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AN EXTENSION OF THE CLASSIFICATION OF HIGH RANK

REGULAR POLYTOPES

MARIA ELISA FERNANDES, DIMITRI LEEMANS, AND MARK MIXER

Abstract. Up to isomorphism and duality, there are exactly two nondegener-
ate abstract regular polytopes of rank greater than n−3 (one of rank n−1 and
one of rank n− 2) with automorphism groups that are transitive permutation
groups of degree n ≥ 7. In this paper we extend this classification of high rank
regular polytopes to include the ranks n − 3 and n − 4. The result is, up to
isomorphism and duality, there are exactly seven abstract regular polytopes
of rank n− 3 for each n ≥ 9, and there are nine abstract regular polytopes of
rank n−4 for each n ≥ 11. Moreover, we show that if a transitive permutation
group Γ of degree n ≥ 11 is the automorphism group of an abstract regular
polytope of rank at least n− 4, then Γ ∼= Sn.

1. Introduction

Abstract polytopes are incidence structures generalizing certain discrete geomet-
ric objects, such as the Platonic solids. Abstract regular polytopes are those that
are richest in symmetry. The one-to-one correspondence between abstract regular
polytopes and a class of groups known as string C-groups, which are themselves
quotients of Coxeter groups, has led to many papers which study when abstract
regular polytopes have certain groups as their group of automorphisms.

Much of the work in this area has been influenced by databases of examples of
polytopes and their automorphism groups. In 2006, D. Leemans and L. Vauthier
published An atlas of polytopes for almost simple groups, [23] classifying all abstract
regular polytopes whose automorphism group is an almost simple group as large
as the automorphism group of a simple group with 900,000 elements. Also in
2006, M. Hartley published An atlas of small regular polytopes, [15], where he
classified all regular polytopes with automorphism groups of order at most 2000 (not
including orders 1024 and 1536). In [16], M. Hartley and A. Hulpke classified all
regular polytopes for the sporadic groups as large as the Held group, and Leemans
and Mixer classified, among others, all regular polytopes for the third Conway
group [19]. More recently, T. Connor, Leemans, and Mixer classified all regular
polytopes of rank at least four for the O’Nan sporadic simple group [9].

These collections of polytopes helped lead to various theoretical results about
abstract regular polytopes with automorphism group G an almost simple group,
where PSL(2, q) ≤ G ≤ PΓL(2, q), or G is one of PSL(3, q), PGL(3, q), Sz(q), R(q),
Sn, or An (see [2,6,8,11–13,17,18,20–22]). Table 1 summarizes the results obtained
for the symmetric groups Sn. The results for 5 ≤ n ≤ 9 can be found in [23], and
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Table 1. Number of polytopes for Sn (5 ≤ n ≤ 14).

G\Rank 3 4 5 6 7 8 9 10 11 12 13
S5 4 1 0 0 0 0 0 0 0 0 0
S6 2 4 1 0 0 0 0 0 0 0 0
S7 35 7 1 1 0 0 0 0 0 0 0
S8 68 36 11 1 1 0 0 0 0 0 0
S9 129 37 7 7 1 1 0 0 0 0 0
S10 413 203 52 13 7 1 1 0 0 0 0
S11 1221 189 43 25 9 7 1 1 0 0 0
S12 3346 940 183 75 40 9 7 1 1 0 0
S13 7163 863 171 123 41 35 9 7 1 1 0
S14 23126 3945 978 303 163 54 35 9 7 1 1

the regular polytopes for larger Sn are computed using the algorithms developed
in [19].

Julius Whiston showed in [27] that the maximum size of an independent gener-
ating set of a permutation group of degree n is n− 1. Thus the rank of an abstract
regular polytope whose automorphism group is a permutation group of degree n is
at most n − 1. Motivated by the data in Table 1, Fernandes and Leemans proved
in [11] that there is exactly one such polytope up to isomorphism when n ≥ 5 and
that when n ≥ 7, there is also a unique polytope of rank n− 2 up to isomorphism
and duality and that for each rank 3 ≤ r ≤ n − 1, there is at least one abstract
regular polytope of rank r whose automorphism group is Sn.

In this article, we extend the results of [11] by giving a classification of rank
r ≥ n− 4 string C-groups with connected diagram for transitive groups of degree n
with n sufficiently large. We study such string C-groups using an associated graph
called a permutation representation graph, which we define in Section 2. The main
theorem of this article is the following.

Theorem 1.1. Let x ∈ {1, 2, 3, 4} and n ≥ 3 + 2x when r = n − x. If Γ is a
string C-group of rank r ≥ n − x with a connected diagram and is isomorphic to
a transitive group of degree n, then Γ is isomorphic to Sn. Furthermore, Γ has a
permutation representation graph shown in Figure 1.

Many results in this paper will be derived from the structure of the maximal
parabolic subgroups of Γ, i.e., the subgroups generated by all but one of the gen-
erators of Γ. In particular, in the case where all maximal parabolic subgroups of
Γ are intransitive, we improve the techniques used in [11]. In the case where a
maximal parabolic subgroup of Γ is transitive, we rely on the main theorem of [5]
. The cases where r = n − 1 and r = n − 2 are much easier to prove using this
approach, and thus we have included these cases in the present article, even though
these cases have been previously proven.

The article is organized as follows. In Section 2, we give the definitions and
notation needed to understand this article. In Section 3, we use fracture graphs to
classify the possible permutation representation graphs of a rank n − 3 or n − 4
string group generated by involutions with only intransitive maximal parabolic
subgroups. In Section 4, we prove that exactly seven of these possibilities yield
a rank n − 3 string C-group and exactly nine yield a rank n − 4 string C-group.
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Rank n− 1

�������	 0 �������	 1 �������	 2 �������	 3 �������	 �������	n−2�������	

Rank n− 2

�������	 1 �������	 0 �������	 1 �������	 2 �������	 3 �������	 �������	n−4�������	n−3�������	

Rank n− 3

�������	 2

0

�������	 1

0

�������	 2 �������	 3 �������	 4 �������	 �������	n−4�������	

�������	
2

�������	

�������	 0

1 2

�������	 1

2

�������	 2 �������	 3 �������	 4 �������	 �������	n−4�������	

�������	
0

�������	

�������	 1 �������	 0 �������	 1 �������	 2 �������	 3 �������	 �������	n−6�������	n−5�������	n−4�������	n−5�������	

�������	 2 �������	 1 �������	 0 �������	 1 �������	 2 �������	 3 �������	 4 �������	 �������	n−5�������	n−4�������	

�������	 0 �������	 1 �������	 0 �������	 1 �������	 2 �������	 3 �������	 4 �������	 �������	n−5�������	n−4�������	

�������	 0 �������	 1 �������	 0

2
�������	 1 �������	 2 �������	 3 �������	 4 �������	 �������	n−5�������	n−4�������	

�������	 2

0
�������	 1 �������	 0 �������	 1 �������	 2 �������	 3 �������	 4 �������	 �������	n−5�������	n−4�������	

Rank n− 4

�������	
3

0 �������	
3

1 �������	
3

2 �������	 3 �������	 4 �������	 �������	n−5�������	

�������	
0

�������	
1

�������	

�������	
2

0 �������	
2

1 �������	 2 �������	 3 �������	 �������	n−5�������	n−6�������	

�������	
0

�������	

�������	 0

2 1

�������	 1

2

�������	 �������	n−5�������	n−6�������	

�������	
0

�������	

�������	 0 �������	 1 �������	 0 �������	 �������	n−5�������	n−6�������	

�������	 2 �������	 1 �������	 0 �������	 �������	n−5�������	n−6�������	

�������	 0

2
�������	 1 �������	 0 �������	 �������	n−5�������	n−6�������	

�������	 0 �������	 1 �������	 2

0
�������	 1 �������	 �������	n−5�������	n−6�������	

�������	 1 �������	 0 �������	 1 �������	 0 �������	 �������	n−5�������	

�������	 3 �������	 2 �������	 1 �������	 0 �������	 �������	n−5�������	

Figure 1. Permutation representation graphs for nondegenerate
transitive string C-groups of rank r ≥ n− 4.

Finally, in Section 5, we show that only the cases appearing in Section 4 may
occur by proving that, under the hypotheses of Theorem 1.1, all maximal parabolic
subgroups must be intransitive.

2. Preliminaries

2.1. String C-groups. A Coxeter group Γ := (G,S) of rank r is a group G with
a set S of distinguished generators ρ0, . . . , ρr−1 and presentation

〈ρi | (ρiρj)mi,j = ε for all i, j ∈ {0, . . . , r − 1}〉,

where ε is the identity element of G and each mi,j is a positive integer or infinity,
mi,i = 1, and mi,j > 1 for i �= j. All Coxeter groups also satisfy the next condition,
which is called the intersection property :

∀J,K ⊆ {0, . . . , r − 1}, 〈ρj | j ∈ J〉 ∩ 〈ρk | k ∈ K〉 = 〈ρj | j ∈ J ∩K〉.

A Coxeter group Γ can be represented by a Coxeter diagram D. This Coxeter
diagram D is a labelled graph which represents the set of relations of G. More
precisely, the vertices of the graph correspond to the generators ρi of G, and for each
i and j, an edge with label mi,j joins the ith and the jth vertices; conventionally,
edges of label 2 are omitted. By a string diagram we mean a Coxeter diagram with
each connected component linear. A Coxeter group with a string diagram is called
a string Coxeter group.

More generally, a string group generated by involutions, or sggi for short, is de-
fined as a group generated by pairwise distinct involutions ρ0, . . . , ρr−1 that satisfy



8836 MARIA ELISA FERNANDES, DIMITRI LEEMANS, AND MARK MIXER

the following property, called the commuting property :

|i− j| > 1 ⇒ (ρiρj)
2 = 1.

The (Schläfli) type of Γ is {p1, . . . , pr−1}, where pi is the order of ρi−1ρi, i ∈
{1, . . . , r − 1}, and the rank of an sggi is the size of its set of generators. The dual
of an sggi is obtained by reversing the order of the generators. Finally, a string C-
group Γ is an sggi satisfying the intersection property. In this case the underlying
diagram for Γ is a string diagram. Clearly the dual of a string C-group is itself a
string C-group.

A string C-group is called degenerate if its Schläfli type contains a 2. It is called
nondegenerate otherwise.

In [25], it was shown that string C-groups and abstract regular polytopes are in
one-to-one correspondence.

Let Γ = 〈ρ0, ρ1, . . . , ρr−1〉 be an sggi. We denote by Γj for 0 ≤ j ≤ r − 1 the
group generated by {ρi | i �= j}, by Γ<j the group generated by {ρi | i < j}, by
Γ>j the group generated by {ρi | i > j}, and we write Γj1,...,jk with {j1, . . . , jk} ⊂
{0, . . . , r−1}, to denote the group generated by {ρi | i �= j1, . . . , jk}. The subgroups
Γi with 0 ≤ i ≤ r − 1 are called the maximal parabolic subgroups.

Let Γ = 〈ρ0, . . . , ρr−1〉 be an sggi acting as a permutation group on a set
{1, . . . , n}. We define the permutation representation graph G as the r-edge-labelled
multigraph with n vertices and with a single i-edge {a, b} whenever aρi = b with
a �= b. Note that each of the generators is an involution; thus the edges in our graph
are not directed. When Γ is a string C-group (a regular polytope), the multi-graph
G is called a CPR graph, as defined in [26], and satisfies the following proposition.

Proposition 2.1 ([26, Proposition 3.5]). Let G be a CPR graph of a regular poly-
tope, and let |i− j| ≥ 2. Then every connected component of Gi,j is either a single
vertex, a single edge, a double edge, or an alternating square.

Note that to any set of permutations one can associate a “permutation directed
graph” by labeling each directed edge with a permutation from the set. Further-
more, if the permutations naturally arise in a list, then you can simply label the
directed edges with the position in the list. Since our permutations are all invo-
lutions, we do not need directed edges. This notion of an undirected permutation
representation graph applies equally well to a set of involutions, but we are most
interested in the graphs arising from the generators of string groups. Conversely, it
is worth noting that each permutation representation graph uniquely determines a
list of involutions in Sn.

Let Γ = 〈ρ0, . . . , ρr−1〉 be a subgroup of Sm, and let τ be an involution in Sm

such that τ �∈ Γ and τ commutes with all of Γ. We define a sesqui-extension of Γ
with respect to ρk and τ as the group Γ∗ = 〈ρiτηi | i ∈ {0, . . . , r−1}〉, where ηi = 1
if i = k and 0 otherwise (see [12]).

3. Intransitive maximal parabolic subgroups

We start this section with the definition of fracture graphs. These graphs will
play a central role in the case where all maximal parabolic subgroups of Γ are
intransitive. Throughout this section, Γ denotes a transitive permutation group of
degree n with the following properties: it is a rank r string group generated by
involutions, all its maximal parabolic subgroups are intransitive, and it has no 2s
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in its Schläfli type. Furthermore, G is the permutation representation graph of Γ,
and F is a fracture graph of Γ as defined below.

Definition 3.1. Let G be the permutation representation graph of Γ. A fracture
graph F of Γ is a subgraph of G containing all vertices of G and one edge of each
label, chosen in such a way that each i-edge joins two vertices ai and bi that are in
distinct Γi-orbits.

Observe that fracture graphs have exactly r edges and are well defined as long
as every Γi is intransitive.

In the following figures, we adopt the following notation. We represent the edges
of G that are in F by solid edges. We represent the edges of G that are not in F
by dashed edges. To represent edges with consecutive labels i + 1, . . . , j − 1 that
belong to F , we use dotted lines between two solid edges with labels i and j.

Lemma 3.2.

(1) F has no cycles.
(2) F has c connected components if and only if r = n− c.
(3) If there exist two edges {a, b} with distinct labels i and j in G, then a and

b are in distinct connected components of F .
(4) If there exist two i-edges {a, b} and {c, d} in G, then not all vertices a, b, c, d

are in the same connected component of F .

Proof.

(1) Let {a, b} be the i-edge of F . Suppose that this edge is in a cycle of F .
Then a and b are in the same Γi-orbit, a contradiction with Definition 3.1.

(2) This is a consequence of (1), which shows that F is a forest.
(3) Suppose on the contrary that a and b are in the same connected component

of F . Then there exists a path in F from a to b. Let {c, d} be an l-edge of
this path. The vertices c and d are then necessarily in the same Γl-orbit, a
contradiction to Definition 3.1.

(4) At least one of the i-edges, say {a, b}, of G is not in F . Suppose that a, b, c, d
are all in the same connected component of F . Then there is a path in F
from a to b. If {e, f} is an l-edge on this path, then the vertices e and f
are in the same Γl-orbit, a contradiction as before. Thus not all vertices
a, b, c, d are in the same connected component of F . �

Lemma 3.3. If a cycle C of G contains the i-edge of F , then C contains another
i-edge.

Proof. Suppose that a cycle of G contains exactly one i-edge e = {a, b}. Then a
and b are in the same Γi-orbit, and therefore e is not in F by Definition 3.1. �
Lemma 3.4. If there is a cycle C in G containing exactly two i-edges e1, e2 such
that e1 is in F , then there is another fracture graph F ′ obtained by removing e1
and adding e2.

Proof. Suppose that e2 = {a, b} with a and b in the same Γi-orbit. Then e1 is the
unique i-edge in a cycle of G, contradicting Lemma 3.3. Thus replacing e1 by e2
we obtain another fracture graph. �
Lemma 3.5. If a and b are vertices in the same connected component of F and
e = {a, b} is an i-edge in G, then e is in F .
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Proof. As a and b are vertices in the same connected component of F , there exists
a path P in F connecting a to b. Suppose that e is not in F . Then there exists a
j-edge in P with j �= i. As e is an i-edge of G there exists a cycle containing the
j-edge of F that does not contain any other j-edge, contradicting Lemma 3.3. �

Lemma 3.6. Let v and w be vertices of an alternating square as in the following
figure:


������v
i

j ��������v′

i�
�

�������	
j
�� 
������w

Then v and w are in different connected components of F .

Proof. Suppose that v and w are in the same connected component of F . Then also
v′, as in the picture, is in the same connected component of w. Hence the i-edge
{v′, w} must be in F , by Lemma 3.5. Thus F has two i-edges, a contradiction. �

Lemma 3.7. Consider the alternating square, as in the following figure, having an
i-edge in F and both j-edges not in F :

��������v1
i

j�
�

��������v2
j�
�

��������v3
i
�� ��������v4

Then v1, v3, and v4 are in different connected components of F .

Proof. As {v1, v3}, {v3, v4}, and {v2, v4} are not edges of F , by Lemma 3.5 each of
these pairs of vertices is in a different component of F . Moreover, all three vertices
v1, v3, and v4 must belong to different connected components of F ; otherwise there
is a cycle in G containing only one i-edge of F contradicting Lemma 3.3. �

From now on, we assume that r ≥ n− 4.

Lemma 3.8. Let x ∈ {1, 2, 3, 4} and let n ≥ 3+ 2x when r = n− x. The degree of
a vertex of F is at most 3. Moreover, a vertex of degree 3 in F has degree 3 also
in G.

Proof. Suppose that there exists a vertex v of degree ≥ 4 in F . Let v be incident
to four edges with labels i, j, k, l. We may suppose that i < j < k < l. Then, by
Proposition 2.1, v is a vertex on three alternating squares as in the following figure:

�������	 l��
j
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l
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By Lemmas 3.6 and 3.3, v, a, b, c are in different connected components of F . There-
fore F has at least four connected components. By Lemma 3.2(2), r = n − 4 and
F has exactly four connected components, that is, x = 4.

As n ≥ 3 + 2.4 = 11 there exists a vertex d incident, in F , to one vertex of the
previous picture. We may assume that d is incident to c in F . Similar arguments as
the ones below permit us to get contradictions when d is incident to any other vertex
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of the figure. As j < k < l the label s of the edge {c, d} cannot be consecutive with
both j and l. Suppose that s is not consecutive with j. Then there is an alternating
square containing c and a j-edge as in the following picture:

�������	 l��

j


������c
j�
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s ��������d
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Again by Lemmas 3.4, 3.6, and 3.3, the vertices v, a, b, c, and e are in different
connected components of F , a contradiction to the fact that there are exactly four
connected components. If s is consecutive with j, then it is not consecutive with l,
and we get the same contradiction using l instead of j.

Finally suppose that a vertex v has degree 3 in F and has a higher degree in
G. Let v be incident to four edges with labels i, j, k, l. We may suppose that
i < j < k < l. Suppose that the j-edge containing v is not in F :
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By Lemma 3.4 we may assume that both j-edges of the figure above are not in F .
Then by Lemmas 3.7 and 3.3, we get five connected components for F , contradicting
Lemma 3.2(2). If we assume that another edge incident to v is not in F , we get
the same contradiction. �

Lemma 3.9. Let x ∈ {1, 2, 3, 4} and let n ≥ 3 + 2x when r = n − x. If Γ has a
fracture graph having a vertex of degree 3, then r ∈ {n− 4, n− 3} and Γ admits, up
to duality, a fracture graph F from the following list :
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(E) ������ !

2 �
�
�
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2

1 ������ ! 2 ��� ������ ! 3 ������ ! ������ ! n−5 ������ ! n−6��� ������ !

������ !
0
��� ������ !

Proof. By Lemma 3.8, we know that the degree of each vertex of F is at most 3.
Let i, j, k be the labels of the edges incident to a vertex v of degree 3 in F (and
hence also in G) with i < j < k and i being the smallest possible. We may consider,
up to duality, the following cases: (1) j �= i + 1 and k �= j + 1; (2) j = i + 1 and
k �= i+ 2; (3) j = i+ 1 and k = i+ 2.

Case 1. j �= i+1 and k �= j +1. There are three alternating squares in G as in the
following figure:
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j �
�

�

k �
�

i

������v

k
j

�������	
k�
�

i
�
�
�
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�� �������	

j
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In this case v, a, b, and c are, by Lemmas 3.3 and 3.6, in different connected com-
ponents. As n ≥ 11, there is a vertex d incident, in F , to one of the vertices of the
previous picture. By Lemmas 3.8 and 3.4, d must be incident to either a, b, or c.
If d were incident to one of the unlabelled vertices, then by Lemma 3.4, we could
create another fracture graph where that unlabelled vertex had degree at least 4,
contradicting Lemma 3.8. Suppose that d is incident to a and let l be the label
of the edge {a, d}. Then l must be consecutive with both i and j and the degree
of d must be 1 in G, for otherwise we get another square with a vertex in a fifth
component of F , contradicting Lemma 3.2(2). Using the same arguments, we can
conclude that d cannot be connected to b and that when d is connected to c we are
in the same situation as in the case where d is connected to a. Hence, n ≤ 7+2 = 9
and r = n− 4, a contradiction to the fact that n ≥ 3 + 2 · 4 = 11.

Case 2. j = i+ 1 and k �= i+2. There are two alternating squares as in the figure
below:


������a
k �
�

i 
������v
k

i+1
������b
k�
�

��������d
i
�� 
������c

i+1
�� 
������e

By Lemmas 3.4 and 3.8, v and c are both of degree 3 in G. As we have three
connected components at least, l ≥ 3, and n ≥ 9, either a, b, d, or e is incident
to another vertex. By Lemma 3.4 and the fact that i is smallest possible, we may
consider that b is incident to a vertex f (not necessarily in F). As v has degree 3,
the label of {b, f} must be i+2. Indeed, if it were i, by Lemmas 3.4, 3.7, and 3.3, F
would have at least five connected components, a contradiction to Lemma 3.2(2).
Now we consider separately the case k �= i+ 3 and k = i+ 3.

Case 2.1. Suppose that k �= i+3. Then we are in one of the following two situations:


������a
k �
�

i 
������v
k

i+1
������b
k�
�
i+2�� ��������f

k�
�

��������d
i
�� 
������c

i+1
�� 
������e

i+2
�� 
������g
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������a
k �
�

i 
������v
k

i+1
������b
k�
�
i+2��������f

k�
�

��������d
i
�� 
������c

i+1
�� 
������e

i+2
�� 
������g

In the first case, {b, f} is not in F , by Lemmas 3.4, 3.7, and 3.3, and F has at
least five connected components, contradicting Lemma 3.2(2). Hence {b, f} is in
F , and we are in the second case. Now the vertices v, d, e, and g are in different
components of F , and the degree of b and e in G is 3, by Lemmas 3.4 and 3.8. As
l ≥ 4, we have n ≥ 11 and either a, d, f , or g is incident, in F , to another vertex.
We may assume that f is incident to another vertex h in F . Now the label of {f, h}
must be consecutive with both i+ 2 and k. But then the degree of a, d, and g is 2
in G, and the degree of h is 1 in G. Therefore n = 9, a contradiction.

Case 2.2. Suppose that k = i+ 3. First consider that {b, f} is not in F . Then we
already have four connected components for F and n ≥ 11. Moreover, f must be of
degree 1 in G. Thus e has to be connected to another vertex with an (i+2)-edge in
F . Then by Lemma 3.4, we may assume that {b, f} is in F and that F has at least
three components. Then n ≥ 3 + 2.3 = 9; thus f must be incident with another
vertex g:


������a
i+3 �

�
i 
������v

i+3

i+1
������b
i+3�
�
i+2��������f �� 
������g

��������d
i
�� 
������c

i+1
�� 
������e

The label of the edge {f, g} must be consecutive with i+2; therefore the edge {f, g}
is not in F . All vertices of the component of F containing the vertex g have degree
at most 2 and incident edges have consecutive labels. We get the possibility (B)
given in this lemma.

Case 3. j = i+1 and k = i+2. We have one alternating square as in the following
figure:


������a
i+2 �

�
i 
������v

i+2

i+1
������b

��������d
i
�� 
������c

If the degree of a is greater than 1 in F , then by Lemma 3.4 there exists a fracture
graph with a vertex of degree 3 adjacent to edges with labels as in one of cases (1)
or (2). Thus we assume that the degree of a is 1 in F . By the same reasoning the
degree of c in F is 1 and d is an isolated vertex of F , or else we can use Lemma 3.4
and revert to a previously solved case. The degree of b is 1 in F , as another edge of
F incident with b would have a label not consecutive with i+1, implying that v has
degree 4 and contradicting Lemma 3.8. Hence, as F has at least three components,
r ≤ n− 3.

Now suppose that there is another vertex of degree 3 in F . In that case, F
has four components (and n ≥ 11): two components with 4 vertices and 2 isolated
vertices; hence n = 4 + 4 + 1 + 1 = 10, a contradiction. Thus only v has degree 3
in F .

If r = n− 3, we get only one possibility for F corresponding to graph (A).
If r = n−4, F has a component containing the vertex v of degree 3, a component

that is an isolated vertex d, and another two components that have only vertices of
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degree ≤ 2. If a is incident to another vertex e in G, then the label of {a, e} must
be consecutive with i by Lemma 3.8. If it is i − 1, then we have an alternating
square with labels i− 1 and i+ 2, as in the following figure:


������e
i+2 �

�
i−1�� 
������a
i+2 �

�
i 
������v

i+2

i+1
������b

��������f
i−1
�� ��������d

i
�� 
������c

By Lemmas 3.7 and 3.3, v, d, e, and f are in different components of F . As n > 7
one of the vertices of the figure above is incident (in F) to another vertex and we
get a fifth connected component (as every time we create a square in the graph, we
need one more component for the fracture graph) of F , a contradiction. Hence the
label of {a, e} is i+ 1. Similarly if c or d is incident to another vertex, the label of
that edge must be i+ 1. If two vertices of the set {a, c, d} have degree 3 in G, then
we get two additional components that are isolated vertices. In that case, n ≤ 7,
a contradiction. Therefore, only one vertex of {a, c, d} can have degree 3 in G. If
d has degree 3, then the vertex e incident to d must be an isolated vertex of F .
Moreover, either e or b has degree greater than 1 in G (but not both). Thus we
get two possibilities for F : one corresponding to graph (C) of this lemma and the
other is the following graph:

(C ′) �������	

2

0 ��� �������	

2�
�
�

1 ��� �������	 2 ��� �������	 3 �������	 �������	 n−5 �������	

�������	
1

�������	
0

�������	

In (C ′) both 0-edges, 1-edges, and 2-edges are between vertices in different Γi-
orbits (i = 0, 1, or 2 respectively). Therefore if Γ admits the fracture graph C,
it also admits the fracture graph C ′ and vice-versa; hence in this lemma only the
possibility (C) needs to be listed. By the same reasoning, if a or c has degree 3, Γ
has a fracture graph (D).

Now suppose that a, c, and d have degree 2 in G. Then b is incident to a vertex
e in G and the label of {b, e} must be consecutive with i + 1. We may assume it
is i + 2. The label of an edge incident with e must be consecutive with e, so e is
either an isolated vertex of F or has degree 1 in F . Suppose that e is an isolated
vertex of F :

�������	
i+2 �

�
i �������	

i+2

i+1�������	i+2�� 
������e l�� �������	 k �������	 s �������	 �������	r−1�������	

�������	
i
�� �������	

If l = i + 1, then k ∈ {i, i + 2}, which is not possible. Hence l = i + 3, k = i + 4,
s = i + 3, but then n = 9, a contradiction. Thus e is not isolated. Suppose
that the last component is an isolated vertex; then there is one possibility for F ,
corresponding to graph (E ).

Now suppose that F has only one isolated vertex (the one in the square):

�������	
i+2 �

�
i �������	

i+2

i+1�������	i+2�� �������	i+3�������	 �������	 x �������	 y�� �������	 z �������	 �������	 �������	

�������	
i
�� �������	
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In that case, y ∈ {x−1, x+1}∩{z−1, z+1} and x < z imply that y = x+1 = z−1.
Hence z = x+ 2, and the unique possibility for F is graph (E′):

(E′) �������	

2 �
�
�

0 �������	

2

1 �������	 2 ��� �������	 3 �������	 �������	 n−7 �������	 n−6��� �������	 n−5 �������	 n−6 �������	

�������	
0
��� �������	

As the dashed edges are uniquely determined, if (E) is a fracture graph of Γ, then
(E′) is also a fracture graph of Γ and vice-versa, so only one of these two graphs
needs to be listed in this lemma. �
Lemma 3.10. Let x ∈ {1, 2, 3, 4} and let n ≥ 3 + 2x when r = n − x. If a
fracture graph F of Γ has adjacent edges with nonconsecutive labels, then Γ also
has a fracture graph with a vertex of degree 3.

Proof. Suppose that F has two adjacent edges with nonconsecutive labels i and j
and assume, by way of contradiction, that Γ has no fracture graph with a vertex of
degree 3. The graph G has an alternating square with labels i and j:


������a i

j �
� 
������b

j


������c
i
�� ��������d

There exists no vertex incident, in F , to one of the vertices of the alternating i, j
square, for, otherwise, using Lemma 3.4, we could create a fracture graph for Γ
with a vertex of degree 3. Thus F has at least three components and n ≥ 9. Hence
there is a vertex e adjacent to one of the vertices of the square in G. By Lemma 3.4
we may assume that there exists a k-edge {a, e} not in F :


������e k�� 
������a i

j �
� 
������b

j


������c
i
�� ��������d

If k is not consecutive with both i and j, we have another two alternating squares
and, by Lemmas 3.7 and 3.3, we get five connected components, contradicting
Lemma 3.2(2). Thus k must be consecutive either with i or with j. Suppose that
k = i − 1 and j is not consecutive with k. Then, by Lemmas 3.4 and 3.7, F has
four connected components. Therefore, b and d have degree 2 in G. Now let e be
incident to another vertex f and let l be the label of {e, f}. If l is not consecutive
either with i − 1 or with j, using Lemmas 3.7 and 3.3, we get a fifth connected
component, contradicting Lemma 3.2(2). Thus j = i − 3 and l = i − 2. Moreover
the vertex g in the following figure must be isolated:

��������f
i−2
������e
i−3 �

�
i−1�� 
������a i

i−3 �
� 
������b

i−3


������g
i−1
�� 
������c

i
�� ��������d

As n ≥ 11, f must be (i − 1)-incident to another vertex h, but then h cannot be
incident to any other vertex; thus we get n ≤ 8, a contradiction. Consequently the
label k of an edge incident (in G \F) to one of the vertices a, b, c, or d of the square
must be consecutive with both i and j. Let j = i+ 2 and {e, a} be an (i+ 1)-edge
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of G \ F . Suppose that e is l-adjacent to another vertex f in G. The l must be
consecutive with i + 1; thus {e, f} is not in F . Hence a is an isolated vertex of
F and F has four components. Moreover any other vertex incident to the square
must be an isolated vertex of F ; thus we may assume that a is the unique vertex
of the square having degree 3 in G. Then either l = i + 2 or l = i, and then the
other edge incident to f has label i+ 1. This gives n < 8, a contradiction. �

Lemma 3.11. Let x ∈ {1, 2, 3, 4} and let n ≥ 3 + 2x when r = n − x. Suppose
that G has adjacent edges with nonconsecutive labels but there is no fracture graph
having adjacent edges with nonconsecutive labels. Then r ∈ {n − 4, n − 3} and G
admits, up to a duality, a fracture graph F of the following list :

(G) ������ ! 0

2 �
�
� ������ ! 1

2�
�
� ������ ! ������ ! n−4 ������ !

������ !
0
��� ������ !

(H) ������ ! 0

3 �
�
� ������ ! 1

3�
�
� ������ !

3�
�
�

2 ������ ! ������ ! n−5 ������ !

������ !
0
��� ������ !

1
��� ������ !

(I) ������ ! 0

2 �
�
� ������ ! 1

2�
�
� ������ ! ������ ! n−7 ������ ! n−6��� ������ ! n−5 ������ ! n−6 ������ !

������ !
0
��� ������ !

Proof. Let i and j be the labels of two adjacent edges in G with |i−j| > 1. There is
an alternating square in G containing these edges. Let F be a fracture graph of G.

Suppose that the four vertices of the alternating square are in four different
connected components of F (which can happen only when r = n − 4). Consider
a vertex k-incident to one of the vertices of the square. As F has four connected
components, this k-edge is an edge of F . Suppose that k and j are not consecutive:

�������	 i��
j�
� �������	

j�
�
k �������	

j�
�

�������	
i
�� �������	

k
�� �������	

Then by Lemmas 3.7 and 3.3 we get five components of F , a contradiction. Thus
k must be consecutive with both i and j, and we have either that k = i + 1 and
j = i + 2 or that k = i − 1 and j = i − 2. Therefore three components of F are
isolated vertices, and the component with more than one vertex must contain a
(k−1)-edge and a (k+1)-edge simultaneously, which is not possible, as all incident
edges of F have consecutive labels.

Now suppose that a pair of vertices of the alternating square are in the same
connected component of F . Then by Lemma 3.5 one of the edges of the square is
in F . Suppose that one of the i-edges is in F . Let {a, b} be the i-edge of F and let
{v, w} be the other i-edge of the alternating square. By Lemma 3.7, v, w, and a
are in different connected components of F . As before there is an edge incident to
one of the vertices of the square. By Lemma 3.4 we may suppose that it connects
b to some other vertex c.

Consider first the case r = n − 3. As F has three connected components, c is
in the same connected component as one of the vertices of the alternating square.
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Hence by Lemmas 3.3 and 3.5, {b, c} is the k-edge of F :


������a i

j �
� 
������b

k

j�
�


������c


������v
i
�� 
������w

By the hypothesis that r = n− 3, we cannot create another connected component
for F , and therefore k must be consecutive with i. Suppose that k and j are not
consecutive. Hence there is an alternating {k, j}-square, and by Lemmas 3.6 and
3.3 we get a fourth component, which is not the case we are dealing with. Thus k
is consecutive with both i and j. Therefore a has degree 1 in F , and v and w are
isolated vertices of F . Then we get the graph (G) of this lemma.

Now let r = n− 4. First suppose that b and c are in different connected compo-
nents of F . Let k be the label of the edge {b, c}. Suppose that k is not consecutive
with i. Then, by Lemma 3.7, we have a fifth connected component of F , a contra-
diction. If k is not consecutive with j we have two alternating squares as in the
following figure:


������a i

j�
� 
������b

j�
�

k�� 
������c
j�
�


������v
i
�� 
������w

k
�� �������	

By Lemmas 3.7 and 3.3 either a k-edge or a j-edge is in F . Then by Lemma 3.4 we
get that either b and c are in the same connected component or that b and c are two
nonconsecutive incident edges of F , a contradiction. Hence k is consecutive with
both i and j, and only the vertex b has degree greater than 2 in G. All remaining
incident edges must be consecutive:


������a i

i+2 �
� 
������b

i+2�
�
i+1�� 
������c i+2��������d


������v
i
�� 
������w

Now a vertex must be (i+1)-adjacent to one of the vertices a, v, w, or d. As there
exists exactly one edge for each label and G has exactly four components, we have
that n = 7, a contradiction.

Consider that b and c are in the same connected component of F . Then by
Lemma 3.5 the k-edge {b, c} is in F . Moreover k must be consecutive with i, so let
k = i+ 1.

Suppose that k is not consecutive with j. Then we get two alternating squares
as in the following figure:


������a i

j�
� 
������b

i+1

j�
�


������c
j�
�


������v
i
�� 
������w

i+1
�� 
������y

By Lemmas 3.7 and 3.3 the vertices a, v, w, and y are in different connected
components of F . There exists a vertex d incident to one of the vertices of the
previous picture. The vertex d cannot be incident to either b or w; otherwise we
get two nonconsecutive incident edges of F . By Lemma 3.4, we may assume d is
incident with c. By hypothesis, the label of {c, d}must now be i+2. Hence j = i+3,
for, otherwise, we get a fifth component of F . This gives fracture graph (H).
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Now suppose that k is consecutive with both i and j and that all the vertices of
the alternating square, except b, have degree 2 in G. Then F is the graph (I) or is
the graph (I ′) obtained from (I) by interchanging the edge of label n− 6 that is in
F and the edge of label n− 6 that is not in F . Only one of these two graphs needs
to be listed in this lemma. �

The permutation graph G of Γ is linear if adjacent edges of G have consecutive
labels. When G is linear, it is possible to give an ordering to the connected com-
ponents of F . A component of F is big if it has at least 4 vertices. We say that
a fracture graph is maximal with respect to a component if that component cannot
become bigger in any other fracture graph.

In the following graphs we sometimes have more than one possibility for the label
of an edge. If that is the case we write all possibilities for the label of that edge
separated by a vertical bar. If one of the possibilities is a double edge we write a
set with two labels instead of a single label.

Proposition 3.12. Let x ∈ {1, 2, 3, 4} and let n ≥ 3+2x when r = n−x. Suppose
that G is linear and F is a maximal fracture graph of G with respect to the last big
component. Consider two components of F at distance one in G as in the following
figure:

. . . �������	 i �������	 k ��� �������	 j �������	 . . . (i < j)

Then k = i + 1, j = i + 2, and F has at least three components. Moreover, either
the component containing the i-edge or the component containing the j-edge has
exactly three vertices.

Proof. As G is linear, k ∈ {i− 1, i+ 1} ∩ {j − 1, j + 1} with i < j. Hence k = i+ 1
and j = i + 2. As incident edges are consecutive, the edge with label i + 1 must
belong to another component having exactly two vertices.

Let C be the component of F containing the (i + 2)-edge. Suppose that the
component consisting of a single (i+ 1)-edge is after C.

First suppose that C has more than 4 vertices. This forces F to have at least five
components, a contradiction. We show in the following figure what happens when
C has exactly 5 vertices:

. . . �������	 i−1 �������	 i �������	 i+1��� �������	 i+2 �������	 i+3 �������	 i+4 �������	 i+5 �������	 i+4��� �������	 i+3��� �������	 i+2��� �������	 i+1 �������	

If C has exactly 4 vertices, then F has four components as in the following figure:

. . . �������	 i−2 �������	 i−1 �������	 i 
������a i+1��� 
������b
i+2 �������	 i+3 �������	 i+4 �������	 i+3��� �������	 i+2��� �������	 i+1 �������	

In this case F has two big components, as n ≥ 11. Consider the fracture graph F ′

that we obtain by removing the (i + 1)-edge of F and replacing it by the (i + 1)-
edge {a, b}. The big component of F ′ is bigger than the two big components of F ,
contradicting the maximality of the big component of F . The same argument can
be used when C has exactly three vertices.

Now suppose that C has exactly 2 vertices. Then we have one of the following
fracture graphs with four components:

. . . �������	 i−2 �������	 i−1 �������	 i �������	 i+1��� �������	 i+2 �������	 i+1��� �������	 i|i+2��� �������	 i+1 �������	

. . . �������	 i−2 �������	 i−1 �������	 i �������	 i+1��� �������	 i+2 �������	 i+3��� �������	 i+4 �������	 i+3 �������	 i+2��� �������	 i+1 �������	
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In any case, this contradicts the maximality of the (unique) big component of F .
If the component being the (i+1)-edge is before C we get the same contradiction

to the maximality of the last big component (indeed maximality fails in all big
components of F). �

Lemma 3.13. Let x ∈ {1, 2, 3, 4} and let n ≥ 3+2x when r = n−x. Suppose that G
is linear. Then G is, up to duality, one of the following graphs, where 0 ≤ i ≤ r−4.

r=n-1

������ ! 0 ������ ! 1 ������ ! ������ ! n−3 ������ ! n−2 ������ !

r=n-2

������ ! 1 ��� ������ ! 0 ������ ! 1 ������ ! ������ ! n−4 ������ ! n−3 ������ !

r=n-3

(K) ������ ! 1 ��� ������ ! 0 ������ ! ������ ! n−4 ������ ! n−5��� ������ !

(L) ������ !0|2|{0,2}��� ������ ! 1 ��� ������ ! 0 ������ ! ������ ! n−4 ������ !

(M) ������ ! 0 ������ ! ������ ! i ������ ! i+1��� ������ !i+2|{i,i+2}��� ������ ! i+1 ������ ! ������ ! n−4 ������ !

r=n-4

(N) ������ ! 0|2��� ������ ! 1 ��� ������ ! 0 ������ ! ������ ! n−5 ������ ! n−6��� ������ !

(O) ������ ! 0 ������ ! ������ ! i ������ ! i+1��� ������ !i+2|{i,i+2}��� ������ ! i+1 ������ ! ������ ! n−5 ������ ! n−6��� ������ !

(P ) ������ ! 1 ��� ������ !0|2|{0,2}��� ������ ! 1 ��� ������ ! 0 ������ ! ������ ! n−5 ������ !

(Q) ������ !1|3|{1,3}��� ������ ! 2 ��� ������ ! 1 ��� ������ ! 0 ������ ! ������ ! n−5 ������ !

(R) ������ ! 1 ������ ! 0 ������ ! 1 ��� ������ ! 2 ��� ������ !3|{1,3}��� ������ ! 2 ������ ! ������ ! n−5 ������ !

(S) ������ ! 1 ��� ������ ! 0 ������ ! 1 ��� ������ !2|{0,2}��� ������ ! 1 ������ ! ������ ! n−5 ������ !

(T ) ������ ! 1 ������ ! 0 ������ ! 1 ��� ������ ! 2 ������ ! 3 ��� ������ !4|{2,4}��� ������ ! 3 ������ ! ������ ! n−5 ������ !

(U) ������ ! 1 ��� ������ ! 0 ������ ! 1 ������ ! 2 ��� ������ !3|{1,3}��� ������ ! 2 ������ ! ������ ! n−5 ������ !

(V ) ������ ! 1 ��� ������ ! 0 ������ ! ������ ! i ������ ! i+1��� ������ !i+2|{i,i+2}��� ������ ! i+1 ������ ! ������ ! n−5 ������ !

Proof. Let us assume that F is maximal with respect to the last component.
To describe the sizes of the components of a fracture graph we use the follow-

ing notation: B for big component, T for a component with 3 vertices, D for a
component with 2 vertices, and O for an isolated vertex.

By Proposition 3.12 a component of F that is at distance one of a big component
in G is either an isolated vertex or has 3 vertices. Therefore the number of big
components is one or two (the last case being possible only when r = n − 4).
Moreover, the last big component cannot be at distance one from a component
with 3 vertices; otherwise we get a contradiction with the maximality of F . We
may assume that one of the last two components is big (for, otherwise, we may
revert the ordering. For instance if we have the sequence BDTT we can change to
TTDB). There is only one possibility when r = n − 1 (only one component) and
also only one possibility, up to duality, when r = n− 2 (one big component and an
isolated vertex). For r = n− 3 we have the following 5 possibilities: OBO, OOB,
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DOB, TOB, and BOB. In the list given in this lemma the cases DOB, TOB, and
BOB are put together as i ≥ 0 can be small. Thus we have only 3 possible graphs
when r = n− 3.

For r = n − 4, there are 10 possibilities for F . We divide the table of all
possibilities into five parts according to the 5 possibilities for the sizes of the last
three components (the ones listed for r = n− 3).

In total we get 12 possibilities. Some cases have a parameter i ≥ 0. In any case
r − i is the size of a big component; thus r − i ≥ 4 or equivalently i ≤ r − 4. �

We now summarize in one single proposition the possibilities we obtained for G
in the previous lemmas.

Proposition 3.14. Let x ∈ {1, 2, 3, 4} and let n ≥ 3 + 2x when r = n − x. If Γj

are intransitive for all j ∈ {0, . . . , r − 1} and r ≥ n − 4, then G is, up to duality,
one of the graphs given in Table 2, with i ≥ 0 and r − i ≥ 4.

Proof. When G is not linear we use Lemmas 3.9, 3.10, and 3.11. By Lemma 3.3
when G has a fracture graph that is not linear we have that G = F . When all
fracture graphs of Γ are linear but G is not linear, we have the possibilities given by
Lemma 3.11, and in that case the fracture graphs are proper subgraphs of G. Indeed
in all cases of Lemma 3.11 there is at least one vertical double edge; otherwise G
admits a fracture graph with a vertex of degree 3. By Lemma 3.3 only vertical
edges can be added to those graphs. All the remaining graphs are linear, thus are
given by Lemma 3.13. �

4. The intersection property

In Proposition 3.14, 38 families of permutation representation graphs of rank
r ≥ n−4 were constructed for sggi’s that are transitive permutation groups of degree
n, and each permutation representation graph uniquely determines a group. In what
follows we refer to those graphs by their label in Table 2. For each of these graphs
we need to check which ones yield string C-groups, i.e., which corresponding groups
satisfy the intersection property. The result of this process is the classification (up
to isomorphism and duality) of all string C-groups of rank r ≥ n−4 obtained from a
permutation group of degree n with only intransitive maximal parabolic subgroups.
The proofs of many of the cases that yield string C-groups are similar, they are
often inductive, and all make use of the following two lemmas.

Lemma 4.1 ([12]). Let Γ = 〈ρ0, . . . , ρr−1〉 be an sggi. If Γ0 := 〈ρ1, . . . , ρr−1〉
and Γr−1 := 〈ρ0, . . . , ρr−2〉 are string C-groups, ρr−1 �∈ Γr−1, and 〈ρ1, . . . , ρr−2〉 is
maximal in Γ0, then Γ is itself a string C-group.

Lemma 4.2 ([13]). If Γ = 〈ρi | i = 0, . . . , r − 1〉 and Γ∗ = 〈ρiτηi | i ∈ {0, . . . , r −
1}〉 is a sesqui-extension of Γ with respect to ρk, then:

(1) Γ∗ ∼= Γ or Γ∗ ∼= Γ× 〈τ 〉 ∼= Γ× C2.
(2) If there is an element of Γ which is written with an odd number of ρk’s and

is equal to the identity, then Γ∗ ∼= Γ× 〈τ 〉.
(3) If Γ is a permutation group, τ and ρk are odd permutations, and all other

ρi are even permutations, then Γ∗ ∼= Γ.
(4) Whenever τ /∈ Γ∗, Γ is a string C-group if and only if Γ∗ is a string C-group.
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Table 2. Possible CPR graphs of rank ≥ n− 4 string C-groups.

�������	 0 �������	 �������	 n−2 �������	 �������	 1 �������	 0 �������	 �������	 n−3 �������	

(A) �������	
2

0 �������	
2

1 �������	 2 �������	 3 �������	 �������	n−4�������	

�������	
0

�������	

(G) �������	 0

2 1

�������	 1

2

�������	 �������	n−4�������	

�������	
0

�������	

(K) �������	 1 �������	 0 �������	 �������	n−4�������	n−5�������	 (L1) �������	 0 �������	 1 �������	 0 �������	 �������	n−4�������	

(L2) �������	 2 �������	 1 �������	 0 �������	 �������	n−4�������	 (L3) �������	 2

0
�������	 1 �������	 0 �������	 �������	n−4�������	

(M1) �������	 0 �������	 �������	 i �������	i+1�������	i+2�������	i+1�������	 �������	n−4�������	 (M2) �������	 0 �������	 �������	 i �������	i+1�������	 i

i+2
�������	i+1�������	 �������	n−4�������	

(B) �������	
3

0 �������	
3

1 �������	
3

2 �������	 3 �������	 4 �������	 �������	n−5�������	

�������	
0

�������	
1

�������	

(C) �������	
2

0 �������	
2

1 �������	 2 �������	 3 �������	 �������	n−5�������	

�������	
1

�������	
0

�������	

(D) �������	 1 �������	
2

0 �������	
2

1 �������	 2 �������	 3 �������	 �������	n−5�������	

�������	
0

�������	

(E) �������	
2

0 �������	
2

1 �������	 2 �������	 3 �������	 �������	n−5�������	n−6�������	

�������	
0

�������	

(H1) �������	 0

3 1

�������	 1

3

�������	
3

2 �������	 �������	n−5�������	

�������	
0

�������	
1

�������	

(H2) �������	 0

3 2

�������	 1

32

�������	
3

2 �������	 �������	n−5�������	

�������	
0

�������	
1

�������	

(I) �������	 0

2 1

�������	 1

2

�������	 �������	n−5�������	n−6�������	

�������	
0

�������	

(N1) �������	 0 �������	 1 �������	 0 �������	 �������	n−5�������	n−6�������	

(N2) �������	 2 �������	 1 �������	 0 �������	 �������	n−5�������	n−6�������	 (N3) �������	 0

2
�������	 1 �������	 0 �������	 �������	n−5�������	n−6�������	

(O1) �������	 0 �������	 �������	 i �������	i+1�������	i+2�������	i+1�������	 �������	n−5�������	n−6�������	 (O2) �������	 0 �������	 �������	 i �������	i+1�������	i+2

i
�������	i+1�������	 �������	n−5�������	n−6�������	

(P1) �������	 1 �������	 0 �������	 1 �������	 0 �������	 �������	n−5�������	 (P2) �������	 1 �������	 2 �������	 1 �������	 0 �������	 �������	n−5�������	

(P3) �������	 1 �������	 0

2
�������	 1 �������	 0 �������	 �������	n−5�������	 (Q1) �������	 1 �������	 2 �������	 1 �������	 0 �������	 �������	n−5�������	

(Q2) �������	 3 �������	 2 �������	 1 �������	 0 �������	 �������	n−5�������	 (Q3) �������	 1

3
�������	 2 �������	 1 �������	 0 �������	 �������	n−5�������	

(R1) �������	 1 �������	 0 �������	 1 �������	 2 �������	 3 �������	 2 �������	 �������	n−5�������	 (R2) �������	 1 �������	 0 �������	 1 �������	 2 �������	 3

1
�������	 2 �������	 �������	n−5�������	

(S1) �������	 1 �������	 0 �������	 1 �������	 2 �������	 1 �������	 �������	n−5�������	 (S2) �������	 1 �������	 0 �������	 1 �������	 0

2
�������	 1 �������	 �������	n−5�������	

(T1) �������	 1 �������	 0 �������	 1 �������	 2 �������	 3 �������	 4 �������	 3 �������	 �������	n−5�������	 (T2) �������	 1 �������	 0 �������	 1 �������	 2 �������	 3 �������	 4

2
�������	 3 �������	 �������	n−5�������	

(U1) �������	 1 �������	 0 �������	 1 �������	 2 �������	 3 �������	 2 �������	 �������	n−5�������	 (U2) �������	 1 �������	 0 �������	 1 �������	 2 �������	 1 �������	 2 �������	 �������	n−5�������	

(V 1) �������	 1 �������	 0 �������	 �������	 i �������	i+1�������	i+2�������	i+1�������	 �������	n−5�������	 (V 2) �������	 1 �������	 0 �������	 �������	 i �������	i+1�������	 i

i+2
�������	i+1�������	 �������	n−5�������	

It is known that the ranks n− 1 and n− 2 of Table 2 yield string C-groups. We
now deal with ranks n− 3 and n− 4 separately.

4.1. Rank n−3. First let us consider the permutation representation graphs from
the previous section which have rank n− 3 with n ≥ 9.

Proposition 4.3. None of the string groups generated by involutions Γ described
by the permutation representation graphs (M1) or (M2, i ≥ 1) are C-groups.
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Proof. Let us first consider the group Γ := 〈ρ0, . . . , ρr−1〉 corresponding to the
graph (M1). For this group consider the intersection Γ≤i+2 and Γ≥i+1. If the in-
tersection condition held, then they would intersect in a dihedral group 〈ρi+1, ρi+2〉
of order 10 acting on the five points in the support of those two generators. How-
ever, Γ≤i+2 and Γ≥i+1 are both symmetric groups acting on i+6 points. This can
be seen, for example, since both contain a transitive subgroup acting on i+5 points
and a transposition acting on the remaining point. This implies that both groups
contain the symmetric group acting on the five points in the support of 〈ρi+1, ρi+2〉.
Therefore Γ≤i+2 ∩Γ≥i+1

∼= S5, and thus Γ fails to satisfy the intersection property.
Now consider the group (M2) with i ≥ 1. In this case we have Γ≤i+1 ∩ Γ≥i �=

Γi,i+1 by the same reasoning as before. Note that in the case i = 0 needs to be
treated separately as Γ≤i+1 is not the symmetric group anymore. �
Proposition 4.4. The string group generated by involutions Γ, described by the
permutation representation graph (L1), is a C-group.

Proof. This follows directly from Theorem 3 of [11]. �
Proposition 4.5. The sggi Γ, described by the permutation representation graph
(L2), is a C-group.

Proof. We use Lemma 4.1 to show that Γ is a C-group. The group Γr−1 is assumed
to be a C-group by induction. The group Γ0 is an intransitive group acting on two
orbits, of sizes 3 and n − 3, and thus is a subgroup of S3 × Sn−3. Furthermore,
it contains a full symmetric group acting on the n − 3 points in one orbit (as Γ
acts transitively and contains a transposition on these n− 3 points). The element
(ρ2ρ3)

3 acts trivially on this orbit and as a transposition on the smaller orbit. The
element (ρ1ρ2ρ3)

4 also acts trivially on the larger orbit and as a three-cycle on the
smaller orbit. Thus Γ0

∼= S3 × Sn−3.
To show that Γ0 is a C-group, consider the groups Γ0,1 and Γ0,r−1. The group

Γ0,1 is a sesqui-extension of a simplex and thus, by Lemma 4.2, it is a string C-group
isomorphic to C2 × Sn−4 (as (ρ2ρ3)

3 acts trivially on the orbit with n− 4 points).
The group Γ0,r−1 is a parabolic subgroup of Γr−1 and thus is a C-group. The same
arguments that gave the isomorphism type of Γ0 show that Γ0,r−1

∼= S3 × Sn−4.
Both Γ0,r−1 and Γ0,1 are thus C-groups, and Γ0,1,r−1 can similarly be shown to be
isomorphic to C2×Sn−5 which is maximal in Γ0,1. Therefore, Γ0 is a C-group, and
as Γ0,r−1 is maximal in Γ0, Γ is a C-group. �
Proposition 4.6. The sggi Γ described by the permutation representation graph
(L3) is a C-group.

Proof. The groups Γ0 and Γ0,r−1 are the same as in Proposition 4.5, and thus Γ0

is a C-group isomorphic to S3 × Sn−3, and Γ0,r−1
∼= S3 × Sn−4. The group Γr−1 is

assumed to be a C-group by induction. As Γ0,r−1 is maximal in Γ0, the group Γ is
a C-group by Lemma 4.1. �
Proposition 4.7. The sggi Γ, described by the permutation representation graph
(M2, i = 0), is a C-group.

Proof. The group Γ0 is shown to be a C-group isomorphic to Sn−1 in Lemma 21
of [11]. The group Γr−1 is assumed to be a string C-group by induction. Finally,
the group Γ0,r−1 is isomorphic to Sn−2 and thus is maximal in Γ0. Hence, by
Lemma 4.1, Γ is a string C-group. �
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Proposition 4.8. The sggi Γ described by the permutation representation graph
(A) is a string C-group.

Proof. The group Γ0 is a sesqui-extension of a group which is a string C-group
by Lemma 21 of [11] and Lemma 4.2 and thus is itself a C-group. Furthermore,
the element (ρ2ρ1ρ2ρ3ρ2)

5 acts as the identity on the larger orbit of Γ0 and as a
transposition on the smaller orbit. Therefore Γ0

∼= C2 × Sn−2; similarly, Γ0,r−1
∼=

C2 × Sn−3. The group Γr−1 is assumed to be a C-group by induction. Therefore,
since Γ0,r−1 is maximal in Γ0, Γ is a string C-group. �

Proposition 4.9. The sggi Γ, described by the permutation representation graph
(G), is a C-group.

Proof. The group Γ0 is an intransitive group acting on two orbits of sizes 2 and n−2.
Furthermore, it contains a full symmetric group acting on the larger orbit. The
element (ρ2ρ1ρ2ρ3)

3 acts as the identity on the larger orbit and as a transposition
on the smaller one. Thus Γ0

∼= C2 × Sn−2; similarly, Γ0,r−1
∼= C2 × Sn−3. The

group Γ0,1 is a sesqui-extension of the simplex and thus is a C-group isomorphic
to C2 × Sn−4; similarly, Γ0,1,r−1

∼= C2 × Sn−5. We assume that Γr−1 is a C-group
by induction, and thus Γ0,r−1 is also a C-group. Since both Γ0,1 and Γ0,r−1 are
C-groups and Γ0,1,r−1 is maximal in Γ0,1, the group Γ0 is a C-group. Now as both
Γ0 and Γr−1 are C-groups and Γ0,r−1 is maximal in Γ0, we conclude that Γ is a
string C-group. �

Proposition 4.10. The sggi Γ, described by the permutation representation graph
(K), is a C-group.

Proof. The groups Γ0 and Γr−1 are both sesqui-extensions of a group which is a
string C-group by Lemma 21 of [11] and thus are themselves C-groups. Furthermore
they are both isomorphic to C2 × Sn−2. As Γ0,r−1

∼= C2 × Sn−4 × C2 is maximal
in Γ0, the group Γ is a string C-group. �

Note that all groups corresponding to the graphs of Table 2 are transitive and
contain a transposition. Thus they are isomorphic to Sn. In Propositions 4.3
through 4.10 we proved that seven graphs, namely (A), (G), (K), (L1), (L2), (L3),
and M2 (with i = 0), correspond to rank n−3 string C-groups isomorphic to Sn for
n ≥ 9. So far we have shown that this is the complete list of rank n− 3 transitive
string C-groups with connected diagram when all maximal parabolic subgroups are
intransitive. Let us now consider the rank n− 4 case.

4.2. Rank n− 4. To show which rank n− 4 groups do not satisfy the intersection
property, we could proceed in the manner above, dealing with each rank n − 4
group ad hoc. However, for the sake of brevity, we utilize the fact that all the
proofs that confirm the actual string C-groups are inductive, with the base case
(where n = 11) checked using Magma [1]. Thus, we also use Magma to simplify
many of the proofs showing which remaining permutation representation graphs do
not yield string C-groups. In order to do this, we notice that for many of the groups,
the base case (where n = 11) gives a parabolic subgroup of the larger, higher rank
cases. Thus simply knowing that the case where n = 11 does not yield a string
C-group proves that many of the groups in question are not string C-groups for
any n ≥ 11. We point out here that although the computer is used to shorten this
article, each of the cases can be easily done by hand as well.
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Proposition 4.11. None of the string groups generated by involutions Γ, described
by the permutation representation graphs (C), (D), (H1), (H2), (P2), (P3), (Q1),
(Q3), (R1), (R2), (S1), (S2), (T1), (T2), (U1), or (U2), are C-groups.

Proof. It can easily be verified using Magma that when n = 11 none of these
graphs yield a string C-group. For larger n, let Γ = 〈ρ0, . . . , ρn−5〉 be the group
corresponding to the permutation representation graph on n points. Now consider
the group Γ≤6. This group is exactly one of the groups shown to not satisfy the
intersection by Magma above. Thus, since Γ≤6 is not a string C-group, neither
is Γ. �

Next let us consider the groups given by graphs (O1), (O2), (V 1), and (V 2).
These cannot be treated as above, as they each represent a family of groups not
only indexed by n but also by i.

Proposition 4.12. None of the string groups generated by involutions Γ, described
by the permutation representation graphs (O1), (O2, i ≥ 1), (V 1), or (V 2), are C-
groups.

Proof. Observe that the graphs (V 2) with i = 0 and (S2) are the same and that
the graphs (V 2) with i = 1 and (R2) are also the same. For the remaining cases,
the proof of this is the same as the proof of Proposition 4.3. �
Proposition 4.13. The sggi Γ, described by the permutation representation graph
(B), is a C-group.

Proof. We use Lemmas 4.1 and 4.2 to show that Γ is a C-group. The group Γr−1

is assumed to be a C-group by induction. To show that Γ0 is a C-group, we
consider the groups Γ0,1, Γ0,1,2, Γ0,r−1, Γ0,1,r−1, and Γ0,1,2,r−1. The groups Γ0,1,2

and Γ0,1,2,r−1 are sesqui-extensions of a simplex and thus, by Lemma 4.2, are both
string C-groups isomorphic to C2×Sn−6 and C2×Sn−7 respectively. Note also that
Γ0,r−1 and Γ0,1,r−1 are string C-groups as they are parabolic subgroups of Γr−1.
By Lemma 4.1, since Γ0,1,2,r−1 is maximal in Γ0,1,2 and both Γ0,1,2 and Γ0,1,r−1

are string C-groups, we conclude that Γ0,1 is also a string C-group.
The group Γ0,1 is a sesqui-extension of a string C-group isomorphic to Sn−4

(see [11]). Furthermore, the element (ρ3ρ2ρ3ρ4ρ3)
5 acts as identity on the orbit of

size n− 4 and thus Γ0,1
∼= C2 × Sn−4. Similarly Γ0,1,r−1

∼= C2 × Sn−5. Since both
Γ0,1 and Γ0,r−1 are string C-groups and Γ0,1,r−1 is maximal in Γ0,1, we conclude
that Γ0 is a string C-group.

Finally, the groups Γ0 and Γ0,r−1 are sesqui-extensions of string C-groups iso-
morphic to Sn−2 (see (A) in Table 2) and Sn−3, respectively. Furthermore, the
element (ρ1ρ2ρ3ρ2ρ3ρ4ρ3)

7 acts trivially on the larger orbit and as a transposition
on the smaller orbit. Thus Γ0

∼= C2 × Sn−2 and Γ0,r−1
∼= C2 × Sn−3. Since both

Γ0 and Γr−1 are string C-groups and Γ0,r−1 is maximal in Γ0, we conclude that Γ
is a string C-group. �
Proposition 4.14. The sggi Γ, described by the permutation representation graph
(E), is a C-group.

Proof. To show that Γ is a C-group, we consider the groups Γ0, Γr−1, Γ0,1, Γ0,r−1,
and Γ0,1,r−1. The group Γr−1 is a sesqui-extension of a string C-group isomorphic
to Sn−2 (see (A) in Table 2) and thus is itself a string C-group by Lemma 4.2.
Furthermore, the element (ρr−2ρr−3)

3 acts as identity on the larger orbit of Γr−1
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and thus Γr−1
∼= Sn−2 × C2. The group Γ0,1 is a sesqui-extension of a string C-

group isomorphic to Sn−2 (see [11]) and is thus a string C-group. Furthermore, the
element (ρ2ρ3)

3 acts trivially on the larger orbit of Γ0,1 and thus Γ0,1
∼= Sn−4×C2.

Similarly, Γ0,1,r−1
∼= Sn−6×C2×C2, which is maximal in Γ0,1. The group Γ0,r−1 is

also a string C-group as it is a parabolic subgroup of Γr−1, and thus by Lemma 4.1,
Γ0 is a string C-group. The element (ρ2ρ1ρ2ρ3ρ2)

5 acts trivially on the larger orbit
of Γ0 and thus Γ0

∼= Sn−2 × C2, and similarly Γ0,r−1
∼= Sn−4 × C2 × C2, which is

maximal in Γ0. Since both Γ0 and Γr−1 are string C-groups and Γ0,r−1 is maximal
in Γ0, by Lemma 4.1, Γ is a string C-group. �
Proposition 4.15. The sggi Γ, described by the permutation representation graph
(I2), is a C-group.

Proof. To show that Γ is a C-group, we consider the groups Γ0, Γr−1, Γ0,1, Γ0,r−1,
and Γ0,1,r−1. The group Γr−1 is a sesqui-extension of a string C-group isomorphic
to Sn−2 (see (G) in Table 2) and thus is itself a string C-group by Lemma 4.2.
Furthermore, the element (ρr−2ρr−3)

3 acts as identity on the larger orbit of Γr−1

and thus Γr−1
∼= Sn−2 × C2. The group Γ0,1 is a sesqui-extension of a string C-

group isomorphic to Sn−2 (see [11]) and is thus a string C-group. Furthermore, the
element (ρ2ρ3)

3 acts trivially on the larger orbit of Γ0,1 and thus Γ0,1
∼= Sn−4×C2.

Similarly, Γ0,1,r−1
∼= Sn−6×C2×C2, which is maximal in Γ0,1. The group Γ0,r−1 is

also a string C-group as it is a parabolic subgroup of Γr−1, and thus by Lemma 4.1,
Γ0 is a string C-group. The element (ρ2ρ1ρ2ρ3ρ4ρ3)

3 acts trivially on the larger
orbit of Γ0 and thus Γ0

∼= Sn−2 × C2, and similarly Γ0,r−1
∼= Sn−4 × C2 × C2,

which is maximal in Γ0. Since both Γ0 and Γr−1 are string C-groups and Γ0,r−1 is
maximal in Γ0, by Lemma 4.1, Γ is a string C-group. �
Proposition 4.16. The sggi Γ, described by the permutation representation graph
(N1), is a C-group.

Proof. To show that Γ is a C-group, we consider the groups Γ0, Γr−1, and Γ0,r−1.
The groups Γ0 and Γr−1 are both sesqui-extensions of string C-groups which are
isomorphic to Sn−3 and Sn−2 respectively (see [11]), and thus are themselves string
C-groups by Lemma 4.2. Furthermore, the element (ρr−2ρr−3)

3 acts as identity
on the larger orbit of Γr−1 and thus Γr−1

∼= Sn−2 × C2. Similarly (ρ1ρ2)
3 acts

as identity on the larger orbit of Γ0 and thus Γ0
∼= Sn−3 × C2 and Γ0,r−1

∼=
Sn−5×C2×C2. Since both Γ0 and Γr−1 are string C-groups and Γ0,r−1 is maximal
in Γ0, by Lemma 4.1, Γ is a string C-group. �
Proposition 4.17. The sggi Γ, described by the permutation representation graph
(N2), is a C-group.

Proof. To show that Γ is a C-group, we consider the groups Γ0, Γr−1, Γ0,1, Γ0,r−1,
and Γ0,1,r−1. The group Γr−1 is a sesqui-extension of a string C-group isomorphic
to Sn−2 (see (L2) in Table 2) and thus is itself a string C-group by Lemma 4.2.
Furthermore, the element (ρr−2ρr−3)

3 acts as identity on the larger orbit of Γr−1

and thus Γr−1
∼= Sn−2 × C2. The group Γ0,1 is a sesqui-extension of a string C-

group isomorphic to Sn−2 (see [11]) and is thus a string C-group. Furthermore, the
element (ρ2ρ3)

3 acts trivially on the larger orbit of Γ0,1 and thus Γ0,1
∼= Sn−4×C2.

Similarly, Γ0,1,r−1
∼= Sn−6×C2×C2, which is maximal in Γ0,1. The group Γ0,r−1 is

also a string C-group as it is a parabolic subgroup of Γr−1, and thus by Lemma 4.1,
Γ0 is a string C-group. Similarly to the proof of Proposition 4.5, it can be shown
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that Γ0
∼= Sn−3 × S3, and similarly Γ0,r−1

∼= Sn−5 × S3 × C2, which is maximal in
Γ0. Since both Γ0 and Γr−1 are string C-groups and Γ0,r−1 is maximal in Γ0, by
Lemma 4.1, Γ is a string C-group. �
Proposition 4.18. The sggi Γ, described by the permutation representation graph
(N3), is a C-group.

Proof. To show that Γ is a C-group, we consider the groups Γ0, Γr−1, and Γ0,r−1.
The group Γ0 was shown to be a string C-group isomorphic to S3 × Sn−3 in the
previous lemma. The group Γr−1 is a sesqui-extension of a string C-group isomor-
phic to Sn−2 (see (L3) in Table 2) and thus is itself a string C-group by Lemma 4.2.
Furthermore, the element (ρr−2ρr−3)

3 acts as identity on the larger orbit of Γr−1,
and thus Γr−1

∼= Sn−2 × C2 and Γ0,r−1
∼= S3 × Sn−5 × C2. Since both Γ0 and

Γr−1 are string C-groups and Γ0,r−1 is maximal in Γ0, by Lemma 4.1, Γ is a string
C-group. �
Proposition 4.19. The sggi Γ, described by the permutation representation graph
(O2, i = 0), is a C-group.

Proof. To show that Γ is a C-group, we consider the groups Γ0, Γr−1, and Γ0,r−1.
The group Γr−1 is a sesqui-extension of a string C-group which is isomorphic to
Sn−2 (see (M2, i = 0) in Table 2) and thus is itself a string C-group by Lemma 4.2.
Furthermore, the element (ρr−2ρr−3)

3 acts as identity on the larger orbit of Γr−1

and thus Γr−1
∼= Sn−2 × C2. Similarly, Γ0,r−1

∼= Sn−3 × C2. The group Γ0 is
a string C-group isomorphic to Sn−1 (see (N1) in Table 2). Since both Γ0 and
Γr−1 are string C-groups and Γ0,r−1 is maximal in Γ0, by Lemma 4.1, Γ is a string
C-group. �
Proposition 4.20. The sggi Γ, described by the permutation representation graph
(P1), is a C-group.

Proof. To show that Γ is a C-group, we consider the groups Γ0, Γr−1, and Γ0,r−1.
The group Γ0 is a sesqui-extension of the rank n− 5 simplex acting on n− 4 points
and thus is a string C-group by Lemma 4.2. Furthermore, the element (ρr−2ρr−3)

3

acts as identity on the larger orbit of Γ0 and thus Γ0
∼= Sn−4 × C2. Similarly,

Γ0,r−1
∼= Sn−5 ×C2. The group Γr−1 is assumed to be a C-group by induction (as

it too is of type (P1)). Since both Γ0 and Γr−1 are string C-groups and Γ0,r−1 is
maximal in Γ0, by Lemma 4.1, Γ is a string C-group. �
Proposition 4.21. The sggi Γ, described by the permutation representation graph
(Q2), is a C-group.

Proof. To show that Γ is a C-group, we consider the groups Γ0, Γr−1, Γ0,1, Γ0,r−1,
and Γ0,1,r−1.

The group Γr−1 is assumed to be a string C-group isomorphic to Sn−1 by induc-
tion. The group Γ0,1 was shown to be a C-group isomorphic to Sn−4 × S3 in the
proof of Proposition 4.5. Similarly, Γ0,1,r−1

∼= Sn−5×S3, which is maximal in Γ0,1.
The group Γ0,r−1 is also a string C-group as it is a parabolic subgroup of Γr−1, and
thus by Lemma 4.1, Γ0 is a string C-group.

The group Γ0 is a intransitive group acting on two orbits, of size 4 and n−4, and
thus is a subgroup of S4 × Sn−4. Furthermore, it contains a full symmetric group
acting on the n−4 points in one orbit. The element τ1 := (ρ2ρ3ρ4)

4 acts trivially on
this orbit and as a three-cycle on the smaller orbit. The element τ2 := (ρ1ρ2ρ3ρ4)

5
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Table 3. Examples of transitive imprimitive string C-groups of
degree n and rank n/2 + 1 for n ≤ 9.

Degree Number Structure Order Schläfli type

6 9 S3 × S3 36 [3, 2, 3]
6 11 23 : S3 48 [2, 3, 3]
6 11 23 : S3 48 [2, 3, 4]
8 45 24 : S3 : S3 576 [3, 4, 4, 3]

also acts trivially on the larger orbit and as a four-cycle on the smaller orbit. Thus
〈τ1, τ2〉 ∼= S4, and therefore Γ0

∼= S4 × Sn−4. A similar argument shows that
Γ0,r−1

∼= S4 × Sn−5, which is maximal in Γ0. Since both Γ0 and Γr−1 are string
C-groups and Γ0,r−1 is maximal in Γ0, by Lemma 4.1, Γ is a string C-group. �

In Propositions 4.11 through 4.21 we proved that nine graphs, namely (B), (E),
(I), (N1), (N2), (N3), (O2) (with i = 0), (P1), and (Q2), correspond to rank n−4
string C-groups isomorphic to Sn for n ≥ 11. So far we have shown that this is the
complete list of rank n−4 transitive string C-groups with connected diagram when
all maximal parabolic subgroups are intransitive.

5. Transitive permutation groups

In this section, we prove that, under the hypotheses of Theorem 1.1, all the
maximal parabolic subgroups must be intransitive. This permits us to conclude
the proof of Theorem 1.1. We use the following result, due to Peter J. Cameron
and the authors.

Theorem 5.1 ([5]). Let Γ be a string C-group of rank r which is isomorphic to a
transitive subgroup of Sn other than Sn or An. Then one of the following holds:

(1) r ≤ n/2.
(2) n ≡ 2 mod 4, r = n/2 + 1, and Γ is C2 � Sn/2.
(3) Γ is transitive imprimitive and is one of the examples appearing in Table 3.
(4) Γ is primitive. In this case, Γ is obtained from the permutation represen-

tation of degree 6 of S5 ∼= PGL2(5), and it is the 4-simplex of Schläfli type
[3, 3, 3].

Corollary 5.2. Let x ∈ {1, 2, 3, 4} and let n ≥ 3 + 2x when r = n − x. Let Γ
be a rank r string C-group with connected diagram and isomorphic to a transitive
permutation group of degree n. Then Γi is an intransitive group for each i =
0, . . . , r − 1.

Proof. Suppose there exists i ∈ {0, . . . , r − 1} such that Γi is transitive, and let
us show that each of the four cases of Theorem 5.1 leads to a contradiction. As
r = n−x, we have r ≥ n+3

2 and therefore the rank of Γi, which is r−1 ≥ (n+1)/2 >
n/2. Hence Γi cannot belong to case (1) of Theorem 5.1. If we are in case (2) of
Theorem 5.1, r − 1 = n/2 + 1 = n− x− 1 implies that n = 2(x+ 2) and therefore
n ∈ {6, 8, 10, 12}. But n ≡ 2 mod 4 in case (2). Hence n = 6 or n = 10 in that
case. Cases (3) and (4) imply that n = 6 or n = 8. So for one of cases (2), (3),
or (4) to happen, we need n = 6, 8, or 10. It is easily checked with Magma that
all transitive groups of degree 6 (resp. 8), not isomorphic to a symmetric or an
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alternating group have no string C-group representation of rank at least 4 (resp. 6).
So only the case n = 10 remains.

When n = 10, we are in case (2) of Theorem 5.1 and r − 1 = n − 4 = n/2 + 1.
Thus, there could exist a string C-group of rank 7 and degree 10 having a maximal
parabolic subgroup that is transitive. If that is the case, Γ is a transitive group
having a subgroup Γi of order 3840 as the group of case (2) in Theorem 5.1 is C2 �S5.
There are 45 transitive groups of degree 10 and only two of them, namely S10 and
A10, may contain subgroups of order 3840. The alternating group is excluded as
the first generator of Γi is composed of five transpositions and hence is an odd
permutation. Only S10 remains. All string C-group representations of rank 7 of
S10 can be easily computed with Magma and checked not to have any maximal
parabolic subgroup that is transitive, ruling out the case n = 10. �
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