An extension of the classification of high rank regular polytopes
HTML articles powered by AMS MathViewer
- by Maria Elisa Fernandes, Dimitri Leemans and Mark Mixer PDF
- Trans. Amer. Math. Soc. 370 (2018), 8833-8857 Request permission
Abstract:
Up to isomorphism and duality, there are exactly two nondegenerate abstract regular polytopes of rank greater than $n-3$ (one of rank $n-1$ and one of rank $n-2$) with automorphism groups that are transitive permutation groups of degree $n\geq 7$. In this paper we extend this classification of high rank regular polytopes to include the ranks $n-3$ and $n-4$. The result is, up to isomorphism and duality, there are exactly seven abstract regular polytopes of rank $n-3$ for each $n\geq 9$, and there are nine abstract regular polytopes of rank $n-4$ for each $n \geq 11$. Moreover, we show that if a transitive permutation group $\Gamma$ of degree $n \geq 11$ is the automorphism group of an abstract regular polytope of rank at least $n-4$, then $\Gamma \cong S_n$.References
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Peter A. Brooksbank and Deborah A. Vicinsky, Three-dimensional classical groups acting on polytopes, Discrete Comput. Geom. 44 (2010), no. 3, 654–659. MR 2679061, DOI 10.1007/s00454-009-9212-0
- Francis Buekenhout and Dimitri Leemans, On the list of finite primitive permutation groups of degree $\leq 50$, J. Symbolic Comput. 22 (1996), no. 2, 215–225. MR 1422147, DOI 10.1006/jsco.1996.0049
- Peter J. Cameron and Philippe Cara, Independent generating sets and geometries for symmetric groups, J. Algebra 258 (2002), no. 2, 641–650. MR 1943939, DOI 10.1016/S0021-8693(02)00550-1
- Peter J. Cameron, Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer, String C-groups as transitive subgroups of $\textrm {S}_n$, J. Algebra 447 (2016), 468–478. MR 3427645, DOI 10.1016/j.jalgebra.2015.09.040
- Peter J. Cameron, Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer, Highest rank of a polytope for $A_n$, Proc. Lond. Math. Soc. (3) 115 (2017), no. 1, 135–176. MR 3669935, DOI 10.1112/plms.12039
- Marston Conder, The smallest regular polytopes of given rank, Adv. Math. 236 (2013), 92–110. MR 3019717, DOI 10.1016/j.aim.2012.12.015
- Thomas Connor, Julie De Saedeleer, and Dimitri Leemans, Almost simple groups with socle $\textrm {PSL}(2,q)$ acting on abstract regular polytopes, J. Algebra 423 (2015), 550–558. MR 3283730, DOI 10.1016/j.jalgebra.2014.10.020
- Thomas Connor, Dimitri Leemans, and Mark Mixer, Abstract regular polytopes for the O’Nan group, Internat. J. Algebra Comput. 24 (2014), no. 1, 59–68. MR 3189666, DOI 10.1142/S0218196714500052
- John D. Dixon and Brian Mortimer, Permutation groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996. MR 1409812, DOI 10.1007/978-1-4612-0731-3
- Maria Elisa Fernandes and Dimitri Leemans, Polytopes of high rank for the symmetric groups, Adv. Math. 228 (2011), no. 6, 3207–3222. MR 2844941, DOI 10.1016/j.aim.2011.08.006
- Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer, Polytopes of high rank for the alternating groups, J. Combin. Theory Ser. A 119 (2012), no. 1, 42–56. MR 2844081, DOI 10.1016/j.jcta.2011.07.006
- Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer, All alternating groups $A_n$ with $n\geq 12$ have polytopes of rank $\lfloor \frac {n-1}{2}\rfloor$, SIAM J. Discrete Math. 26 (2012), no. 2, 482–498. MR 2967478, DOI 10.1137/110838467
- Maria Elisa Fernandes, Dimitri Leemans, and Mark Mixer, Corrigendum to “Polytopes of high rank for the symmetric groups” [Adv. Math. 228 (2011) 3207–3222] [MR2844941], Adv. Math. 238 (2013), 506–508. MR 3033641, DOI 10.1016/j.aim.2012.10.006
- Michael I. Hartley, An atlas of small regular abstract polytopes, Period. Math. Hungar. 53 (2006), no. 1-2, 149–156. MR 2286467, DOI 10.1007/s10998-006-0028-x
- Michael I. Hartley and Alexander Hulpke, Polytopes derived from sporadic simple groups, Contrib. Discrete Math. 5 (2010), no. 2, 106–118. MR 2791293
- Ann Kiefer and Dimitri Leemans, On the number of abstract regular polytopes whose automorphism group is a Suzuki simple group $\textrm {Sz}(q)$, J. Combin. Theory Ser. A 117 (2010), no. 8, 1248–1257. MR 2677688, DOI 10.1016/j.jcta.2010.01.001
- Dimitri Leemans, Almost simple groups of Suzuki type acting on polytopes, Proc. Amer. Math. Soc. 134 (2006), no. 12, 3649–3651. MR 2240679, DOI 10.1090/S0002-9939-06-08448-6
- Dimitri Leemans and Mark Mixer, Algorithms for classifying regular polytopes with a fixed automorphism group, Contrib. Discrete Math. 7 (2012), no. 2, 105–118. MR 3011579
- Dimitri Leemans and Egon Schulte, Groups of type $L_2(q)$ acting on polytopes, Adv. Geom. 7 (2007), no. 4, 529–539. MR 2360900, DOI 10.1515/ADVGEOM.2007.031
- Dimitri Leemans and Egon Schulte, Polytopes with groups of type $\textrm {PGL}_2(q)$, Ars Math. Contemp. 2 (2009), no. 2, 163–171. MR 2550963, DOI 10.26493/1855-3974.102.290
- Dimitri Leemans, Egon Schulte, and Hendrik Van Maldeghem, Groups of Ree type in characteristic 3 acting on polytopes, Ars Math. Contemp. 14 (2018), 209–226.
- Dimitri Leemans and Laurence Vauthier, An atlas of abstract regular polytopes for small groups, Aequationes Math. 72 (2006), no. 3, 313–320. MR 2282877, DOI 10.1007/s00010-006-2843-9
- Attila Maróti, On the orders of primitive groups, J. Algebra 258 (2002), no. 2, 631–640. MR 1943938, DOI 10.1016/S0021-8693(02)00646-4
- Peter McMullen and Egon Schulte, Abstract regular polytopes, Encyclopedia of Mathematics and its Applications, vol. 92, Cambridge University Press, Cambridge, 2002. MR 1965665, DOI 10.1017/CBO9780511546686
- Daniel Pellicer, CPR graphs and regular polytopes, European J. Combin. 29 (2008), no. 1, 59–71. MR 2368614, DOI 10.1016/j.ejc.2007.01.001
- Julius Whiston, Maximal independent generating sets of the symmetric group, J. Algebra 232 (2000), no. 1, 255–268. MR 1783924, DOI 10.1006/jabr.2000.8399
- Helmut Wielandt, Finite permutation groups, Academic Press, New York-London, 1964. Translated from the German by R. Bercov. MR 0183775
Additional Information
- Maria Elisa Fernandes
- Affiliation: Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
- MR Author ID: 916550
- ORCID: 0000-0001-7386-4254
- Email: maria.elisa@ua.pt
- Dimitri Leemans
- Affiliation: Université Libre de Bruxelles, Département de Mathématique, C.P.216 - Algèbre et Combinatoire, Boulevard du Triomphe, 1050 Brussels, Belgium
- MR Author ID: 613090
- ORCID: 0000-0002-4439-502X
- Email: dleemans@ulb.ac.be
- Mark Mixer
- Affiliation: Department of Applied Mathematics, Wentworth Institute of Technology, Boston, Massachusetts 02115
- MR Author ID: 954212
- Email: mixerm@wit.edu
- Received by editor(s): September 5, 2017
- Received by editor(s) in revised form: October 4, 2017
- Published electronically: September 13, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 8833-8857
- MSC (2010): Primary 52B11, 20D06
- DOI: https://doi.org/10.1090/tran/7425
- MathSciNet review: 3864397