L1(Ij,k;Hs)

�εh
1
4 ‖Fj‖L2(Ij,k;Hs)+h− 1

4 ‖uj‖L2(Ij,k;Hs) .

Squaring both sides of the above inequality and then summing in 0 ≤ k ≤ [Th− 1
2 ]−

2 =: Nh yields, with Jj := [ 12h
1
2 , (Nh − 1

2 )h
1
2 ],

‖uj‖
L2(Jj ;W

s− d
2
+ 3

4
−ε,∞)

�ε h
1
4 ‖Fj‖L2(I;Hs) + h− 1

4 ‖uj‖L2(I;Hs)

or, equivalently after multiplying by h
1
4 ,

(3.19) ‖uj‖
L2(Jj ;W

s− d
2
+ 1

2
−ε,∞)

�ε ‖Fj‖
L2(I;Hs− 1

2 )
+ ‖uj‖L2(I;Hs) .
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Next, we note that Corollary 3.6 still holds with Ij replaced by any interval of

length ch
1
2 . Applying this to J = [0, 1

2h
1
2 ] gives

‖uj‖
L2+ε(J;W s− d

2
+ 3

4
−ε,∞)

�ε

∥∥u0
j

∥∥
Hs + ‖Fj‖L1(J;Hs) + ‖uj‖L1(J;Hs)

�ε

∥∥u0
j

∥∥
Hs + h

1
4 ‖Fj‖L2(J;Hs) + h

1
4 ‖uj‖L2(J;Hs) .

After multiplying both sides by h
1
4 , this implies that

(3.20)
‖uj‖

L2+ε(J;W s− d
2
+ 1

2
−ε,∞)

�ε

∥∥u0
j

∥∥
Hs− 1

4
+ ‖Fj‖

L2(J;Hs− 1
2 )

+ ‖uj‖
L2(J;Hs− 1

2 )

�ε ‖Fj‖
L2(J;Hs− 1

2 )
+ ‖uj‖

L∞(J;Hs− 1
4 )

.

Similarly, on J = [(Nh − 1
2 )h

1
2 , T ] we also have

(3.21) ‖uj‖
L2+ε(J;W s− d

2
+ 1

2
−ε,∞)

�ε ‖Fj‖
L2(J;Hs− 1

2 )
+ ‖uj‖

L∞(J;Hs− 1
4 )

.

A combination of (3.19), (3.20), and (3.21) leads to

‖uj‖
L2(I;W s− d

2
+ 1

2
−ε,∞)

�ε ‖Fj‖
L2(I;Hs− 1

2 )
+ ‖uj‖L∞(I,Hs) .

�

In the final step, we shall glue the estimates for Δju over different frequency
regimes to obtain an estimate for u, from which the corresponding estimates for
(η, ψ) follow.

3.5. Concluding the proof of Theorem 1.3. If u is a solution to (2.1) with
u(0) = u0, then by (3.6), the dyadic piece Δju is a solution to LjΔju = Fj with
Fj given by (3.7). Applying Corollary 3.7 one gets

(3.22) ‖Δju‖
L2(I;W s− d

2
+ 1

2
−ε,∞)

�ε ‖Fj‖
L2(I;Hs− 1

2 )
+ ‖Δju‖L∞(I;Hs) .

Recall that Fj = F 1
j +Rj+F 3

j , where ‖Rj‖Hs ≤ ‖u‖Hs (see (3.5)) and F k
j are given

by (3.2) and (3.7). Using the symbolic calculus Theorem A.5 one obtains without
any difficulty that ∥∥F 1

j

∥∥
L2Hs− 1

2
� ‖u‖L2(I;Hs) + ‖f‖

L2(I;Hs− 1
2 )

.

For F 3
j we consider for example

Aj := S(j−3) 1
2
γ(x,Dx)Δju− Sj−3γ(x,Dx)Δju

=
(
S(j−3) 1

2
γ(x,Dx)Δju− γ(x,Dx)Δju

)
+ (γ(x,Dx)Δju− Sj−3γ(x,Dx)Δju)

= A1
j +A2

j .

More generally, let a ∈ Γm
ρ be homogeneous of degree m in ξ. Using the spherical

harmonic decomposition we can assume that a(x, ξ) = b(x)c(ξ) with b ∈ W ρ,∞ and
c homogeneous of order m. Then Sδj(a)(x, ξ) = Sδj(b)(x)c(ξ) and
(3.23)

‖(Sδj(a)(x,Dx)− a(x,Dx))v‖L2 ≤ ‖Sδj(b)− b‖L∞ ‖c(Dx)v‖L2 � 2−δjρ ‖v‖Hm .

Since γ ∈ Γ
3
2
2 is homogeneous of order 3

2 in ξ, the Hs− 1
2 -norm of A1

j can be bounded
by

2j(s−
1
2 )−

1
2 j2 ‖Δju‖

H
3
2

� ‖u‖Hs ,
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while ∥∥A2
j

∥∥
Hs− 1

2
� 2j(s−

1
2 )−2j ‖Δju‖

H
3
2

� ‖u‖Hs−1 .

The other terms in F 3
j can be treated in the same fashion, and we obtain∥∥F 3

j

∥∥
L2Hs− 1

2
� ‖u‖L2(I;Hs) + ‖f‖L2(I;Hs) .

The estimate (3.22) then implies that

‖Δju‖
L2(I;W s− d

2
+ 1

2
−ε,∞)

�ε ‖u‖L∞(I;Hs) .

Gluing these estimates together leads to

(3.24)

‖u‖
L2(I;W s− d

2
+ 1

2
−2ε,∞)

≤
∑
j

2−jε ‖Δju‖
L2(I;W s− d

2
+ 1

2
−ε,∞)

�ε ‖u‖L∞(I;Hs) + ‖f‖
L2(I;Hs− 1

2 )
.

Recall from Theorem 2.1 that u = Tpη + iTq(ψ − TBη). From (3.24) one can use
the symbolic calculus for paradifferential operators in Theorem A.5 to recover the
corresponding estimates for (η, ψ) (cf. [1], [2]):

‖η‖
L2(I;W s− d

2
+1−2ε,∞)

+ ‖ψ‖
L2(I;W s− d

2
+ 1

2
−2ε,∞)

� Fε

(
‖(η, ψ)‖

L∞([0,T ];Hs+1
2 ×Hs)

)
,

where F : R+ → R+. The proof of Theorem 1.3 is complete.

4. Proof of Theorem 1.2

We consider three parameters δ ∈ (0, 1), r0 ∈ [0, 1], r1 ∈ [0, 1
2 ] to be determined

later. Assume furthermore that

(4.1) V ∈ L∞(I;W 1+r0,∞(Rd)), γ(·, ξ) ∈ L∞(I;W
1
2+r1,∞(Rd)).

4.1. Littlewood-Paley reduction. For every j ≥ 0, the dyadic piece Δju solves

(4.2) (∂t + TV · ∇+ iTγ)Δju = Fj

with

(4.3) F 1
j := Δjf + i [Tγ ,Δj ]u+ [TV ,Δj ] · ∇u.

In view of Proposition 2.7, one has

(4.4) (∂t + Sj−3(V ) · ∇+ iSj−3(γ)(x,Dx))Δju = F 2
j

with

(4.5) F 2
j := F 1

j +Rj ,

Rju being spectrally supported in an annulus {c−1
1 2j−1 ≤ |ξ| ≤ c12

j+1} and

(4.6) ‖Rj‖Hs � ‖u‖Hs .

Now, let 1
2 < c1 < · · · < c5, Ck := {(2ck)−1 ≤ |ξ| ≤ 2ck}, k = 1, 5, and

ϕ̃ ∈ C∞, supp ϕ̃ ⊂ C5, ϕ̃ ≡ 1 on C4.

Equation (4.4) is then equivalent to

(4.7)
(
∂t + S(j−3)δ(V ) · ∇+ iS(j−3)δ(γ)(x,Dx)ϕ̃(2

−jDx)
)
Δju = Fj
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with

(4.8) Fj = F 2
j + F 3

j := F 2
j + i
(
S(j−3)δγ(x,Dx)− Sj−3γ(x,Dx)

)
Δju

+
(
S(j−3)δ(V )− Sj−3(V )

)
· ∇Δju.

Let us define the operator corresponding to the homogeneous problem of (4.7):

(4.9) Lj := ∂t + S(j−3)δ(V ) · ∇+ iS(j−3)δ(γ)(x,Dx)ϕ̃(2
−jDx).

To prove a Strichartz estimate for Δju as a solution to (4.7), we shall first establish
a “pseudo-dispersive estimate” for Lj . Set

h := 2−j , h̃ := h
1
2 .

4.2. Straightening the vector field. Following [4] we straighten the vector field
∂t + S(j−3)δ · ∇ by considering the system

(4.10)

{
Ẋk(s) = S(j−3)δ(Vk)(s, X(s)), 1 ≤ k ≤ d, X = (X1, . . . , Xd),

Xk(0) = xk.

Since V ∈ L∞([0, T ];L∞
x ), system (4.10) has a unique solution on I = [0, T ], which

shall be denoted for simplicity by X(s, x;h) or even X(s, x). Estimates on the flow
s �→ X(s, ·) are given in the next proposition.

Proposition 4.1. For fixed (s, h) the map x �→ X(s, x;h) belongs to C∞(Rd,Rd).
Moreover, for all (s, h) ∈ I × (0, 1] we have

‖(∂xX)(s, ·;h)− Id‖L∞(Rd) ≤ F
(
‖V ‖L∞([0,T ];W 1,∞

)
|s|,(4.11)

‖(∂α
xX)(s, ·;h)‖L∞(Rd) ≤ Fα

(
‖V ‖L∞([0,T ];W 1+r0,∞

)
h−δ(|α|−(1+r0))|s|, |α| ≥ 2,

(4.12)

where F , Fα : R+ → R+.

Proof. Here we follow the proof of [4, Proposition 4.10]. The improvement is due
to the estimate

(4.13)
∥∥∂β

xSjδ(V )(s)
∥∥
L∞(Rd)

≤ Cβh
−δ(|β|−1−r0) ‖V (s)‖W 1+r0,∞ ∀|β| ≥ 2,

which follows from Lemma 2.6.
(i) To prove (4.11) we differentiate with respect to xl to obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

˙∂Xk

∂xl
(s) =

d∑
q=1

Sjδ

(∂Vk

∂xq

)
(s, X(s))

∂Xq

∂xl
(s),

∂Xk

∂xl
(0) = δkl,

from which we deduce that

(4.14)
∂Xk

∂xl
(s) = δkl +

∫ s

0

d∑
q=1

Sjδ

(∂Vk

∂xq

)
(σ,X(σ))

∂Xq

∂xl
(σ) dσ.

Setting |∇X| =
∑d

k,l=1 |∂Xk

∂xl
| we obtain from (4.14)

|∇X(s)| ≤ Cd +

∫ s

0

|∇V (σ,X(σ))| |∇X(σ)| dσ.
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Gronwall’s inequality implies that

(4.15) |∇X(s)| ≤ F(‖V ‖L∞(I;W 1,∞)) ∀s ∈ I.

Coming back to (4.14) and using (4.15) lead to∣∣∣∣∂X∂x (s)− Id

∣∣∣∣ ≤ F(‖V ‖L∞(I;W 1,∞))

∫ s

0

‖∇V (σ, ·)‖L∞(Rd) dσ ≤ F1(‖V ‖W 1,∞)|s|.

(ii) We shall prove (4.12) for |α| = 2 first and then prove by induction on |α|
that the estimates

‖(∂α
xX)(s; ·, h)‖L∞(Rd) ≤ Fα(‖V ‖W 1+r0,∞)h−δ(|α|−1−r0)

for 2 ≤ |α| ≤ k imply (4.12) for |α| = k + 1.
Differentiating |α| times (|α| ≥ 2) system (4.10) and using Faà-di-Bruno’s for-

mula we obtain

(4.16)
d

ds

(
∂α
xX
)
(s) = Sjδ(∇V )(s, X(s))∂α

xX + (1),

where the term (1) is a finite linear combination of terms of the form

Aβ(s, x) = ∂β
x

(
Sjδ(V )

)
(s, X(s))

q∏
i=1

(
∂Li
x X(s)

)Ki ,

where

2 ≤ |β| ≤ |α|, |Li|, |Ki| ≥ 1,

q∑
i=1

|Ki|Li = α,

q∑
i=1

Ki = β.

(1) When |α| = 2, we have

Aβ(s, x) = ∂β
x

(
Sjδ(V )

)
(s, X(s))

q∏
i=1

(
∂Li
x X(s)

)Ki

with |Li| = 1 and |β| = |α| = 2. It then follows from (i) that

|
q∏

i=1

(
∂Li
x X(s)

)Ki | ≤ F(‖V ‖L∞(I;W 1,∞)) ∀s ∈ I.

On the other hand, by (4.13)∥∥∂β
xSjδ(V )(s)

∥∥
L∞(Rd)

≤ Ch−δ(|α|−1−r0) ‖V (s)‖W 1+r0,∞ .

Consequently

‖(1)(s)‖L∞(Rd) ≤ h−δ(|α|−1−r0)F(‖V ‖L∞(I;W 1+r0,∞)) ∀s ∈ I.

This together with (4.16) and Gronwall’s inequality yields (4.12) for |α| = 2.
(2) Assuming now that (4.12) holds for 2 ≤ |α| ≤ k, we shall prove it for

|α| = k + 1. Indeed, from (4.11) and the induction hypothesis it holds for any
1 ≤ |ν| ≤ k that

‖(∂ν
xX)(s, ·;h)‖L∞(Rd) ≤α F

(
‖V ‖L∞([0,T ];W 1+r0,∞)

)
h−δ(|ν|−1)|s|.
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Because |β| ≥ 2 and |Li| ≥ 1, using (4.13) and the preceding estimate we have

‖Aβ(s, ·)‖L∞(Rd) ≤
∥∥∂β

x

(
Sjδ(V )

)
(s, ·)
∥∥
L∞(Rd)

q∏
i=1

∥∥∥∂Li
x X(s, ·)

∥∥∥|Ki|

L∞(Rd)

≤ Ch−δ(|β|−1−r0)‖V (s, ·)‖W 1+r0,∞h−δ
∑q

i=1 |Ki|(|Li|−1)F(‖V ‖L∞(I;W 1+r0,∞))

≤ h−δ(|α|−1−r0)F(‖V ‖L∞(I;W 1+r0,∞)).

As before, we conclude by (4.16) and Gronwall’s inequality. �
In view of (4.11) the mapping x �→ X(s, x;h) is a C∞-diffeomorphism for any

s ∈ [0, T0] if T0 is small enough. This is not a restriction, for one can iterate the final
estimate over time intervals of length T0 which depends only on ‖V ‖L∞([0,T ];W 1,∞).

Now, in (4.9) we first make the change of spatial variables

(4.17) vh(t, y) = uj(t,X(t, y;h))

so that

(4.18)
(
∂t + S(j−3)δ(V ) · ∇

)
uj(t,X(t, y;h)) = ∂tvh(t, y).

Denoting

(4.19) qh(x, ξ) := S(j−3)δ(γ)(x, ξ)ϕ̃(hξ),

let us compute this dispersive term after the above change of variables. To this
end, set

(4.20)
H(y, y′) =

∫ 1

0

∂X

∂x
(λy + (1− λ)y′) dλ, M(y, y′) =

(
tH(y, y′)

)−1
,

M0(y) =
(
t
(∂X
∂x

(y)
))−1

, J(y, y′) =
∣∣∣ det(∂X

∂x
(y′)
)∣∣∣| detM(y, y′)|.

Then,

(Op(qh)uj) ◦X(y) = (2π)−d

∫∫
ei(X(y)−x′)·ηqh(X(y), η)uj(x

′)dx′dη.

Now, we make two changes of variables x′ = X(y′) and η = M(y, y′)ζ to obtain

(Op(qh)uj) ◦X(y) = (2π)−d

∫∫
ei(y−y′)·ζqh

(
X(y),M(y, y′)ζ

)
J(y, y′)vh(y

′) dy′ dζ.

Observe that the above pseudo-differential operator is still of order 1
2 . To change

its order to 1, we make another change of spatial variables:

(4.21) y = h
1
2 z = h̃z, y′ = h̃z′, wh(z

′) = vh(h̃z
′), ξ = h̃ζ,

so that

(4.22) (Op(qh)uj) ◦X(y) = (2π)−d

∫∫
ei(z−z′)·ξqh

(
X(h̃z),M

(
h̃z, h̃z′

)
h̃−1ξ
)

× J
(
h̃z, h̃z′

)
wh(z

′) dz′ dξ.

Summing up, with
(4.23)

ph(z, z
′, ξ) := qh

(
X(h̃z),M

(
h̃z, h̃z′

)
h̃−1ξ
)
J
(
h̃z, h̃z′

)
, wh(t, z) = uj(t,X(t, h̃z))

it holds that
(Op(qh)uj) ◦X(h̃z) = Op(ph)wh(z),
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which, combined with (4.18) and (4.9), yields
(4.24)

(Ljuj) (t,X(t, h̃z)) = (∂t + iOp(ph))wh(t, z), wh(t, z) = uj(t,X(t, h̃z)).

We have transformed the operator Lj of order 1
2 into the right-hand side of (4.24),

which has order 1.

4.3. Approximation of the symbol ph. Observe that ph depends on (z, z′, ξ),
which is not in the standard form to use the phase space transform in [19]. We
will approximate ph by some symbol depending only on (z, ξ). A general result can
be found in [25, Proposition 0.3A]. However, we will inspect more carefully the
smoothness of ph to obtain better estimates for the error. To do this, we write as
in (2.7)-(2.8)

ph(z, z
′, ξ) = ph(z, z, ξ) +

∫ 1

0

∂z′ph(z, z + s(z′ − z), ξ)ds(z′ − z)

:= p0h(z, ξ) + r0h(z, z
′, ξ)(z′ − z),

where

(4.25) p0h(z, ξ) = ph(z, z, ξ) = qh
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
.

On the other hand,

Op(r0h.(z
′ − z))w(z) = −iOp(rh)w(z)

with

rh(z, z
′, ξ) =

∫ 1

0

∂ξ∂z′ph(z, z + s(z′ − z), ξ)ds.

To simplify notation, we denote [z, z′]s = z + s(z′ − z) so that

(4.26) rh(z, z
′, ξ) =

∫ 1

0

∂ξ∂z′qh
(
X(h̃z),M

(
h̃z, h̃[z, z′]s

)
h̃−1ξ
)
J
(
h̃z, h̃[z, z′]s

)
ds.

Thus, Op(ph) = Op(p0h)− iOp(rh).

4.3.1. The symbol p0h. First, Proposition 4.1 implies directly estimates for M and
J .

Lemma 4.2. It holds for all (α, α′) ∈ (Nd)2 that

|∂α
z ∂

α′

z′ M(z, z′)|+ |∂α
z ∂

α′

z′ J(z, z′)| �α,α′

{
1 if |α|+ |α′| = 0,

h̃−2δ(|α|+|α′|−r0) if |α|+ |α′| ≥ 1.

On the other hand, by Bernstein’s inequalities (see Lemma 2.6) and the fact that

|ξ| ∼ h̃−2 on the support of ϕ̃(hξ), we can estimate the derivatives of qh, given by
(4.19), as follows.

Lemma 4.3. We have for all (α, β) ∈ (Nd)2,∣∣∣∂α
x ∂

β
ξ qh(x, ξ)

∣∣∣ �α,β

{
h̃−1+2|β|, if |α| = 0,

h̃−1−2δ(|α|−( 1
2+r1))+2|β|, if |α| ≥ 1.

We now study the regularity of the symbol p0h.
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Proposition 4.4. Choosing r0, r1 satisfying

(4.27) 2δ(1− r0) ≤ 1, 2δ(2− r0) ≤ 2, 2δ(
1

2
− r1) ≤ 1, 2δ(

3

2
− r1) ≤ 2,

the symbol p0h then verifies
(i) for all (α, β) ∈ Nd, |α| ≤ 2,

(4.28)
∣∣∣∂α

z ∂
β
ξ p

0
h(z, ξ)
∣∣∣ �α,β h̃−1+|β|�h̃|ξ|∼1(ξ),

(ii) for all (α, β) ∈ Nd, |α| ≥ 3,

(4.29)
∣∣∣∂α

z ∂
β
ξ p

0
h(z, ξ)
∣∣∣ �α,β h̃−1−(2δ−1)(|α|−2)+|β|�h̃|ξ|∼1(ξ).

Proof. To simplify notation, we denote in this proof q ≡ qh.
(i) (4.28) is trivial when α = 0. The argument below is independent of the

dimension, so let us further simplify the notation by writing as if d = 1. For
|α| = 1, we compute

(4.30)
∂α
z p

0(z, ξ) = qx
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃X ′(h̃z)

+ qξ
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
(h̃−1ξ)h̃M ′

0(h̃z).

For |α| = 2, we have

(4.31)
∂α
z p

0
h(z, ξ) = qxx(· · · )h̃2(X ′)2 + 2qxξ(· · · )X ′M ′

0h̃ξ + qξξ(· · · )(M ′
0)

2ξ2

+ qx(· · · )h̃2X ′′ + qξ(· · · )(h̃ξ)M ′′
0 .

Remark that h̃|ξ| ∼ 1 on the support of p0(z, ξ). Using Proposition 4.1 and Lemmas
4.2 and 4.3 one deduces easily that∣∣∂α

z p
0(z, ξ)
∣∣ �α h̃−1−2δ( 1

2−r1)+1 + h̃−1+2−1−2δ(1−r0), |α| = 1,∣∣∂α
z p

0(z, ξ)
∣∣ �α h̃−1−2δ( 3

2−r1)+2 + h̃−1−2δ( 1
2−r1)+2−2δ(1−r0) + h̃−1+4−4δ(1−r0)−2

+ h̃−1−2δ( 1
2−r1)+2−2δ(1−r0) + h̃−1+2−2δ(2−r0), |α| = 2.

Under conditions (4.27), we get∣∣∂α
z p

0(z, ξ)
∣∣ �α h̃−1�h̃|ξ|∼1(ξ), |α| ≤ 2.

To obtain (i) it remains to estimate ∂β
ξ (∂

α
z p

h
0) for |α| ≤ 2 and β ∈ Nd. From the

explicit expressions (4.30), (4.31) of ∂α
z p

0
h, we see that there are two possibilities

when differentiating once in ξ. One possibility is that the derivative falls down to

q. This makes appear the factor M0(h̃z)h̃
−1 while we gain h̃2 when differentiating

q in ξ (by Lemma 4.3); we thus gain h̃. Another possibility is that the derivative

falls down to ξν , ν = 1, 2, which results in νξν−1. Since ξ ∼ h̃−1 on the support of

p0h one deduces that ξν−1 ∼ ξν h̃, which means that we still gain h̃. Therefore, in

both cases we gain h̃ when differentiating once in ξ, and thus (4.28) follows.
(ii) As just explained above, it suffices to prove (4.29) with β = 0. From the

formula (4.31), the proof of (4.29) reduces to showing for |α| ≥ 0 that

|∂α
z Aj(z, ξ, h)| �α,β h̃−1−(2δ−1)|α|�h̃|ξ|∼1(ξ), j = 1, 5,
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = qxξ
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃−1,

A2 = qxx
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃2,

A3 = qξξ
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃−4,

A4 = qx
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃,

A5 = qξ
(
X(h̃z),M0(h̃z)h̃

−1ξ
)
h̃−2,

and

|∂α
z Bj(z, h)| �α,β h̃−(2δ−1)|α|, j = 1, 4,

with ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B1 = X ′(h̃z),

B2 = h̃M ′
0(h̃z),

B3 = h̃X ′′(h̃z),

B4 = h̃2M ′′(h̃z).

(1) Bj . By Lemma 4.11,

|∂α
z B1| = |∂α

z X
′(h̃z)| = h̃|α||(∂α+1

x X)(h̃z)| � h̃|α|−2δ|α| � h̃−1−(2δ−1)|α|.

On the other hand, (4.12) and the condition 2δ(1− r0) ≤ 1 imply that

|∂α
z B3| = h̃|∂α

z X
′′(h̃z)| = h̃1+|α||(∂α+2

x X)(h̃z)| � h̃1+|α|−2δ(|α|+1−r0) � h̃−(2δ−1)|α|.

Observing that M ′
0(h̃z) is as smooth as X ′′(h̃z), the preceding estimate also holds

for B2. Regarding B4, we use Lemma 4.2 and the condition 2δ(1 − r0) ≤ 1 to
estimate

|∂α
z B4| = h̃2|∂α

z M
′′
0 (h̃z)| = h̃2+|α||(∂α+2

x M0)(h̃z)| � h̃2+|α|−2δ(|α|+1−r0)

� h̃−(2δ−1)|α|.

(2) A1. For α = 0, Lemma 4.3 gives

|A1| � h̃−1−2δ( 1
2−r1)+2−1 � h̃−1

since 2δ( 12 − r1) ≤ 1. Considering now |α| ≥ 1, using the Faà-di-Bruno formula we
see that ∂α

z A1 is a linear combination of terms of the form

C1 = h̃|α|−1
(
∂a+1
x ∂b+1

ξ q
)
(· · · )

r∏
j=1

(
(∂Lj

x X)(h̃z)
)Pj
(
(∂Lj

x M0)(h̃z)h̃
−1ξ
)Qj ,

where 1 ≤ |a|+ |b| ≤ |α|, |Lj | ≥ 1 ∀j = 1, r, and

r∑
j=1

Pj = a,
r∑

j=1

Qj = b,
r∑

j=1

(|Pj |+ |Qj |)Lj = α.

According to Lemma 4.3,

|
(
∂a+1
x ∂b+1

ξ q
)
(· · · )| � h̃−1−2δ(|a|+ 1

2−r1)+2(|b|+1).
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On the other hand, since |Lj | ≥ 1 Lemmas 4.3 and 4.2 imply that the product∏r
j=1 appearing in C1 is bounded in absolute value by h̃K with

K =

r∑
j=1

(
− 2δ(|Lj | − 1)|Pj | − 2δ(|Lj | − r0)|Qj |

)
− 2

r∑
j=1

|Qj |

= −2δ|α|+ 2δ|a|+ 2δr0|b| − 2|b|.

Therefore, |C1| � h̃L with

L = |α| − 1− 1− 2δ(|a|+ 1

2
− r1) + 2(|b|+ 1)− 2δ|α|+ 2δ|a|+ 2δr0|b| − 2|b|

≥ −1− (2δ − 1)|α|+ 1− 2δ(
1

2
− r1)

≥ −1− (2δ − 1)|α|,

where we have used again the condition 2δ( 12 − r1) ≤ 1. The proof for A1 is
complete.

(3) A2, A3, A4, A5. The estimate for these terms can be derived along the same
lines as for A3, where one needs to make use of the condition 2δ( 32 − r1) ≤ 2 for A2

and the condition 2δ( 12 − r1) ≤ 1 for A4. �

From now on, we always assume condition (4.27) for r0 and r1.

4.3.2. The symbol rh. The next lemma provides the order of rh and shows that it
decays in ξ faster than in (z, z′), which shall be important in proving our “pseudo-
dispersive estimates” in section 4.4.

Lemma 4.5. For all (α, α′, ξ) ∈ (Nd)3, we have∣∣∣∂α
z ∂

α′

z′ ∂
β
ξ rh(z, z

′, ξ)
∣∣∣ �α,α′,β h̃1−2δ(1−r0)−(2δ−1)(|α|+|α′|)+|β|�{h̃|ξ|∼1}(ξ).

Consequently, rh ∈ S
−1+2δ(1−r0)
1,(2δ−1),(2δ−1).

Proof. Recall the definition (4.26) of rh. On the support of this symbol, |ξ| ∼ h̃−1.
In this proof, all the estimates are uniform in s ∈ [0, 1]. It follows from Lemma 4.2
that

∀(α, α′) ∈ (Nd)2,
∣∣∣∂α

z ∂
α′

z′ J
(
h̃z, h̃[z, z′]s

)∣∣∣ �α,α′ h̃−(2δ−1)(|α|+|α′|).

Next, setting

q̃h(x, ξ) = S(j−3)δ(γ)(x, ξ)ϕ̃(ξ)

we see that

qh
(
X(h̃z),M

(
h̃z, h̃[z, z′]s

)
h̃−1ξ
)
= h̃−1q̃h

(
X(h̃z),M

(
h̃z, h̃[z, z′]s

)
h̃ξ
)
.

The proof then boils down to showing, for all (α, α′, β) ∈ (Nd)3, that

(4.32)
∣∣∣∂β

ξ ∂
α
z ∂

α′

z′ ∂ξ∂z′ q̃h(X(z),M(z, [z, z′]s)ξ)
∣∣∣ �α,α′,β h̃−2δ(|α|+|α′|)−2δ(1−r0).

We compute

Ξ := ∂ξ∂z′ q̃(X(z),M(z, [z, z′]s)ξ) = sq̃ξξ(· · · )Mz′ξM + sq̃ξ(· · · )Mz′ ,

which is bounded by h̃−2δ(1−r0) in view of Lemma 4.2 and the fact that |ξ| ∼ 1
on the support of q̃. For the same reason we see that taking ξ-derivatives of Ξ is
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harmless (notice that M is bounded), so we only need to prove (4.32) for |β| = 0.
Indeed, by Lemma 4.2

(4.33)
∣∣∣(∂α

z ∂
α′

z′ M
)
(·)
∣∣∣+ ∣∣∣(∂α

z ∂
α′

z′ Mz′

)
(·)
∣∣∣ � h̃−2δ(|α|+|α′|)−2δ(1−r0).

On the other hand, using the Faà-di-Bruno formula (as in the proof of Proposition
4.4) we can prove that∣∣∣∂α

z ∂
α′

z′ (∂
γ
ξ q̃)
(
X(z),M(z, [z, z′]s)ξ

)∣∣∣ � h̃−2δ(|α|+|α′|),

from which we conclude the proof. �

In view of equation (4.24) we have proved that

(4.34) (Ljuj) (t,X(t, h̃z)) =
(
∂t + iOp(p0h)

)
wh(t, z) + Op(rh)wh(t, z),

with rh ∈ S
−1+2δ(1−r0)
1,(2δ−1),(2δ−1) and wh(t, z) = uj(t,X(t, h̃z)).

4.4. A “pseudo-dispersive estimate” for Lj. In this step, we shall show that
Proposition 2.9 can be applied to the evolution operator

Lh := Dt +Opw(p0h).

Henceforth, we set

δ =
3

4
, λ = h̃−1.

Proposition 4.4 shows that p0h belongs to λS2
λ. Using Lemma 2.11 to replace Op(p0h)

in (4.34) with Opw(p0h) we have

(4.35) Opw(p0h) = Op(p0h) + Op(r′h)

with r′h ∈ S0
1, 12 ,

1
2

. On the other hand, since 2δ(1 − r0) ≤ 1, Lemma 4.5 combined

with (4.34) and (4.35) leads to the following.

Proposition 4.6. There exists a symbol r1h ∈ S0
1, 12 ,

1
2

such that

(4.36)
1

i
(Ljuj) (t,X(t, h̃z)) =

(
Dt +Opw(p0h)

)
wh(t, z) + Op(r1h)wh(t, z).

Next, we recall the following proposition, which says that the characteristic set
of p0h has d nonvanishing principal curvatures.

Proposition 4.7 ([4, Proposition 4.16]). Let C be a fixed annulus in Rd. For any
0 < δ < 1 there exist m0 > 0, h0 > 0 such that

sup
(t,x,ξ,h)∈I×Rd×(C×(0,h0])

∣∣det ∂2
ξSδj(γ)(t, x, ξ)

∣∣ ≥ m0.

Let Sj and Sh denote the propagator of Lj and Lh, respectively. We are now in
position to apply Theorem 2.9 to derive dispersive estimates for Sh.

Proposition 4.8. For any symbol χ ∈ S0
λ satisfying for all z ∈ Rd suppχ(z, ·) ⊂

λC2, we have

(4.37)
∥∥Sh(t, t0)

(
χ(z,Dz)f

)∥∥
L∞ � h̃− d

2 |t− t0|−
d
2 ‖f‖L1

for all t, t0 ∈ [0, 1], and 0 < h̃ ≤ h̃0.
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If, in addition, χ(z,Dz) : L2 → L2, then for any r ∈ [2,∞] there holds by
interpolation

(4.38)
∥∥Sh(t, t0)

(
χ(z,Dz)f

)∥∥
Lr � h̃−d( 1

2−
1
r ) |t− t0|−d( 1

2−
1
r ) ‖f‖Lr′ ,

where r′ is the conjugate exponent of r; i.e., 1
r + 1

r′ = 1.

Proof. We have seen that p0h ∈ λS2
λ. On the other hand, ϕ̃ ≡ 1 in C4. Proposition

4.7 then gives

sup
(t,x,ξ,h)∈I×Rd×C4×(0,h0]

∣∣det (∂2
ξSδj(γ)(t, x, ξ)ϕ̃(ξ)

)∣∣ � 1.

Remark that (4.11) implies |M0(y)| ≥ c0 for all y ∈ Rd (by choosing T small enough
as explained after Proposition 4.1). Consequently,

sup
(t,x,ξ,h)∈I×Rd×(λC3)×(0,h0]

∣∣det ∂2
ξp

0
h

∣∣ � λ−d

if c3 < c4 is chosen appropriately. In other words, condition (A) in Theorem 2.9 is
fulfilled with c = c3, and thus the proposition follows. �

Let ϕ1 be a smooth function verifying

suppϕ1 ⊂ {(2c2)−1 ≤ |ξ| ≤ 2c2}, ϕ1 ≡ 1 in {(2c1)−1 ≤ |ξ| ≤ 2c1}.

Lemma 4.9. For f(t, z) = g(t,X(t, h̃z)) we have

(4.39) (ϕ1(hDx)g) (t,X(t, h̃z)) = ϕ∗
h(z,Dz)f(t, z)− iOp(r2h)f(t, z),

with

ϕ∗
h(z, ξ) = ϕ1

(
M0(h̃z)h̃ξ

)
,(4.40)

r2h(z, z
′, ξ) =

∫ 1

0

∂ξ∂z′ϕ1

(
M(h̃z, h̃[z, z′]s)h̃ξ

)
J
(
h̃z, h̃[z, z′]s

)
ds.(4.41)

Moreover, for every (α, α′, ξ) ∈ (Nd)3 there hold∣∣∣∂α
z ∂

β
ξ ϕ

∗
h(z, ξ)
∣∣∣ �α,β h̃−(2δ−1)|α|+|β|1{h̃|ξ|∼1},(4.42) ∣∣∣∂α

z ∂
α′

z′ ∂
β
ξ r

2
h(z, z

′, ξ)
∣∣∣ �α,α′,β h̃2−2δ(1−r0)−(2δ−1)(|α|+|α′|)+|β|1{h̃|ξ|∼1}.(4.43)

Proof. The formulas (4.39), (4.40), and (4.41) are derived along the same lines as

in sections 4.2 and 4.3, where we performed the change of variables x = X(t, h̃z)
to derive (4.34).

(1) Proof of (4.42).
Observe first that

∂β
ξ ϕ

∗
h(z, ξ) = (∂γϕ1)

(
M0(h̃z)h̃ξ

)(
M0(h̃z)

)γ
h̃|β|

where |γ| = |β|. Next, Lemma 4.2 implies that for all α ∈ Nd,∣∣∣∂α
z (∂

γϕ1)
(
M0(h̃z)h̃ξ

)∣∣∣+ ∣∣∣∂α
z

(
M0(h̃z)

)γ∣∣∣ � h̃−(2δ−1)|α|,

and thus (4.42) follows.
(2) For (4.43) one proceeds exactly as in the proof of Lemma 4.5. �
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Corollary 4.10. If g is spectrally supported in the annulus 1
hC1, then for all r ∈

[2,∞] we have

(4.44)
∥∥∥Sh(t, t0)

(
g ◦X(t0, h̃z)

)∥∥∥
Lr

� h̃−d( 2
r′ −

1
2 ) |t− t0|−d( 1

2−
1
r ) ‖g‖Lr′

+
∥∥∥S(t, t0)Op(r2h)

(
g ◦X(t0, h̃z)

)∥∥∥
Lr

for all t, t0 ∈ [0, 1] and 0 < h̃ ≤ h̃0.

Proof. We first apply the identity (4.39) with t = t0 and notice that ϕ1(hξ) = 1 if
ξ ∈ 1

hC1 to have

g ◦X(t0, h̃z) = ϕ∗
h(z,Dz)

(
g ◦X(t0, h̃z)

)
(z)− iOp(r2h)

(
g ◦X(t0, h̃z)

)
(z).

The estimate (4.42) implies that ϕ∗
h ∈ S0

λ ∩ S0
1, 12

(λ = h̃−1), so the estimate (4.38)

applied to χ = ϕ∗
h and f(z) = g ◦X(t0, h̃z) gives for all r ∈ [2,∞],∥∥∥Sh(t, t0)

(
g ◦X(t0, h̃z)

)∥∥∥
Lr

z

� h̃−d( 1
2−

1
r ) |t− t0|−d( 1

2−
1
r )
∥∥∥g ◦X(t0, h̃z)

∥∥∥
Lr′

z

+
∥∥∥S(t, t0)Op(r2h)

(
g ◦X(t0, h̃z)

)∥∥∥
Lr

z

.

Finally, since X is Lipschitz we have∥∥∥g ◦X(t0, h̃z)
∥∥∥
Lr′

z

� h̃− d
r′ ‖g‖Lr′

z
,

from which we conclude the proof. �

To control the right-hand side of the estimate in the preceding corollary, we use
the following lemma, whose proof is identical to that of Lemma 3.4.

Lemma 4.11. For any μ ∈ R, the operators Sh(t, s), Sj(t, s) are bounded on
Hμ(Rd) uniformly in t, s ∈ I.

Henceforth, we choose ε0 > 0 arbitrarily small and

(4.45) r1 =
1

6
; r0 =

2

3
+ ε0 when d = 1, r0 = 1 when d = 2

so that

2δ(1− r0) =
1

2
− 3

2
ε0, 2δ(2− r0) = 2− 3

2
ε0 when d = 1,

2δ(1− r0) = 0, 2δ(2− r0) =
3

2
when d = 2,

and (4.27) is fulfilled.
The next proposition shows what we called “pseudo-dispersive estimates” above.

Proposition 4.12. If Ljuj(t, x) = 0 and uj(t) are spectrally supported in 1
hC1 for

all t ∈ [0, T ], then for any t0 ∈ [0, T ] and r ∈ [2,∞] we have

‖uj(t)‖Lr � h̃−d( 2
r′ −

1
2 ) |t− t0|−d( 1

2−
1
r ) ‖uj(t0)‖Lr′ + h̃− d

2 ‖uj(t0)‖L2 ,

where r = ∞ when d = 1 and r ∈ [2,∞) when d = 2.
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Proof. First, equation (4.36) implies that wh(t, z) := uj(t,X(t, h̃z)) satisfies

wh(t) = Sh(t, t0)wh(t0)−
∫ t

t0

S(t, s)
(
Oph(r

1
h)
)
wh(s)ds =: (1) + (2).

Applying Corollary 4.10 to g(x) = uj(t0, x) and then using the Sobolev embeddings

H
d
2+ε ↪→ L∞, H

d
2 ↪→ Lr ∀r ∈ [2,∞)

together with Lemma 4.11 one gets

‖(1)‖Lr � h̃−d( 2
r′ −

1
2 ) |t− t0|−d( 1

2−
1
r ) ‖uj(t0)‖Lr′ +

∥∥Op(r2h)wh(t0)
∥∥
H

d
2
+εr

,

where

εr = 0 if r ∈ [2,∞), εr =
3

2
ε0 if r = ∞.

By (4.43), r2h ∈ S
−2+2δ(1−r0)

1, 12 ,
1
2

; hence∥∥Op(r2h)wh(t0)
∥∥
H

d
2
+εr

� ‖wh(t0)‖
H

d
2
+εr−2+2δ(1−r0) .

Similarly, since r1h ∈ S
−1+2δ(1−r0)

1, 12 ,
1
2

one deduces with the aid of Lemma 4.11 that

‖(2)‖Lr �
∫ t

t0

‖wh(s)‖
H

d
2
+εr−1+2δ(1−r0) ds.

Putting together the above estimates leads to

‖wh(t)‖Lr � h̃−d( 2
r′ −

1
2 ) |t− t0|−d( 1

2−
1
r ) ‖uj(t0)‖Lr′ +

∫ t

t0

‖wh(s)‖
H

d
2
+εr−1+2δ(1−r0) ds.

When d = 1, r = ∞, d
2 + εr − 1+ 2δ(1− r0) = 0, and since X(t, ·) ∈ W 1,∞(Rd) we

have for all s ∈ [t0, t],

‖wh(s)‖
H

d
2
+εr−1+2δ(1−r0) � h̃− d

2 ‖uj(s)‖L2 .

When d = 2, r ∈ [2,∞), d
2 + εr − 1 + 2δ(1− r0) = 0, and thus

‖wh(s)‖
H

d
2
+εr−1+2δ(1−r0) � h̃− d

2 ‖uj(s)‖L2 ∀s ∈ [t0, t].

In addition, by Lemma 4.11, ‖uj(s)‖L2 � ‖uj(t0)‖L2 for all s ∈ [t0, t]. Finally,
noticing that

‖uj(t)‖Lr � h̃
1
r ‖wh(t)‖Lr � ‖wh(t)‖Lr ,

we conclude the proof. �

Remark 4.13. Strictly speaking, the preceding estimate is not a standard dispersive
estimate since its right-hand side does not decay in time. The appearance of the

nondecaying term h̃− d
2 ‖uj(t0)‖L2 is however harmless for the purpose of proving

Strichartz estimates in the next section.
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4.5. Strichartz estimates.

Proposition 4.14. Suppose that Ljuj(t, x) = 0 and uj(t), t ∈ I := [0, T ] is
spectrally supported in 1

hC1.

(i) When d = 1 we have

(4.46) ‖uj‖L4(I;L∞) � h− 3
8 ‖uj |t=0‖L2 .

(ii) When d = 2 we have with q > 2, 2
q + 2

r = 1,

(4.47) ‖uj‖Lq(I;Lr) � h
1
4−

1
r′ ‖uj |t=0‖L2 .

Consequently, for any s0 ∈ R and ε > 0,

(4.48) ‖uj‖
L2+ε(I;W s0− 3

4
−ε,∞)

� ‖uj |t=0‖Hs0
.

Proof. For the two estimates (4.46) and (4.47), using the TT ∗ argument, one needs
to show that

K :=

∫
I

S(t, s)ds : Lq′(I;Lr′) → Lq(I, Lr)

with norm bounded by hM where M = − 3
4 when d = 1 and M = 1

2 − 2
r′ when

d = 2. Moreover, since uj is spectrally supported in 1
hC1, it suffices to prove

(4.49) ‖Kf‖Lq(I,Lr) � hM ‖f‖Lq′ (I;Lr′)

for every f spectrally supported in 1
hC1.

In view of the “pseudo-dispersive estimate” in Proposition 4.12,

‖K(t)f‖Lr � (1) + (2), with

(1) = h−d( 1
r′ −

1
4 )

∫
I

|t− s|−d( 1
2−

1
r ) ‖f(s)‖Lr′ ds,

(2) = h− d
4

∫
I

‖f(s)‖L2 ds.

(i) d = 1, (q, r) = (4,∞). By the Hardy-Littlewood-Sobolev inequality, ‖(1)‖Lq
t

is bounded by the right-hand side of (4.49). On the other hand, (2) can be estimated
using Sobolev embedding as

(2) � h− d
4 h− d

2

∫
I

‖f(s)‖L1 ds � h− 3d
4 ‖f‖L1L1 ,

which concludes the proof of (4.46).
(ii) d = 2, q > 2, 2

q + 2
r = 1. Again, the Hardy-Littlewood-Sobolev inequality

yields

‖(1)‖Lq � h−d( 1
r′ −

1
4 ) ‖f‖Lq′ (I;Lr′ ) .

For (2) one uses the embedding Lr′ ↪→ L2, r′ ∈ [1, 2),

‖f(s)‖L2 � h
d
2−

d
r′ ‖f(s)‖Lr′

to get

(2) � h
d
4−

d
r′ ‖f‖L1Lr′ .

The estimate (4.47) then follows.
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Now, for any ε > 0, let q = 2 + ε; then

2

r
=

ε

ε+ 2
,

1

4
− 1

r′
= −3

4
+

ε

2(ε+ 2)
.

Multiplying both sides of (4.47) by h−s0 yields

(4.50) ‖uj‖
Lq(I;W

s0− 3
4
+ ε

2(ε+2)
,r
)
� ‖uj |t=0‖Hs0

.

Writing s0− 3
4 +

ε
2(ε+2) = a+ b, a = s0− 3

4 − ε, b = ε+ ε
2(ε+2) >

d
r we obtain (4.48)

from (4.50) and the Sobolev embedding W a+b,r(Rd) ↪→ W a,∞ with b > d
r . �

Recall from (4.1) and (4.45) that we have required that

(4.51) V ∈ L∞(I;W ρ,∞(Rd)), γ(·, ξ) ∈ L∞(I;W
2
3 ,∞(Rd)),

where ρ = 5
3 + ε0, ε0 > 0 when d = 1 and ρ = 2 when d = 2.

Theorem 4.15. Let s0 ∈ R, I = [0, T ], T ∈ (0,+∞), and u ∈ L∞(I,Hs0(Rd)) be
a solution to the problem

∂tu+ TV · ∇u+ iTγu = f, u|t=0 = u0,

where γ =
√
λa as defined in Theorem 2.2.

(1) When d = 1, if for some ε0 > 0, V ∈ L∞(I,W
5
3+ε0,∞(Rd)), and η ∈

L∞(I,W
5
3 ,∞(Rd)), then

‖u‖
L4(I;W s0− 3

8
,∞)

�
∥∥u0
∥∥
Hs0

+ ‖f‖L1(I,Hs0 ) .

(2) When d = 2, if V ∈ L∞(I,W 2,∞(Rd)) and η ∈ L∞(I,W
5
3 ,∞(Rd)), then for

every ε > 0,
‖u‖

L2+ε(I;W s0− 3
4
−ε,∞)

�ε

∥∥u0
∥∥
Hs0

+ ‖f‖L1(I,Hs0 ) .

In the above estimates, the dependence constants depend on a finite number of
semi-norms of the symbols V and γ.

Proof. If u is a solution to (2.3) with data u0, then by (4.7), the dyadic piece Δju is
a solution to LjΔju = Fj with Fj given by (4.8) spectrally supported in 1

hC1 with
c1 sufficiently large. Under the regularity assumptions of V and γ in (1) and (2),
condition (4.51) is fulfilled. Using Duhamel’s formula and applying the Strichartz
estimates in Proposition 4.14 we deduce that

(4.52) ‖Δju‖
Lq(I;W s0− d

2
+μ,∞)

�
∥∥Δju

0
∥∥
Hs0

+ ‖Fj‖L1(I;Hs0) ,

where

q = 4, μ =
1

8
when d = 1; q = 2 + ε, μ =

1

4
− ε when d = 2.

We are left with the estimate for Fj = F 1
j + Rj + F 3

j where F k
j are given by (4.3)

and (4.8). Defining

Δ̃j =
∑

|k−j|≤3

Δk,

it follows from (4.5) that

‖Rj‖Hs0
� ‖Δ̃ju‖Hs0 .

Using the symbolic calculus Theorem A.5 one obtains without any difficulty that∥∥F 1
j

∥∥
L1(I;Hs0)

� ‖Δ̃ju‖L1(I;Hs0).
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For F 3
j we use (3.23) to obtain that if

V ∈ L∞(I,W
4
3 ,∞(Rd)), η ∈ L∞(I,W

5
3 ,∞(Rd)),

then

(4.53)
∥∥F 3

j

∥∥
L1(I;Hs0)

� ‖Δju‖L1(I;Hs0) + ‖Δjf‖L1(I;Hs0) .

Finally, putting together the above estimates we conclude from (4.52) that

‖u‖
Lq(I;W s0− d

2
+μ,∞)

≤
∑
j

‖Δju‖
Lq(I;W s0− d

2
+μ,∞)

�
∥∥u0
∥∥
Hs0

+ ‖u‖L1(I;Hs0) + ‖f‖L1(I;Hs0)

�
∥∥u0
∥∥
Hs0

+ ‖f‖L1(I;Hs0) ,

where in the last inequality we have used the energy estimate

‖u‖L∞(I;Hs0) �
∥∥u0
∥∥
Hs0

+ ‖f‖L1(I;Hs0) .

The proof is complete. �

According to Remark 2.3, after having the estimate for the u-solution to (2.3)
one can use the symbolic calculus to obtain the desired estimates for the original
solution (η, ψ,B, V ) as stated in Theorem 1.2.
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Appendix A

Definition A.1.
(1) (Littlewood-Paley decomposition). Let ψ ∈ C∞

0 (Rd) be such that

(A.1) ψ(θ) = 1 for |θ| ≤ 1, ψ(θ) = 0 for |θ| > 2.

Define

ψk(θ) = κ(2−kθ) for k ∈ Z, ϕ0 = κ0, and ϕk = ψk − ψk−1 for k ≥ 1.

Given a temperate distribution u and an integer k, we introduce Sku = ψk(Dx)u,
Δku = Sku − Sk−1u for k ≥ 1, and Δ0u = S0u. Then we have the formal decom-
position

(A.2) u =
∞∑
k=0

Δku.

(2) (Hölder spaces). For k ∈ N, we denote by W k,∞(Rd) the usual Sobolev
spaces. For ρ = k+σ, k ∈ N, σ ∈ (0, 1) denote by W ρ,∞(Rd) the space of functions
whose derivatives up to order k are bounded and uniformly Hölder continuous with
exponent σ.

Definition A.2. Let u be a tempered distribution in Rd. We define the spectrum
of u to be the support of the Fourier transform of u. Then u is said to be spectrally
supported in a set A ⊂ Rd if the spectrum of u is contained in A.
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Let us review notation and results about Bony’s paradifferential calculus (cf.
[7], [22]).

Definition A.3.
(1) (Symbols). Given ρ ∈ [0,∞) and m ∈ R, Γm

ρ (Rd) denotes the space of

locally bounded functions a(x, ξ) on Rd× (Rd \ 0), which are C∞ with respect to ξ
for ξ �= 0 and such that, for all α ∈ Nd and all ξ �= 0, the function x �→ ∂α

ξ a(x, ξ)

belongs to W ρ,∞(Rd) and there exists a constant Cα such that

(A.3) ∀ |ξ| ≥ 1

2
,
∥∥∂α

ξ a(·, ξ)
∥∥
W ρ,∞(Rd)

≤ Cα(1 + |ξ|)m−|α|.

Letting a ∈ Γm
ρ (Rd), we define the semi-norm

(A.4) Mm
ρ (a) = sup

|α|≤2(d+2)+ρ

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂α
ξ a(·, ξ)

∥∥∥
W ρ,∞(Rd)

.

(2) (Paradifferential operators). Given a symbol a, we define the paradifferential
operator Ta by

(A.5) T̂au(ξ) = (2π)−d

∫
χ(ξ − η, η)â(ξ − η, η)ρ(η)û(η) dη,

where â(θ, ξ) =
∫
e−ix·θa(x, ξ) dx is the Fourier transform of a with respect to the

first variable, χ and ρ are two fixed C∞ functions such that

(A.6) ρ(η) = 0 for |η| ≤ 1

5
, ρ(η) = 1 for |η| ≥ 1

4
,

and χ(θ, η) is defined by χ(θ, η) =
∑+∞

k=0 κk−3(θ)ϕk(η).

We remark that the cut-off function χ in the preceding definition has the follow-
ing properties for some 0 < ε1 < ε2 < 1:

(A.7)

{
χ(η, ξ) = 1 for |η| ≤ ε1(1 + |ξ),
χ(η, ξ) = 0 for |η| ≥ ε2(1 + |ξ).

Definition A.4. Let m ∈ R. An operator T is said to be of order m if, for
all μ ∈ R, it is bounded from Hμ to Hμ−m.

Symbolic calculus for paradifferential operators is summarized in the following
theorem.

Theorem A.5 (Symbolic calculus). Let m ∈ R and ρ ∈ [0,∞).
(i) If a ∈ Γm

0 (Rd), then Ta is of order m. Moreover, for all μ ∈ R there exists
a constant K such that

(A.8) ‖Ta‖Hμ→Hμ−m ≤ KMm
0 (a).

(ii) If a ∈ Γm
ρ (Rd), b ∈ Γm′

ρ (Rd), then TaTb − Ta�b is of order m+m′ − ρ with

a�b :=
∑
|α|<ρ

(−i)α

α!
∂α
ξ a(x, ξ)∂

α
x b(x, ξ).

Moreover, for all μ ∈ R there exists a constant K such that

(A.9) ‖TaTb − Ta�b‖Hμ→Hμ−m−m′+ρ ≤ KMm
ρ (a)Mm′

0 (b) +KMm
0 (a)Mm′

ρ (b).
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(iii) Let a ∈ Γm
ρ (Rd). Denote by (Ta)

∗ the adjoint operator of Ta and by a the
complex conjugate of a. Then (Ta)

∗ − Tb is of order m− ρ with

b :=
∑
|α|<ρ

(−i)α

α!
∂α
ξ ∂

α
x ā(x, ξ).

Moreover, for all μ there exists a constant K such that

(A.10) ‖(Ta)
∗ − Tb‖Hμ→Hμ−m+ρ ≤ KMm

ρ (a).
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