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A LOCAL RAMSEY THEORY FOR BLOCK SEQUENCES

IIAN B. SMYTHE

Abstract. We develop local forms of Ramsey-theoretic dichotomies for block
sequences in infinite-dimensional vector spaces, analogous to Mathias’s selec-
tive coideal form of Silver’s theorem for analytic partitions of [N]∞. Under
large cardinals, these results are extended to partitions in L(R), and L(R)-
generic filters of block sequences are characterized. Variants of these results
are also established for block sequences in Banach spaces and for projections
in the Calkin algebra.

1. Introduction

Ramsey-theoretic techniques have a long history of use in Banach space theory;
see, e.g., [4]. Most relevant for the present work is Gowers’s dichotomy for infinite
block sequences in Banach spaces:

Theorem (Gowers [18], [19]). Let B be an infinite-dimensional Banach space with
a Schauder basis. If A is an analytic set of normalized block sequences, then for
any Δ > 0, there is a block sequence Y such that either

(i) every normalized block subsequence of Y is in Ac, or
(ii) II has a strategy in the Gowers game G∗[Y ] for playing into AΔ.

Loosely speaking, this result says that for A as described, there is a block se-
quence Y such that either all of Y ’s normalized block subsequences are disjoint
from A or there is a wealth of block subsequences of Y which are within a small
perturbation of A. This was used, together with work of Komorowski and Tomczak-
Jaegerman [23], to solve (affirmatively) the homogeneous space problem.

In the setting of a discrete countably infinite-dimensional vector space E over a
countable field, Rosendal isolated an “exact” version of Gowers’s dichotomy which
yields a much simplified proof of the original result:

Theorem (Rosendal [35]). If A is an analytic set of block sequences in E, then
there is a block sequence Y such that either

(i) I has a strategy in the infinite asymptotic game F [Y ] for playing into Ac,
or

(ii) II has a strategy in the Gowers game G[Y ] for playing into A.

These dichotomies are analogues, in the Banach space and vector space settings,
respectively, of the following result for partitions of [N]∞, the set of infinite subsets
of the natural numbers:
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Theorem (Silver [38]). If A ⊆ [N]∞ is analytic, then there is a y ∈ [N]∞ with
either all of its further infinite subsets disjoint from, or contained in, A.

While the theory of topological Ramsey spaces, in the sense of [40], encompasses
many variations on this result, the dichotomies of Gowers and Rosendal highlighted
above do not fall into this framework.

An important generalization of Silver’s theorem is the following “local” Ramsey
theorem showing that the witness y in the conclusion can always be found in a
given selective coideal (or “happy family”):

Theorem (Mathias [30]). Let H ⊆ [N]∞ be a selective coideal. If A ⊆ [N]∞ is
analytic, then there is a y ∈ H with either all of its further infinite subsets disjoint
from, or contained in, A.

By passing to a forcing extension resulting from the Lévy collapse of a Mahlo
cardinal, Mathias extended these results to all partitions A which are “reasonably
definable”, that is, in the definable closure of the reals L(R). Later work of Farah
and Todorcevic [14] generalized this to semiselective coideals and showed that un-
der stronger large cardinal hypotheses the passage to a forcing extension is not
necessary. The extension of Silver’s theorem to all partitions in L(R) is due to She-
lah and Woodin [37]. Similar results have been developed recently for topological
Ramsey spaces [31], [12].

The upshot of obtaining these local results is twofold: We clearly isolate the com-
binatorial properties which enable the original dichotomies, and we obtain greater
control over the witnesses to said dichotomies.

This latter point was used by Todorcevic [14] to characterize, under large car-
dinal hypotheses, selective ultrafilters as being exactly those which are generic for
([N]∞,⊆∗) over L(R). Such ultrafilters are said to possess “complete combina-
torics”, following Blass and Laflamme [25] who used this phrase to describe ultra-
filters which are generic over L(R) after collapsing a Mahlo cardinal. We instead
ask for genericity over L(R) of the ground model, at the expense of stronger large
cardinal hypotheses.

Using [35] as a starting point, we develop local versions of Gowers’s and
Rosendal’s dichotomies. When E is a countably infinite-dimensional space with
basis (en) over some countable field F , we isolate in §2 (p+)-families of block se-
quences, collections of block sequences closed under certain diagonalizations
and witnessing a weak pigeonhole principle, and in §3 establish our local form
of Rosendal’s dichotomy:

Theorem 1.1. Let H be a (p+)-family of block sequences in E. If A is an analytic
set of block sequences and X ∈ H, then there is a Y ∈ H � X such that either

(i) I has a strategy in F [Y ] for playing into Ac, or
(ii) II has a strategy in G[Y ] for playing into A.

Stronger properties of families are discussed in §4, notably strategic families.
The existence of filters with these properties is considered in §5 and §6, where their
existence is proved to be independent of the usual Zermelo–Fraenkel axioms of set
theory with the Axiom of Choice (ZFC).

In §7 we show that, under large cardinal hypothesis, strategic (p+)-filters have
complete combinatorics for infinite block sequences with the block subsequence
ordering, and generalize Theorem 1.1 to partitions in L(R) (the corresponding
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extension of Gowers’s original result is due to López-Abad [28]; see also [6]). This
requires an analysis of a Mathias-like notion of forcing used to build generic block
sequences.

Theorem 1.2. Assume that there is a supercompact cardinal. A filter G of block
sequences in E is L(R)-generic for the partial ordering of block sequences if and
only if it is a strategic (p+)-filter.

Theorem 1.3. Assume that there is a supercompact cardinal. Let H be a strategic
(p+)-family of block sequences in E. If A is a set of block sequences in L(R) and
X ∈ H, then there is a Y ∈ H � X such that either

(i) I has a strategy in F [Y ] for playing into Ac, or
(ii) II has a strategy in G[Y ] for playing into A.

In §8 we consider normed vector spaces and Banach spaces. For an infinite-
dimensional separable Banach space B with a Schauder basis, we develop the notion
of spread (p∗)-families, similar to the (p+)-families in §2, and establish the following
local form of Gowers’s dichotomy and its extension to L(R):

Theorem 1.4. Let H be a spread (p∗)-family of normalized block sequences in B
which is invariant under small perturbations. If A is an analytic set of normalized
block sequences and X ∈ H, then for any Δ > 0, there is a Y ∈ H � X such that
either

(i) every normalized block subsequence of Y is in Ac, or
(ii) II has a strategy in G∗[Y ] for playing into AΔ.

Theorem 1.5. Assume that there is a supercompact cardinal. Let H be a strategic
(p∗)-family of normalized block sequences in B which is invariant under small per-
turbations. If A is a set of normalized block sequences in L(R) and X ∈ H, then
for any Δ > 0, there is a Y ∈ H � X such that either

(i) every normalized block subsequence of Y is in Ac, or
(ii) II has a strategy in G∗[Y ] for playing into AΔ.

It is our hope that Theorem 1.4 will afford new applications of the techniques
introduced by Gowers in [19] to obtain block sequences in Banach spaces with
simultaneous properties, some captured by the target set A, while others by the
family H.

In §9 we apply these results to the study of the projections in the Calkin algebra,
the quotient of the bounded operators B(H) on a Hilbert space H by the compact
operators. The natural ordering on projections in the Calkin algebra induces an
ordering ≤ess on P∞(H), the infinite-rank projections in B(H). We give a version
of Theorem 1.2 for filters in this ordering:

Theorem 1.6. Assume that there is a supercompact cardinal. A filter G in
(P∞(H),≤ess) is L(R)-generic if and only if projections onto block subspaces are
≤ess-dense in G and the associated family of block sequences in H is a strategic
(p∗)-family.

Generic filters for (P∞(H),≤ess) induce pure states on B(H), via the theory of
quantum filters introduced by Farah and Weaver [15]. It is known that these generic
pure states are not pure on any atomic maximal abelian self-adjoint subalgebra
(essentially due to Farah and Weaver [15]), and are, thus, counterexamples to a
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conjecture of Anderson [3]. We show that any family satisfying the hypotheses of
Theorem 1.4 and generating a pure state on B(H) produces such a counterexample.
We caution that our counterexamples remain beyond ZFC.

Theorem 1.7. A spread (p∗)-family H of block sequences in H which is ≤ess-
centered induces a singular pure state ρ on B(H) which is not pure on any atomic
maximal abelian self-adjoint subalgebra.

§10 concludes the paper with questions for future investigation.
An effort has been made to keep the set-theoretic prerequisites for understanding

this work to a minimum with the hope that the material, particularly in §3 and
§8, may be used for further applications in Banach space and operator theory. We
assume a familiarity with the basic properties of Polish spaces, Borel sets, and
analytic sets (as covered in [22]) throughout. We only make explicit use of the
method of forcing and large cardinal hypotheses in §5 and §7, with occasional
reference back to that material in §8 and §9. The Banach space prerequisites
amount to little more than a familiarity with basic sequences (as covered in the
first sections of [2]).

2. Families of block sequences

Fix a countable field F , a countably infinite-dimensional F -vector space E, and
a Hamel F -basis (en) for E. Typically, we will think of F as a subfield of C, but this

is not necessary; F may even be finite. Given v ∈ E, say with v =
∑N

n=0 anen, let
supp(v) = {n ∈ N : an �= 0}, the support of v. We write n < v if n < min(supp(v))
and v < w if max(supp(v)) < min(supp(w)).

We say that a (finite or infinite) sequence (xn) of nonzero vectors in E is a block
sequence (with respect to (en)) if for all n, xn < xn+1. If �x = (x0, . . . , xn) is a
finite block sequence, let supp(�x) =

⋃n
i=0 supp(xi), and for X any block sequence,

let 〈X〉 = span(X) \ {0}. We will abuse notation and write E for E \ {0}, and use
“vector” to mean nonzero vector.

Let bb∞(E) be the collection of all infinite block sequences in E, which we
consider as a subspace of EN, where E has the discrete topology. It is easy to check
that bb∞(E) is a Gδ subset of EN, and, thus, a Polish space. Let bb<∞(E) be the
collection of all finite block sequences in E.

For X = (xn) and Y = (yn) in bb∞(E), we write X � Y if (xn) is a block
sequence with respect to (yn), sometimes called a block subsequence of Y , or equiva-
lently (for block sequences), 〈X〉 ⊆ 〈Y 〉. We writeX �∗ Y if for somem, X/m � Y ,
where X/m is the tail of X with supports above m. For �x ∈ bb<∞(E), write X/�x
for X/max(supp(�x)). Note that the orderings � and �∗ fail to be antisymmetric,
but are reflexive and transitive.

We will make repeated use of the following order-theoretic notions: A subset D
of a preorder (P,≤) (that is, ≤ is reflexive and transitive) is dense if for all p ∈ P ,
there is a q ∈ D with q ≤ p. It is, moreover, dense open, if whenever q ≤ p ∈ D,
then q ∈ D. Elements p and q in P are compatible if they have a common lower
bound in P , and are incompatible otherwise.

Compatibility in (bb∞(E),�) is equivalent to that in (bb∞(E),�∗) and we
write X⊥Y when X and Y are incompatible. The following observation shows that
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(bb∞(E),�) can be identified with a dense suborder of the lattice of all infinite-
dimensional subspaces of E. In particular, X and Y are compatible if and only if
〈X〉 ∩ 〈Y 〉 is infinite-dimensional.

Lemma 2.1. If X is an infinite-dimensional subspace of E, then X contains an
infinite block sequence.

Proof. By taking appropriate linear combinations, one can show that for anyN ∈ N,
X contains an infinite-dimensional subspace whose supports are above N . From
this, it is easy to inductively construct a block sequence in X. �

Throughout, when we speak of a family H ⊆ bb∞(E), we mean a nonempty
subset which is closed upwards with respect to �∗. For X ∈ H, we denote by
H � X = {Y ∈ H : Y � X}. A filter F ⊆ bb∞(E) is a family such that for every
X,Y ∈ F , there is a Z ∈ F with Z � X and Z � Y .

Definition 2.2.

(a) Given a descending sequence X0 � X1 � · · · in bb∞(E), we call Y ∈
bb∞(E) a diagonalization of (Xn) if for all n, Y �∗ Xn.

(b) Given a sequence (Dn) of subsets of bb∞(E), we call Y a diagonalization
of (Dn) if for each n, there is an Xn ∈ Dn such that Y �∗ Xn.

For H ⊆ bb∞(E), a set D is �-dense (open) in H if D ∩H is.

Definition 2.3. A family H ⊆ bb∞(E) is a (p)-family, or has the (p)-property, if
whenever X0 � X1 � · · · is a decreasing sequence with each Xn ∈ H, there is a
diagonalization Y ∈ H of (Xn).

It is easy to see that bb∞(E) itself is a (p)-family. We note that every (p)-
family H contains a diagonalization of any given sequence (Dn) of �-dense open
subsets in H: build a decreasing sequence (Xn) in H with each Xn ∈ Dn, then any
diagonalization Y ∈ H of (Xn) will be a diagonalization of (Dn). This can be done
below any given X ∈ H, so the set of such diagonalizations is �-dense in H. This
latter property, which could be called the “weak (p)-property”, will be sufficient for
all of the results in §3, and in particular, for Theorem 1.1.

Recall that H ⊆ [N]∞ is a coideal if it contains all cofinite sets, is closed upwards
with respect to ⊆, and whenever Y0 ∪ Y1 ∈ H, then one of Y0 or Y1 is also in H.
This last property asserts that H witnesses the pigeonhole principle. In our setting,
provided |F | > 2,1 the “obvious” formulation of the pigeonhole principle is simply
false, as the following example shows:

Example 2.4.2 Consider the case when F ⊆ R. Similar examples can be con-
structed whenever |F | > 2; cf. Theorem 7 in [26]. For a vector x ∈ E define
the oscillation osc(x) as the number of times the sign of the nonzero coefficients
of x alternate in its expansion with respect to (en). So, osc(e0 − e1 + e2) = 2,
osc(e2 + e4 − e5 + e7 − e10) = 3, etc.

Define A0 ⊆ E (respectively, A1 ⊆ E) to be the set of all x ∈ E such that osc(x)
is even (respectively, odd), and let Ai = {(xn) : x0 ∈ Ai} for i = 0, 1. The Ai’s
are clopen sets which partition bb∞(E). Moreover, the pair A0, A1 is asymptotic;

1When |F | = 2, such a pigeonhole principle for block subspaces does hold; this is essentially
Hindman’s theorem [20].

2The author would like to thank Jordi López-Abad for pointing out this example which has
the advantage of being well-defined at the level of the spanned subspaces.
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that is, for any X ∈ bb∞(E) and i = 0, 1, there is Yi � X such that Yi ∈ Ai. To
see this, suppose that X = (xn) such that X ∈ A0, so osc(x0) is even. If osc(x1) is
odd, then (xn)n≥1 � X and in A1. If osc(x1) is even, then let x = x0 − x1 if the
signs of the last nonzero coefficient in x0 and the first in x1 agree, and x = x0 + x1

otherwise. In either case, osc(x) = osc(x0) + osc(x1) + 1, so (x, x2, x3, . . .) is in A1.

The following is a weak analogue of the pigeonhole property of coideals.

Definition 2.5. Let H ⊆ bb∞(E) be a family.

(a) A subset D ⊆ bb∞(E) is H-dense below some X ∈ H if for every Y ∈ H �
X, there is a Z � Y with Z ∈ D. A set D ⊆ E is H-dense below X if
{Z : 〈Z〉 ⊆ D} is.

(b) H is full if whenever D ⊆ E (not necessarily a subspace) and X ∈ H are
such that D is H-dense below X, there is a Z ∈ H � X with 〈Z〉 ⊆ D.

Fullness allows one to upgrade {Z : 〈Z〉 ⊆ D} being H-dense below X to being
�-dense (open) belowX inH. Obviously bb∞(E) itself is a full family. If the family
in question is a filter F , we may simplify the definition of fullness by replacing X
with (en) (or any element of F). We note that any full filter is maximal; this can
be seen by applying the definition of fullness when D is a block subspace. It is
shown in Proposition 3.6 that fullness is necessary for Theorem 1.1.

Definition 2.6. A family in bb∞(E) which is full and has the (p)-property will be
called a (p+)-family. Likewise for (p+)-filter.

Lemma 2.7. (a) For X0 � X1 � · · · in bb∞(E), the set

D(Xn) = {Y : Y is a diagonalization of (Xn) or ∃n(Y⊥Xn)}
is �-dense open.

(b) For D ⊆ E and X ∈ bb∞(E), the set

DD,X = {Z : 〈Z〉 ⊆ D or ∀V � X(〈V 〉 ⊆ D → V⊥Z)}
is �-dense open below X.

Proof. (a) Take Y ∈ bb∞(E) which is compatible with all of the Xn’s. We can
build a diagonalization X = (xn) � Y by picking vectors xn ∈ 〈Xn〉 ∩ 〈Y 〉 with
xn < xn+1.

(b) Take Y � X. If there is no Z � Y such that 〈Z〉 ⊆ D, then for any
V � X with 〈V 〉 ⊆ D, it must be that V⊥Y , as otherwise any Z witnessing the
compatibility of V and Y would satisfy 〈Z〉 ⊆ D. �

Lemma 2.7 will be used to construct (p+)-filters in §5. We will see in Corollary
6.5 that the existence of full filters is independent of ZFC.

3. Games with vectors and a local Rosendal dichotomy

The Gowers game played below X ∈ bb∞(E), denoted G[X], is defined as
follows: two players, I and II, alternate with I going first and playing block sequences
Xk � X, and II responding with vectors yk ∈ 〈Xk〉 subject to the constraint
yk < yk+1. The block sequence (yk) is the outcome of a play of the game. Given
�x ∈ bb<∞(E) and X ∈ bb∞(E), the game G[�x,X] is defined exactly as G[X]
except that II is restricted to playing vectors above �x and the outcome is �x�(yk).
This is a discrete version of the game defined by Gowers in [18], [19].
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A strategy for II in G[�x,X] is a function α taking sequences (X0, . . . , Xk) of
possible prior moves by I to vectors y ∈ 〈Xk〉, with �x < α(X0, . . . , Xk−1) < y for all
k. Given a set A ⊆ bb∞(E), we say that α is a strategy in G[�x,X] for playing into
A if whenever II follows α (that is, at each turn, given as input I’s prior moves, they
play the output of α), the resulting outcome lies in A. These notions are defined
likewise for I.

The infinite asymptotic game [34], [35] played below X, denoted F [X], is defined
in a similar fashion: Two players, I and II, alternate with I going first and playing
natural numbers nk, and II responding with vectors yk ∈ 〈X/nk〉 subject to the
constraint yk < yk+1. Again, (yk) is the outcome of a play of the game. The game
F [�x,X] is defined as above, as are strategies for I and II, and the notion of having
a strategy for playing into a set.

It is important to note that plays of F [�x,X] can be considered as plays of G[�x,X]
where I is restricted to playing tail block subsequences of X. Consequently, if II
has a strategy in G[�x,X] for playing into a set A, then II has such a strategy in
F [�x,X] as well. Similarly, if I has a strategy in F [�x,X] for playing into A, then
they have such a strategy in G[�x,X].

The following generalizes the notion of strategically Ramsey given in [35], where
H was taken to be all of bb∞(E).

Definition 3.1. For H ⊆ bb∞(E) a family, we say that a subset A ⊆ bb∞(E) is
H-strategically Ramsey if for all �y ∈ bb<∞(E) and X ∈ H, there is a Y ∈ H � X
such that either

(i) I has a strategy in F [�y, Y ] for playing into Ac, or
(ii) II has a strategy in G[�y, Y ] for playing into A.

Note that consequences (i) and (ii) are mutually exclusive by our comments
above. The key fact about H-strategically Ramsey sets is that the witness, Y in
the above definition, can be found in H.

Our goal for the remainder of this section is to outline the proof that, for any
(p+)-family H, analytic sets are H-strategically Ramsey, thereby establishing The-
orem 1.1. Much of what follows closely hews to [35] and is a variation of the
combinatorial forcing technique used in [40].

Definition 3.2. LetH be a family and let A ⊆ bb∞(E) be given. For �y ∈ bb<∞(E)
and Y ∈ H, we say that

(1) (�y, Y ) is good (for A) if II has a strategy in G[�y, Y ] for playing into A;
(2) (�y, Y ) is bad (for A) if for all Z ∈ H � Y , (�y, Z) is not good;
(3) (�y, Y ) is worse (for A) if it is bad and there is an n such that for every

v ∈ 〈Y/n〉, (�y�v, Y ) is bad.

Reference to A and H will be suppressed where understood.

Lemma 3.3. If H is a (p+)-family and A ⊆ bb∞(E), then for every �x ∈ bb<∞(E)
and X ∈ H, there is a Y ∈ H � X such that either

(i) (�x, Y ) is good, or
(ii) I has a strategy in F [�x, Y ] for playing into

{(zn) : ∀n(�x�(z0, . . . , zn), Y ) is worse}.
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Proof. Observe that if (�y, Y ) is good/bad/worse and Z �∗ Y is in H, then (�y, Z)
is also good/bad/worse. It is immediate that for each �y, the set

D�y = {Y ∈ H : (�y, Y ) is either good or bad}
is �-dense open in H.

Claim. If (�y, Y ) is bad, then for all Z ∈ H � Y , there is a V � Z such that for all
x ∈ 〈V/�y〉, (�y�x, Y ) is not good.

Proof of claim. Let (�y, Y ) be bad. Towards a contradiction, suppose that there is
some Z ∈ H � Y such that for all V � Z, there is an x ∈ 〈V/�y〉 such that (�y�x, Y )
is good. We claim that (�y, Z) is good. If I plays V � Z, then by supposition there
is some x ∈ 〈V/�y〉 such that (�y�x, Z) is good. Let II play that x and from then
on follow the strategy given from (�y�x, Z) being good. This is contrary to (�y, Y )
being bad. �(claim.)

Claim. For each �y, the set

E�y = {Z ∈ H : (�y, Z) is either good or worse}
is �-dense open in H.

Proof of claim. Fix �y and let Y ∈ H. Since the sets D�x are dense in H and there
are only countably many �x, the (p)-property allows us to diagonalize all of them
within H and assume that for all �x, (�x, Y ) is either good or bad. Suppose that
(�y, Y ) is bad. Let D = {x : (�y�x, Y ) is not good}. By the previous claim, D is
H-dense below Y . Since H is full, there is a Z ∈ H � Y such that 〈Z〉 ⊆ D. If
z ∈ 〈Z〉, then (�y�z, Z) is not good, hence, bad, by our choice of Y . Thus, (�y, Z) is
worse. �(claim.)

We can now prove the lemma. By the previous claim, we have a Y ∈ H �
X so that for all �y, (�x��y, Y ) is either good or worse. If (�x, Y ) is good, we are
done, so suppose that (�x, Y ) is worse. We will describe a strategy for I in F [�x, Y ]:
Suppose that at some point in the game (z0, . . . , zk) has been played by II so that
(�x�(z0, . . . , zk), Y ) is worse. Then, there is some n such that for all z ∈ 〈Y 〉, if
n < z, then (�x�(z0, . . . , zk)�z, Y ) is bad, hence, worse. Let I play n. �

Lemma 3.4 (cf. Lemma 2 in [35]). Let H ⊆ bb∞(E) a (p+)-family. Then, open
sets are H-strategically Ramsey.

Proof. Let A ⊆ bb∞(E) be open. Given �x ∈ bb<∞(E) and X ∈ H, by Lemma 3.3,
there is a Y ∈ H � X such that either (�x, Y ) is good, in which case we are done,
or I has a strategy in F [�x, Y ] to play (zn) such that for all n, (�x�(z0, . . . , zn), Y ) is
worse. In the latter case, if I follows this strategy, as II builds (zn), for no m can II
have a strategy in G[�x�(z0, . . . , zm), Y ] to play in A. Since A is open, this means
that �x�(z0, z1, . . .) /∈ A and I has a strategy for playing into Ac. �

Proof (sketch) of Theorem 1.1. The proof closely follows that of Theorem 5 in
[35], where H = bb∞(E). The idea of the proof is that, given a Souslin scheme
{As}s∈N<∞ for an analytic set A, we can use Lemma 3.4 and diagonalization to find
a Y ∈ bb∞(E) such that if I does not have a strategy in F [Y ] for playing into Ac,
then in G[Y ], II can build a sequence (zk) such that I continues to have no strat-
egy in F [(z0, . . . , zk), Y ] for playing into Ac

s, where s is an initial segment of some
branch y in NN. y will witness that II’s strategy has produced an outcome in A.
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We omit the details, except to say that the arguments in [35] can be modified for
our result simply by ensuring that the block sequences used are taken in H. This
can be done, in each instance, as a block sequence is obtained either by applying
the result for open sets or by diagonalization. �

Theorem 1.1 is consistently sharp and necessarily asymmetric, as there is a coan-
alytic counterexample (for H = bb∞(E)) in L [28].3 In particular, the collection of
H-strategically Ramsey sets may fail to be a σ-algebra. It is, however, closed under
countable unions. Again, the proof is nearly identical to that of the corresponding
result in [35] and is omitted.

Theorem 3.5 (cf. Theorem 9 in [35]). Let H ⊆ bb∞(E) be a (p+)-family. Then,
the collection of H-strategically Ramsey sets is closed under countable unions. �

We note that fullness is a necessary assumption for our results:

Proposition 3.6. If H ⊆ bb∞(E) is a family for which clopen sets are
H-strategically Ramsey, then H is full.

Proof. Given D ⊆ E, H-dense below some X ∈ H, let D = {(zn) : z0 ∈ D}, a
clopen subset of bb∞(E). For no Y ∈ H � X can II have a strategy into Dc:
Consider the round of G[Y ] where I starts by playing some Z � Y with 〈Z〉 ⊆ D.
Since Dc is H-strategically Ramsey, there is a Y ∈ H � X such that I has a strategy
σ in F [Y ] for playing into D. Let Z = Y/σ(∅) ∈ H. Since σ is a strategy for playing
into D, 〈Z〉 ⊆ D. �

4. Stronger properties of families

If an element Y in a family H witnesses Theorem 1.1, then either Ac or A is
H-dense below Y , depending on which half of the dichotomy holds. However, it
would be desirable to ensure that H itself meets whichever one of Ac or A the
conclusion of the dichotomy provides. To this end, we consider stronger properties
of families, the first of which is based on the original definition of selectivity (or
being “happy”) given in [30].

Definition 4.1.

(a) For (X�x)�x∈bb<∞(E) generating a filter in bb∞(E), we say that X ∈ bb∞(E)
strongly diagonalizes (X�x) if X/�x � X�x whenever �x � X.

(b) A family H ⊆ bb∞(E) is a strong (p)-family, or has the strong (p)-property,
if whenever (X�x)�x∈bb<∞(E) generates a filter in H, there is a Y ∈ H which
strongly diagonalizes (X�x).

The strong (p)-property implies the (p)-property: Take X0 � X1 � · · · in H,
and define X�x = X|�x| for �x ∈ bb<∞(E). Any X strongly diagonalizing (X�x) will
diagonalize (Xn).

3This counterexample is to Gowers’s theorem, but the discussion in §5 of [35] shows that this
also yields a counterexample to Rosendal’s dichotomy.
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As in Lemma 2.7, it is useful for constructing families with the strong (p)-
property to know that it corresponds to certain �-dense sets.

Lemma 4.2. For (X�x)�x∈bb<∞(E) generating a filter in bb∞(E), the set

{Y : Y is a strong diagonalization of (X�x)�x∈bb<∞(E), or

{Y } ∪ (X�x)�x∈bb<∞(E) does not generate a filter}
is �-dense.

Proof. Fix X ∈ bb∞(E), and suppose that {X}∪ (X�x) generates a filter. We build
a Y � X which strongly diagonalizes (X�x): Pick any y0 ∈ 〈X〉 ∩ 〈X∅〉. Since X,
X∅, and X(y0) generate a filter, there is a y1 ∈ 〈X〉 ∩ 〈X∅〉 ∩ 〈X(y0)〉 with y0 < y1.
Continue in this fashion. �

The following result connects the strong (p)-property to the infinite asymptotic
game and is based on a characterization of selective ultrafilters (Theorem 4.5.3
in [7]).

Theorem 4.3. If H ⊆ bb∞(E) is a strong (p)-family, then for no X ∈ H does I
have a strategy in F [X] for playing into Hc.4

Proof. Let σ be a strategy for I in F [X] for playing into Hc, where X ∈ H. Towards
a contradiction, suppose that H has the strong (p)-property. Define sets A�x ⊆ H
as follows: A∅ = {X/σ(∅)} and inductively, for �x = (x0, . . . , xn−1), A�x is the set of
all X/m where m is played by I following σ in the first n rounds of F [X], as II plays
x0, x1, . . . , xn−1. In the case that elements of a given �x fail to be valid moves for II
against σ, let A�x = A�x′ where �x′ is the maximal initial segment of �x consisting of
valid moves. Then, for all �x, A�x is finite and A�x ⊆ A�y whenever �x � �y.

For each �x, let M�x = max{m : X/m ∈ A�x} and Y�x = X/M�x. Clearly, (Y�x)
generates a filter in H. By the strong (p)-property, there is a Y = (yn) ∈ H � X
such that Y/�y � Y�y for all �y � Y .

Consider the play of F [X] wherein I follows σ and II plays y0, y1, and so on.
We claim that this is a valid sequence of moves for II. Note that y0 ∈ 〈Y/∅〉 ⊆
〈Y∅〉 ⊆ 〈X/σ(∅)〉, so y0 is a valid move. Inductively, suppose that (y0, . . . , yk)
is a valid sequence of moves. We have yk+1 ∈ 〈Y/(y0, . . . , yk)〉 ⊆ 〈Y(y0,...,yk)〉 ⊆
〈X/σ(y0, . . . , yk)〉, where the last containment uses our induction hypothesis. Thus,
yk+1 is a valid move. Since the resulting outcome in this play is in H, we have a
contradiction. �

Equivalently, Theorem 4.3 says that ifH is a strong (p)-family and σ is a strategy
for I in F [X], for X ∈ H, then there is an outcome of σ in H.

Lemma 4.4. If D ⊆ bb∞(E) is �-dense open below X ∈ bb∞(E), then

(a) II has a strategy in F [X] for playing into D, and
(b) I has a strategy in G[X] for playing into D.

Proof. For F [X], take Y � X in D, and let II always play vectors in Y . For G[X],
take Y � X in D, and let I simply play Y repeatedly. �

4When F is a strong (p)-filter, one can improve the conclusion to the following: for no X ∈ F
does I have a strategy in GF [X] for playing into Fc. Here, GF [X] is the variant of the Gowers
game below X where I is restricted to playing elements of F . See §3.11 of [39].
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It follows from Lemma 4.4, and Theorems 1.1 and 4.3, that whenever H ⊆
bb∞(E) is a strong (p+)-family and D is a coanalytic �-dense open set, then
H ∩ D �= ∅. In particular, strong (p+)-families meet all �-dense open Borel sets.
This is a special case of Theorem 1.2. The following definition is a counterpart to
Theorem 4.3 for II in G[X].

Definition 4.5. A family H ⊆ bb∞(E) is strategic if whenever X ∈ H and α is a
strategy for II in G[X], there is an outcome of α which is in H.

As above, if H ⊆ bb∞(E) is a strategic (p+)-family and D ⊆ bb∞(E) is an
analytic �-dense open set, then D∩H �= ∅. As a consequence for (p+)-filters, being
strategic subsumes the strong (p)-property.

Proposition 4.6. If F ⊆ bb∞(E) is a strategic (p+)-filter, then F is also a strong
(p)-filter.

Proof. Suppose that F is as described and (X�x)�x∈bb<∞(E) is contained F . Let D be
the set given in Lemma 4.2, so that the �-downwards closure of D is a �-dense open
set. Moreover, D is easily seen to be Borel and its �-downwards closure analytic.
By the comments above, it follows that F ∩D �= ∅, and any Y ∈ F ∩ D must be a
strong diagonalization of (X�x). �

In §5 we will construct (under set-theoretic hypotheses) strategic (p+)-filters.
To this end, we again need to know that certain sets are �-dense, but also that
there are not “too many” of them. If α is a strategy for II in G[X], then the set of
outcomes which result from α, denoted by [α,X], is �-dense below X. However, as

strategies are functions from finite sequences in bb∞(E) to vectors, there are 22
ℵ0

many of them.
One way to resolve this is to “finitize” the Gowers game as in [5]. Given X ∈

bb∞(E), the finite-dimensional Gowers game below X, denoted byGf [X], is defined
as follows: Two players, I and II, alternate with I going first and playing a nonzero

vector x
(0)
0 ∈ 〈X〉. II responds with either a nonzero y0 ∈ 〈x(0)

0 〉 or 0. If II plays y0,
then the game “restarts” with I playing a nonzero vector x

(1)
0 ∈ 〈X〉. If II plays 0,

then I must play a nonzero vector x
(0)
1 ∈ 〈X/x

(0)
0 〉, to which II again responds with

either a nonzero vector y0 ∈ 〈x(0)
0 , x

(0)
1 〉 or 0, and so on. The nonzero plays of II are

required to satisfy yn < yn+1 and the outcome is the sequence (yn). The notion of
strategy for II in Gf [X] is defined in the obvious way (with the added requirement
that the outcome must be infinite) and we denote by [α,X]f the corresponding set
of outcomes.

Lemma 4.7. If α is a strategy for II in G[X], then there is a strategy α′ for II in
Gf [X] such that [α′, X]f ⊆ [α,X]. Moreover, [α′, X]f is still �-dense below X.

Proof. The proof is identical to the (⇐) direction of Theorem 1.2 in [5]. �
It is easy to see that strategies α for II in Gf [X] are coded by reals and [α,X]f

is an analytic set. This will suffice for our constructions in §5.

5. Constructions of filters in bb∞(E)

In this section we show how to construct filters F ⊆ bb∞(E) having all of
the properties discussed in §2 and §4. These constructions use either assumptions
about certain “cardinal invariants” (cf. [10]) which hold consistently with ZFC, or
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the method of forcing. We will see in Corollary 6.5 that we cannot hope for a
construction in ZFC alone.

Definition 5.1.

(a) A tower (of length κ) in bb∞(E) is a sequence (Xα)α<κ such that α < β < κ
impliesXβ �∗ Xα and there is noX ∈ bb∞(E) withX �∗ Xα for all α < κ.

(b) t∗ is the minimum length of a tower in bb∞(E).

t∗ is a regular cardinal and, moreover, uncountable as bb∞(E) has the (p)-
property. Thus, the continuum hypothesis (CH) implies that t∗ = 2ℵ0 .

We use the following notational conventions for versions of Martin’s axiom: for
κ < 2ℵ0 , MA(κ) is the forcing axiom for meeting κ-many dense subsets of posets
having the countable chain condition (ccc), MA is ∀κ < 2ℵ0(MA(κ)), and MA(σ-
centered) is MA restricted to σ-centered posets.

Lemma 5.2 (Lemma 5 in [17]). (MA(σ-centered)) If L ⊆ bb∞(E) is linearly
ordered with respect to �∗ and |L| < 2ℵ0 , then there is a Y such that Y �∗ X for
all X ∈ L. In particular, t∗ = 2ℵ0 .

Consequently, the following theorem holds under CH or MA(σ-centered):

Theorem 5.3. (t∗ = 2ℵ0) There exists a strategic (p+)-filter in bb∞(E).

Proof. Fix enumerations

(i) {Xξ : ξ < 2ℵ0} = bb∞(E),
(ii) {(Xξ

n) : ξ < 2ℵ0} of all �∗-decreasing sequences (Xξ
n) in bb∞(E),

(iii) {Dξ : ξ < 2ℵ0} of all subsets Dξ of E, and
(iv) {[αξ, Xξ]f : ξ < 2ℵ0} of all sets [α,X]f of outcomes of α, where α is a

strategy for II in Gf [X].

This can be done in (i) and (ii) since |bb∞(E)| = 2ℵ0 , in (iii) since E is countable,
and in (iv) since the strategies α are coded by reals.

Define sets for ξ, γ < 2ℵ0 , with 〈·, ·〉 a bijection 2ℵ0 × 2ℵ0 → 2ℵ0 ,

Dξ = {Y : Y is a diagonalization of (Xξ
n) or ∃n(Y⊥Xξ

n)},
F〈ξ,γ〉 = {Y : 〈Y 〉 ⊆ Dξ or ∀V � Xγ(〈V 〉 ⊆ Dξ ⇒ V ⊥ Y )},

Sξ = {Y : Y ∈ [αξ, Xξ]f or Y ⊥ Xξ}.

Note that the first two sets above are �-dense in bb∞(E) by Lemma 2.7, and the
third is �-dense by Lemma 4.7.

We construct a �∗-descending chain (Yη) of length 2ℵ0 in bb∞(E) by transfinite
induction on η. For η = 0, pick Y0 below conditions in each of D0, F0, and S0.
If we have already defined Yβ for all β < η, pick Yη below each Yβ for β < η and
below conditions in each of Dη, Fη, and Sη. This is possible since t∗ > η.

Let F be the filter generated by {Yη : η < 2ℵ0} in bb∞(E). To see that F is a
(p)-filter, suppose that (Xξ

n) is a �∗-decreasing sequence in F . Let Y ∈ F ∩ Dξ.
It cannot be the case that Y⊥Xξ

n for any n, as F is a filter, so Y must be a
diagonalization of (Xξ

n). Similarly, using the sets Sξ, F is strategic.
To see that F is full, suppose Dξ ⊆ E and Xγ ∈ F are such that Dξ is F-dense

below Xγ . Take Z ∈ F ∩ F〈ξ,γ〉 �= ∅. By assumption, there is a Y ′ below both Y
and Xγ such that 〈Y ′〉 ⊆ Dξ, but obviously it cannot be that Y ′ ⊥ Y . Thus, it
must be that 〈Y 〉 ⊆ Dξ. �
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The next result allows us to obtain (p+)-filters generically by forcing with
(bb∞(E),�∗). Since the dense sets involved are all definable in a simple way
from real parameters, they are contained in L(R). In particular, this establishes
(without any large cardinals) the (⇒) direction of Theorem 1.2.

Lemma 5.4. For H ⊆ bb∞(E) a (p+)-family forcing with (H,�∗) adds no new
reals and if G ⊆ H is L(R)-generic for (H,�∗), then G will be a (p+)-filter. If H
is strategic (has the strong (p)-property, respectively), then G will also be strategic
(have the strong (p)-property, respectively).

Proof. H being a (p)-family implies that (H,�∗) is σ-closed, and, thus, adds no
new reals. We use this fact implicitly in what follows. Let G be as described. To
see that G is full, let D ⊆ E be G-dense below some X ∈ G. Translating this into
the forcing language, there must be an X ′ ∈ G, which we may assume is below X,
with

X ′ �H ∀Y ∈ Ġ � X∃Z � Y (〈Z〉 ⊆ Ď).

We claim that the set D = {Z : 〈Z〉 ⊆ D} is �-dense below X ′ in H. If not,
then by fullness of H, D must fail to be H-dense below X ′. That is, there is some
Y ∈ H � X ′ with no Z � Y such that 〈Z〉 ⊆ D. Then, Y fails to force the statement
in the displayed line above, contrary to Y � X ′. Since X ′ ∈ G and D is �-dense
below X ′ in H, G ∩ D �= ∅, showing that G is full. The remainder of the proof
consists of observing that the relevant �-dense sets in Lemmas 2.7, 4.2, and 4.7 are
�-dense in H under these hypotheses. �

6. Connections to filters on a countable set

We would like to relate the filters discussed thus far to filters of subsets of a
countable set. In our case, the countable set will be E \ {0}, but we will call these
filters on E.

Definition 6.1. A filter F on E is a block filter if it has a base consisting of sets
of the form 〈X〉 for X ∈ bb∞(E).

It is tempting to define a block ultrafilter on E to be a block filter on E which
is also an ultrafilter. However, unless |F | = 2, such objects do not exist: Let F be
a block filter on E. For A0, A1 ⊆ E given in Example 2.4, note that E = A0 ∪ A0.
But, for every X ∈ bb∞(E), 〈X〉 ∩A0 �= ∅ and 〈X〉 ∩A1 �= ∅, so neither set can be
in F .

Let FIN be the set of nonempty finite subsets of N. An ultrafilter U on FIN is
said to be an ordered union ultrafilter [11] if it has a base consisting of sets of the
form 〈X〉 = {xn0

∪· · ·∪xnk
: n0 < · · · < nk}, where X = (xn) is a block sequence in

FIN (that is, for all n, max(xn) < min(xn+1)). The set of infinite block sequences

in FIN is denoted by FIN[∞]. We have, perhaps, overloaded the notation 〈X〉, but
its intended interpretation should be clear from context. If X = (xn) ∈ bb∞(E),

denote by X̃ = (supp(xn)) ∈ FIN[∞].
If |F | = 2, then E\{0} can be identified with FIN via each vector’s support. Sums

of vectors in block position correspond to unions of their supports. As a consequence
of Hindman’s theorem (Corollary 3.3 in [20]), one can construct (under hypotheses
such as CH or MA) ordered union ultrafilters on FIN; these will correspond to block
ultrafilters on E.
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For the remainder of this section we will consider a general countable field F .
The map which takes a vector to its support will provide the connection between
this general setting and FIN.

Definition 6.2. Let F be a block filter on E.

(a) A subset D ⊆ E is F-dense if for every 〈X〉 ∈ F , there is a Z � X with
〈Z〉 ⊆ D.

(b) F is full if whenever D ⊆ E is F-dense, we have that D ∈ F .

As in the case for filters in bb∞(E), every full block filter on E is maximal with
respect to containment amongst block filters.

The map s : X �→ 〈X〉 takes block sequences to subsets of E. It is straightforward
to show that the image of a (full) filter in bb∞(E) under s generates a (full) block
filter on E and that the inverse image of a (full) block filter on E is a (full) filter in
bb∞(E). By Theorem 5.3 (or Lemma 5.4), it is consistent that such filters exist.

Theorem 6.3. Suppose that F is a full block filter on E, and let

supp(F) = {A ⊆ FIN : ∃F ∈ F(A ⊇ {supp(v) : v ∈ F})}.

Then, supp(F) is an ordered union ultrafilter on FIN.

Proof. Let A,B ∈ supp(F), say with A ⊇ {supp(v) : v ∈ F} and B ⊇ {supp(v) :
v ∈ G}, for F,G ∈ F . Then,

A ∩B ⊇ {s : ∃v ∈ F∃w ∈ G(s = supp(v) = supp(w))}
⊇ {supp(v) : v ∈ F ∩G},

which is in supp(F), as F ∩G ∈ F . Since supp(F) is upwards closed by definition,
we have that supp(F) is a filter on FIN. As F is a block filter, it follows that

supp(F) has a base consisting of sets 〈X̃〉 for X ∈ bb∞(E).
It remains to show that supp(F) is an ultrafilter. Take A ⊆ FIN such that for

all B ∈ supp(F), A ∩B �= ∅. Let

D0 = {v ∈ E : supp(v) ∈ A},
D1 = {v ∈ E : supp(v) /∈ A}.

Towards a contradiction, suppose that for all 〈X〉 ∈ F , there is a 〈Z〉 ⊆ 〈X〉 with
〈Z〉 ⊆ D1. Since F is full, there is a 〈Z〉 ∈ F with 〈Z〉 ⊆ D1. Then, 〈Z̃〉 ∈ supp(F),

but A ∩ 〈Z̃〉 = ∅, a contradiction.
Thus, there is some 〈X〉 ∈ F such that for no 〈Z〉 ⊆ 〈X〉 is 〈Z〉 ⊆ D1. Take

〈Y 〉 ∈ F � 〈X〉. By Hindman’s theorem applied to 〈Ỹ 〉, there is a Z̃ ∈ FIN[∞] such

that 〈Z̃〉 ⊆ 〈Ỹ 〉 and either (i) 〈Z̃〉 ⊆ A, or (ii) 〈Z̃〉 ⊆ 〈Ỹ 〉 \A.

Take any Z � Y in bb∞(E) whose supports agree with Z̃, then if (ii) holds,

〈Z〉 ⊆ D1, contrary to what we know about 〈X〉. Thus, 〈Z̃〉 ⊆ A and 〈Z〉 ⊆ D0.
Since 〈Y 〉 ∈ F � 〈X〉 was arbitrary, we have that D0 is F-dense. As F is full,

we can find a 〈Z〉 ∈ F with 〈Z〉 ⊆ D0. Then, 〈Z̃〉 ∈ supp(F) and 〈Z̃〉 ⊆ A, so
A ∈ supp(F). �
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As a consequence of Theorem 6.3 and the Corollary on p. 87 of [11] we have the
following:

Corollary 6.4. If F is a full filter on E, then

min(F) = {{n = min(supp(v)) : v ∈ F} : F ∈ F},
max(F) = {{n = max(supp(v)) : v ∈ F} : F ∈ F}

are selective ultrafilters on N.

As it is consistent that there are no selective ultrafilters [24], we have the follow-
ing:

Corollary 6.5. The existence of full block filters on E, and, thus, full filters in
bb∞(E), is independent of ZFC.

An ordered union ultrafilter U on FIN is stable [9] if whenever (〈Xn〉)n∈N is

contained in U , for Xn ∈ FIN[∞], there is an 〈X〉 ∈ U with 〈X〉 ⊆∗ 〈Xn〉 for all
n. Much as selective ultrafilters on N provide local witnesses to Silver’s theorem,
selective ultrafilters on FIN witness a theorem of Milliken [32] on analytic partitions

of FIN[∞]. It is easy to see, given Theorem 6.3, that (p+)-filters in bb∞(E) induce
stable ordered union ultrafilters on FIN. See [12], [31], and [42] for (equivalent)
alternate definitions of “selective ultrafilter” on FIN.

7. Extending to universally Baire sets and L(R)

In this section, we show that under additional set-theoretic hypotheses, Theorem
1.1 can be extended beyond the analytic sets to obtain Theorems 1.2 and 1.3,
provided the families involved are strategic. We begin by noting the following
result:

Theorem 7.1 (Rosendal [35]). (MA(ℵ1)) A union of ℵ1-many strategically Ramsey
sets is strategically Ramsey.

The above theorem, plus existing results in the literature, yields the following:

Theorem 7.2. Assume that there is a supercompact cardinal.5 Every subset of
bb∞(E) in L(R) is strategically Ramsey.6

Proof. We follow the proof of Theorem 4 in [28]. The existence of a supercompact
cardinal implies that L(R) is a Solovay model in the sense of [13], and Lemma
4.4 of the same reference shows that every set of reals in such a model is a union
of ℵ1-many analytic sets. By Theorem 7.1, under MA(ℵ1) a union of ℵ1-many
strategically Ramsey sets is again strategically Ramsey. Since supercompactness
implies (see [37]) that L(R)V[G] is elementarily equivalent to L(R) for any set-
forcing extension V[G], and one can force MA(ℵ1) in a way which preserves ℵ1, the
same is true in L(R). As analytic sets are strategically Ramsey by Theorem 1.1,
every set in L(R) is as well. �

5Throughout this section, the assumption of supercompactness can be weakened to the exis-
tence of a proper class of Woodin cardinals; see [27]. We use supercompactness due to its central
role in the literature and verbal brevity.

6Noé de Rancourt has announced a different proof of this result using methods inspired by
determinacy considerations.
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Following [33], given a notion of forcing Q and a complete metric space (X, d),

we say that a Q-name ẋ is a nice Q-name for an element of Ẋ if there is a countable
collection D of dense subsets of Q such that ẋ(G) (the interpretation of ẋ by G) is
an element of X whenever G is a D-generic filter for Q. One can show that if ẏ is a
Q-name and p �Q ẏ ∈ Ẋ, then there is a nice Q-name ẋ for an element of Ẋ such
that p �Q ẏ = ẋ.

A subset A ⊆ X is universally Baire if whenever Q is a notion of forcing, there
is a Q-name Ȧ such that for every nice Q-name ẋ for an element of Ẋ, there is a
countable collection D of dense subsets of Q such that

(1) {q ∈ Q : q decides ẋ ∈ Ȧ} is in D;
(2) whenever G is D-generic for Q, ẋ(G) is in X and ẋ(G) is in A if and only

if there is a q ∈ G such that q � ẋ ∈ Ȧ.

The following result will be the main tool for going beyond the analytic sets.

Theorem 7.3 (Feng, Magidor, and Woodin [16]). Assume that there is a super-
compact cardinal. Every set of reals in L(R) is universally Baire.

Consider the following variant of the infinite asymptotic game: If A ⊆ E is an
infinite-dimensional subspace of E, we define F [A] to be the game in which I plays
natural numbers nk, which we assume are increasing, and II plays vectors yk ∈ A
subject to the constraint nk < yk < yk+1. By Lemma 2.1, this is well-defined. One
can define outcome, strategies, and the game F [�x,A] exactly as in §3. Note that
the game F [�x, 〈X〉] in this sense, where X ∈ bb∞(E), coincides with F [�x,X] from
§3, and we will denote it as such.

Suppose that σ is a strategy for I in F [A] and τ a strategy for I in F [B], where
B ⊆ A are infinite-dimensional subspaces. We write τ ≥ σ if for all �y in the domain
of τ , τ (�y) ≥ σ(�y) (σ(�y) is well-defined by induction). Observe that if τ ≥ σ, then
whenever (yn) is an outcome of F [B] where I follows τ , then it is also an outcome
of F [A] where I follows σ. In particular, if σ is a strategy for playing into a set A,
then so is τ .

If σ is a strategy for I in F [A] and B ⊆ A as above, then denote by σ � B the
restriction of σ to the part of its domain contained in B, a strategy for I in F [B].
Clearly, σ � B ≥ σ. Let ε be the strategy in F [E] where I plays n on the nth move.
Then, for all A and strategies σ for I in F [A], we have that σ ≥ ε � A.

Definition 7.4. Let P be the set of all triples (�x,A, σ), where �x ∈ bb<∞(E), A is
an infinite-dimensional subspace of E, and σ is a strategy for I in F [�x,A]. We say
that (�y,B, τ ) ≤ (�x,A, σ) if

(i) �y = �x�(y0, . . . , yk−1) where y0, . . . , yk−1 are the first k moves by II in a
round of F [�x,A] where I follows σ;

(ii) B ⊆ A;
(iii) τ (·) ≥ σ((y0, . . . , yk)

� · ).
The ordering ≤ on P is reflexive and transitive, though fails to be antisymmetric.

We treat P as a notion of forcing. Note that P has a maximal element, namely,
(∅, E, ε). If X ∈ bb∞(E), we write (�x,X, σ) for (�x, 〈X〉, σ). If H ⊆ bb∞(E) is a
family, let

P(H) = {(�x,A, σ) ∈ P : ∃X ∈ H(〈X〉 ⊆ A)}
be a suborder of P. Note that if H ⊆ bb∞(E) is a family, then the set of conditions
(�x,X, σ) where X ∈ H is dense in P(H).
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For (�x,A, σ) ∈ P, let

[�x,A, σ] = {Y ∈ bb∞(E) : Y is an outcome of F [�x,A] where I follows σ}.
We collect some basic properties of P in the following lemma:

Lemma 7.5.

(a) If (�y,B, τ ) ≤ (�x,A, σ) in P, then [�y,B, τ ] ⊆ [�x,A, σ]. Conversely, if
[�y,B, τ ] ⊆ [�x,A, σ], then (�y,B, τ ) is below (�x,A, σ) in the separative quo-
tient of P.

(b) If (�x,A, σ) ∈ P, then the set [�x,A, σ] is (topologically) closed.
(c) If F ⊆ bb∞(E) is a filter, then P(F) is σ-centered.

Proof. (a) The first part follows from our observations about the ordering on strate-
gies for I. For the converse, suppose that [�y,B, τ ] ⊆ [�x,A, σ]. Then, every outcome
of F [�y,B] where I follows τ is an outcome of F [�x,A] where I follows σ. In particu-
lar, �y = �x�(y0, . . . , yk−1) where y0, . . . , yk−1 are the first k moves by II in a round
of F [�x,A] where I follows σ.

We claim that B/m ⊆ A, where m = max{supp(�y), τ (∅)} and B/m = {y ∈ B :
y > m}. To see this, note that for any y ∈ B/m, there is an outcome �y�y�Z ∈
[�y,B, τ ] and, thus, in [�x,A, σ]. In particular, y ∈ A.

By our choice of m, τ � B/m = τ . So, (�y,B/m, τ ) ≤ (�x,A, σ) and the sets of
extensions of (�y,B/m, τ ) and (�y,B, τ ) coincide. Thus, their images in the separative
quotient of P coincide.

(b) If Y = (yn) /∈ [�x,A, σ], then either �x �� Y , or there is some least n such that
yn is not a valid response to σ(y0, . . . , yn−1), i.e., yn /∈ A or yn �> σ(y0, . . . , yn−1).
As E is discrete, these are open conditions.

(c) Suppose that (�x,A, σ) and (�x,B, τ ) are both in P(F). There are X,Y ∈ F
with 〈X〉 ⊆ A and 〈Y 〉 ⊆ B. Since F is a filter, there is a Z ∈ F below both. Let
ρ be the strategy for I in F [Z] given by ρ(�z) = max{σ(�z), τ (�z)}. Then, (�x, Z, ρ) ∈
P(F) and extends both (�x,A, σ) and (�x,B, τ ). Since there are only countably many
such �x, this shows that P(F) is σ-centered. �

Given a family H ⊆ bb∞(E) and a sufficiently generic filter G for P(H), we
denote by Xgen(G) the generic block sequence determined by G,

Xgen(G) =
⋃

{�x : ∃(�x,A, σ) ∈ G}.

In what follows, G will be D-generic for some countable collection of dense sets D
coming from the definition of universally Baire, and so G can be taken to be in V.
Any such D will ensure that Xgen(G) is infinite. We write Ẋgen to be a nice (as
defined above) P(H)-name for this block sequence.

Lemma 7.6. Let F ⊆ bb∞(E) be a filter, let D be a collection of dense subsets of
P(F), and let G be a D-generic filter for P(F). For X = Xgen(G), the set

G(X) = {(�x,A, σ) ∈ P(F) : X ∈ [�x,A, σ]}
is a D-generic filter for P(F) which contains G and Xgen(G(X)) = X.

Proof. By Lemma 7.5(a), G(X) is closed upwards. If (�x,A, σ) ∈ G, then one
can build a decreasing sequence (�xn, An, σn) in G with (�x0, A0, σ0) = (�x,A, σ),
|�xn| → ∞ as n → ∞, and X is the union of the �xn. By construction, X must be
in [�x,A, σ]. This shows that G ⊆ G(X), and consequently the latter is D-generic.
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It remains to show that G(X) is a filter. Take (�x,A, σ), (�y,B, τ ) ∈ G(X). As X
has both �x and �y as an initial segment, one must be an initial segment of the other,
say �x � �y, and the part of �y above �x is a sequence of moves by II against σ. As F is
a filter, A∩B is infinite-dimensional. Let ρ be the strategy for I in F [A∩B] given
by ρ(�v) = max{σ(�v), τ (�v)} for �v in its domain. Then, (�y,A ∩ B, ρ) is below both
(�x,A, σ) and (�y,B, τ ). Moreover, X ∈ [�y,A ∩ B, ρ], and so (�y,A ∩ B, ρ) ∈ G(X).
That Xgen(G(X)) = X is clear. �

A consequence of Lemma 7.6 is that if G is generic for P(F) over a model of a
sufficient fragment of ZFC, then G(X) = G, though we will not make use of this
here.

Lemma 7.7. Let F ⊆ bb∞(E) be a filter, and let D be a countable collection of
dense open subsets of P(F).

(a) For any (�x,A, σ) ∈ P(F), the set

GD,(�x,A,σ) = {Xgen(G) : G a D-generic filter for P(F) with (�x,A, σ) ∈ G}
is an Fσδ subset of bb∞(E).

(b) If X ∈ F , then for no Y ∈ F � X does I have a strategy in F [�x, Y ] for
playing into (GD,(�x,X,σ))

c.

(c) If F is a (p+)-filter and X ∈ F , then there is a Y ∈ F � X for which II
has a strategy in G[�x, Y ] for playing into GD,(�x,X,σ).

Proof. (a) Enumerate D = {Dn : n ∈ N}. Since P(F) is ccc by Lemma 7.5(c), each
Dn contains a countable maximal antichain An below (�x,A, σ). We claim that

GD,(�x,A,σ) =
⋂
n∈N

⋃
{[�y,B, τ ] : (�y,B, τ ) ∈ An},

which is Fσδ, as each set [�y, Y, τ ] is closed by Lemma 7.5(b).
If X = Xgen(G) where G is a D-generic filter with (�x,A, σ) ∈ G, then for each

n, G ∩ An �= ∅, say with (�yn, Bn, τn) ∈ G ∩ An. By Lemma 7.6, for each n,
X ∈ [�yn, Bn, τn], and so X is in the set on right-hand side of the above-displayed
line. For the reverse inclusion, suppose that X is in set on the right-hand side.
Then, by Lemma 7.6, G(X) is a D-generic filter containing (�x,A, σ) for which
Xgen(G(X)) = X, and so X ∈ GD,(�x,A,σ).

(b) Let X ∈ F and Y ∈ F � X be given. Towards a contradiction, suppose
that ρ is a strategy for I in F [�x, Y ] for playing into (GD,(�x,X,σ))

c. We may assume
ρ ≥ σ � Y . Consider the following play of F [�x, Y ]: I plays ρ(∅) = n0. Pick

p0 = (�x�(y00 , . . . , y
0
k0
), B0, ρ0) ≤ (�x, Y, ρ) ≤ (�x,X, σ)

in D0, and let II play y0 = y00 . Note that this is a valid move by definition of ≤ in
P(F). Next, I plays ρ(y0) = n1. Pick

p1 = (�x�(y00 , . . . , y
0
k0
)�(y10 , . . . , y

1
k1
), B1, ρ1) ≤ (�x�(y00 , . . . , y

0
k0
), B0, ρ0)

in D1, and let II play y1 = y01 if k0 ≥ 1, and y1 = y10 otherwise. Continuing in this
fashion, we build an outcome (yn). Observe that (yn) must be in GD,(�x,X,σ): the
conditions pn picked in Dn above form a D-generic chain in P(F) below (�x,X, σ),
thus, generate a D-generic filter G with Xgen(G) = (yn) and (�x,X, σ) ∈ G. This
contradicts our choice of ρ.

(c) follows from (a) and (b) by an application of Theorem 1.1. �
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Lemma 7.8. Let F ⊆ bb∞(E) be a (p+)-filter. If A ⊆ bb∞(E) is universally
Baire, then for any �x ∈ bb<∞(E) and X ∈ F , there is a Y ∈ F � X such that II
has a strategy in G[�x, Y ] for playing into one of A or Ac.

Proof. Let X ∈ F be given. We may assume that �x is ∅. Recall, for �y ∈ bb<∞(E)
and Y ∈ F , Definition 3.2 of (�y, Y ) being good/bad/worse (for the set A). By
Lemma 3.3, there is a Y ∈ F � X such that either (∅, Y ) is good or I has a strategy
σ in F [Y ] to play into the set

{(zn) : ∀n(z0, . . . , zn, Y ) is worse}.
In the former case we are done, so we assume the latter.

Since A is universally Baire, we may let Ȧ be a P(F)-name for A, and let D be
a countable collection of dense open subsets of P(F) such that

(i) {q ∈ P(F) : q decides Ẋgen ∈ Ȧ} is in D, and
(ii) whenever G is D-generic in P(F), Xgen(G) is in bb∞(E) and Xgen(G) is in

A if and only if there is a q ∈ G such that q �P(F) Ẋgen ∈ Ȧ.

Thus, if G is D-generic for P(F), contains (∅, Y, σ), and (∅, Y, σ) �P(F) Ẋgen /∈ Ȧ,

then Xgen(G) /∈ A. We claim that (∅, Y, σ) �P(F) Ẋgen /∈ Ȧ.
Suppose not, then there is a (�y, Z, τ ) ≤ (∅, Y, σ), with Z ∈ F such that

(�y, Z, τ ) �P(F) Ẋgen ∈ Ȧ. Applying Lemma 7.7(c), take W ∈ F � Z such that II has
a strategy α in G[�y,W ] for playing into GD,(�y,Z,τ). We claim that GD,(�y,Z,τ) ⊆ A.
Let (zn) be in GD,(�y,Z,τ). Take G a D-generic filter for which (zn) = Xgen(G) and

(�y, Z, τ ) ∈ G. Since (�y, Z, τ ) �P(F) Ẋgen ∈ Ȧ, we have that (zn) ∈ A. Thus, α is
a strategy for II in G[�y,W ] for playing into A. This, however, contradicts the fact
that σ ensures that (�y, Z) is bad.

Thus, (∅, Y, σ) �P(F) Ẋgen /∈ Ȧ. Then, exactly as in the preceding paragraph, we
may find W ∈ F � Y such that II has a strategy in G[W ] for playing into GD,(∅,Y,σ),
and, thus, into Ac. �

While the symmetric result in Lemma 7.8 is appealing on its own and applies to
all analytic sets (being universally Baire [16]) in ZFC, it is not a true “dichotomy”
as II can easily have strategies for playing into both A and Ac.

One consequence of Lemma 7.7 and the proof of Lemma 7.8 is that, given (p+)-
filter F and a universally Baire set A ⊆ bb∞(E), there is always an X ∈ F such
that one of A or Ac contains an Fσδ set �-dense below X.

We can now complete the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. We have already proven the (⇒) direction in Lemma 5.4.
For the remaining direction, let D ⊆ bb∞(E) be a�-dense open set which is in L(R),
and, thus, universally Baire by Theorem 7.3. By Lemma 7.8, there is an X ∈ F
such that II has a strategy in G[X] for playing into either D or Dc. By Lemma
4.4, the latter can never occur. Thus, II has a strategy in G[X] for playing into D.
Since F is strategic, there is a play by this strategy, say Z, with Z ∈ D∩F �= ∅. �

Lemma 7.9. Assume that there is a supercompact cardinal. Let F ⊆ bb∞(E) be
a strategic (p+)-filter. Every subset of bb∞(E) in L(R) is F-strategically Ramsey.

Proof. Let A ⊆ bb∞(E) be in L(R), and fix �x ∈ bb<∞(E) and X ∈ F . By Theorem
7.2, the set of all Y � X witnessing that A is strategically Ramsey is �-dense below
X, and is clearly in L(R). Since F is L(R)-generic, F must contain such a Y . �
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Proof of Theorem 1.3. Let A ⊆ bb∞(E) be in L(R), and fix �x ∈ bb<∞(E) and
X ∈ H. Let G be V-generic for (H,�∗) and contain X. By Lemma 5.4, G is a
strategic (p+)-filter in V[G]. By Lemma 7.9, there is a Y ∈ G � X witnessing that
A is strategically Ramsey in V[G]. Since forcing with (H,�∗) adds no new reals,
Y witnesses that A is H-strategically Ramsey in V. �

8. Normed spaces and a local Gowers dichotomy

We now consider the case when E is a countably infinite-dimensional normed
vector space, with normalized basis (en) (that is, ‖en‖ = 1 for all n), over a count-
able subfield F of C such that the norm takes values in F . If V is a subspace of E,
let S(V ) = {x ∈ V : ‖x‖ = 1}.

Let bb∞1 (E) = {(xn) ∈ bb∞(E) : ∀n(‖xn‖ = 1)}, and let bb<∞
1 (E) = {�x ∈

bb<∞(E) : ∀n < |�x|(‖xn‖ = 1)}. For X ∈ bb∞(E), let [X] = {Y ∈ bb∞1 (E) : Y �
X}. Taking E discrete, bb∞1 (E) is a closed subset of the Polish space bb∞(E),
thus, itself Polish.

For X = (xn), Y = (yn) ∈ bb∞1 (E), and Δ = (δn) a sequence of positive real
numbers written Δ > 0, we write d(X,Y ) ≤ Δ if for all n, ‖xn − yn‖ ≤ δn. Given
A ⊆ bb∞1 (E) and Δ > 0, let

AΔ = {Y ∈ bb∞1 (E) : ∃X ∈ A(d(X,Y ) ≤ Δ)},
the Δ-expansion of A. We collect a few useful properties of Δ-expansions in a
lemma which will be used tacitly in what follows. The proof is left to the reader.

Lemma 8.1. Let A ⊆ bb∞1 (E) and Δ > 0.

(a) If A =
⋃

i∈I Ai, then AΔ =
⋃

i∈I(Ai)Δ.
(b) If A is analytic, then so is AΔ.
(c) (AΔ)

c ⊆ ((AΔ)
c)Δ ⊆ Ac.

(d) If 0 < Γ ≤ Δ/2, then ((AΔ)
c)Γ ⊆ (AΓ)

c.

�
The notions of family, filter, fullness, (p)-property, etc., in bb∞1 (E) are defined

exactly as for bb∞(E) in §2. Moreover, all of the results established in the previous
sections could have been carried out in bb∞1 (E) in the event that E is normed.
The only necessary modification is that in the games G[�x,X] and F [�x,X], the two
players must play normalized block sequences and vectors, respectively. This will
be assumed in what follows.

For D ⊆ S(E), let

Dε = {x ∈ S(E) : ∃y ∈ D(‖x− y‖ ≤ ε)}.
We weaken the notion of fullness to the following approximate version.7

Definition 8.2. A family H ⊆ bb∞1 (E) is almost full if whenever D ⊆ S(E) and
X ∈ H are such that D is H-dense below X (that is, for all Y ∈ H � X, there
is a Z � Y with S(〈Z〉) ⊆ D), then for any ε > 0, there is a Z ∈ H � X with
S(〈Z〉) ⊆ Dε.

Definition 8.3. If a family has the (p)-property and is almost full, we call it a
(p∗)-family. Likewise for (p∗)-filter, strategic (p∗)-family, etc.

7While this hampers our ability to reuse results of §3 and §7, we hope that it will enable
further applications. An elementary proof of Proposition 8.21, without the hypothesis of being
“strategic”, would greatly simplify the situation in the cases of interest.
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The following is a discrete version of Gowers’s weakly Ramsey property [19]
relativized to a family H.

Definition 8.4. Given a family H ⊆ bb∞1 (E), a set A ⊆ bb∞1 (E) is H-weakly
Ramsey if for every Δ > 0 and X ∈ H, there is a Y ∈ H � X such that either

(i) [Y ] ⊆ Ac, or
(ii) II has a strategy in G[Y ] for playing into AΔ.

The first goal of this section is to show that for certain (p∗)-families H, analytic
sets in bb∞1 (E) are H-weakly Ramsey. We begin with variants of Lemmas 3.3 and
3.4, and Theorem 1.1, for (p∗)-families. Since dealing with both families and Δ-
expansions requires some care, we include proofs of these results. As in §3, they
are very similar to those in [35].

Definition 8.5. Given a family H ⊆ bb∞1 (E), A ⊆ bb∞1 (H), and Δ > 0 for
�y ∈ bb<∞

1 (E) and Y ∈ H, we say the pair (�y, Y ) is Δ-good/Δ-bad/Δ-worse if it is
good/bad/worse for the set AΔ (in the sense of Definition 3.2). Further,

(1) (�y, Y ) is Δ∗-good if it is Δ(|�y|)-good;
(2) (�y, Y ) is Δ∗-bad if it is Δ(|�y|)-bad;
(3) (�y, Y ) is Δ∗-worse if it is Δ∗-bad and there is an n such that for all v ∈

S(〈Y/n〉), (�y�v, Y ) is Δ∗-bad.

Here, Δ(m) = (δ0/2, δ1/2, . . . , δm−1/2, δm, δm+1, . . .).

Note that Δ∗-good implies Δ-good and Δ∗-bad implies Δ/2-bad.

Lemma 8.6. If H is a (p∗)-family and A ⊆ bb∞(E), then for every �x ∈ bb<∞(E),
X ∈ H and Δ > 0, there is a Y ∈ H � X such that either

(i) (�x, Y ) is Δ-good, or
(ii) I has a strategy in F [�x, Y ] for playing into

{(zn) : ∀n(�x�(z0, . . . , zn), Y ) is Δ/2-bad}.

Proof. Let H, A, X ∈ H, and Δ > 0 be given. As in the proof of Lemma 3.3, for
any �y and Γ > 0, the set

DΓ
�y = {Y : (�y, Y ) is Γ-good or Γ-bad}

is �-dense open in H, and if (�y, Y ) is Γ-bad, then for every V ∈ H � Y , there is a
Z � V such that for all x ∈ S(〈Z〉), (�y�x, Y ) is not Γ-good.

Claim. For any �y ∈ bb<∞
1 (E), the set

E�y = {Y : (�y, Y ) is Δ∗-good or Δ∗-worse}
is �-dense open in H.

Proof of claim. Let Y ∈ H. By diagonalizing over the sets DΔ(|�z|)
�z , we may assume

that for all �z, (�z, Y ) is Δ∗-good or Δ∗-bad. Assume that (�y, Y ) is Δ∗-bad. Let

D = {x ∈ S(E) : (�y�x, Y ) is not Δ(|�y|)-good}.
Take ε = δ|�y|/2. By almost fullness, there is a Z ∈ H � Y such that S(〈Z〉) ⊆ Dε.

Given z ∈ S(〈Z〉), pick z′ ∈ D with ‖z − z′‖ < ε. If (�y�z, Z) is Δ∗-good, then
there is a strategy α for II in G[�y�z, Z] for playing into AΔ(|�y|+1). We may assume
that all plays according to α are above z and z′, so we can treat α as a strategy α′

for II in G[�y�z′, Z]. If �y�z′�W is an outcome of α′, then �y�z�W is an outcome
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of α, and, thus, in AΔ(|�y|+1). By our choice of ε, it follows that �y�z′�W is in

AΔ(|�y|). Then, (�y
�z′, Z) is Δ(|�y|)-good, contradicting that z′ ∈ D. Thus, (�y�z, Z)

is Δ∗-bad, and (�y, Z) is Δ∗-worse. �(claim.)

Returning to the proof of the lemma, assume that �x = ∅. By the claim, we can
find Y ∈ H � X such that for all �y, (�y, Y ) is either Δ∗-good or Δ∗-worse. If (∅, Y )
is Δ∗-good, we are done, so assume that it is Δ∗-worse. In this case, we define a
strategy for I in F [Y ] for playing into {(zn) : ∀n(z0, . . . , zn, Y ) is Δ∗-worse} exactly
as in the proof of Lemma 3.3. �

Lemma 8.7 (cf. Lemma 2 in [35]). Let H ⊆ bb∞1 (E) be a (p∗)-family. Given
A ⊆ bb∞1 (E) open, x ∈ bb<∞

1 (E), X ∈ H, and Δ > 0, there is a Y ∈ H � Y such
that either

(i) I has a strategy in F [�x, Y ] for playing into (AΔ/2)
c, or

(ii) II has a strategy in G[�x, Y ] for playing into AΔ.

Proof. The proof is similar to Lemma 3.4, using Lemma 8.6. �

Lemma 8.8 (cf. Lemma 4 in [35]). Let H ⊆ bb∞1 (E) be a (p∗)-family. Suppose
that A =

⋃
n∈N

An, each An ⊆ bb∞1 (E). Let �x, X ∈ H, and Δ > 0 be given. Then,
there is a Y ∈ H � X such that either

(i) I has a strategy in F [�x, Y ] for playing into (AΔ/2)
c, or

(ii) II has a strategy in G[Y ] for playing into

{(zk) : ∃n∀V ∈ H � Y (I has no strategy in F [�x�(z0, . . . , zn), V ]

for playing into ((An)Δ)
c)}.

Proof. For Y ∈ H, �y ∈ bb<∞(E), and n ∈ N, we say (�y, n) Γ-accepts Y if I
has a strategy in F [�y, Y ] for playing into ((An)Γ)

c and (�y, n) Γ-rejects Y if for
all Z ∈ H � Y , (�y, n) does not Γ-accept Z. Both acceptance and rejection are
�∗-hereditary in H, and the sets

DΓ
�y,n = {Y : (�y, n) Γ-accepts or Γ-rejects Y }

are clearly �-dense open in H. By the (p)-property, we can find Y ∈ H � X such
that for all �y and n, (�y, n) either Δ/2-accepts or Δ/2-rejects Y . Put

R = {(zk) : ∃n(�x�(z0, . . . , zn), n) Δ/2-rejects Y },
and notice that R is open in bb∞1 (E). By Lemma 8.7, there is Y ′ ∈ H � Y such
that either II has a strategy in G[Y ′] for playing into RΔ/2, or I has a strategy
in F [Y ′] for playing into (RΔ/4)

c ⊆ Rc. In the first case, suppose that (zk) is an
outcome of II’s strategy. Then, there is (z′k) with ‖zk − z′k‖ ≤ δk/2 for all k, and
an n such that (�x�(z′0, . . . , z

′
n), n) Δ/2-rejects Y . We claim (�x�(z0, . . . , zn), n) Δ-

rejects Y . If not, then for some Z ∈ H � Y , I has a strategy in F [�x�(z0, . . . , zn), Z]
for playing into ((An)Δ)

c. This yields a strategy for I in F [�x�(z′0, . . . , z
′
n), Z] for

playing into (((An)Δ)
c)Δ/2. By Lemma 8.1(d), (((An)Δ)

c)Δ/2 ⊆ ((An)Δ/2)
c, and

so (�x�(z′0, . . . , z
′
n), n) fails to Δ/2-reject Y , a contradiction. Thus, (zk) is as desired

for (ii).
Suppose that I has a strategy σ in F [Y ] for playing into (RΔ/4)

c ⊆ Rc. In partic-

ular, I plays (zk) such that for all n, I has a strategy σ(z0,...,zn) in F [�x�(z0, . . . , zn), Y ]
to play into ((An)Δ/2)

c. As in the proof of Lemma 4 in [35], we successively put more
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strategies for I into play, and obtain a strategy for playing into
⋂

n((An)Δ/2)
c =

(AΔ/2)
c. �

Theorem 8.9 (cf. Theorem 5 in [35]). Let H ⊆ bb∞1 (E) be a (p∗)-family. If
A ⊆ bb∞1 (E) is analytic, Δ > 0, �x ∈ bb<∞

1 (E), and X ∈ H, then there is a
Y ∈ H � Y such that either

(i) I has a strategy in F [�x, Y ] for playing into (AΔ/2)
c, or

(ii) II has a strategy in G[�x, Y ] for playing into AΔ.

Proof. We consider the case when �x = ∅. Let F : NN → A be a continuous surjection
and for each s ∈ N<N, let As = F ′′(Ns) where Ns = {α ∈ NN : s ⊆ α}. Note that
As =

⋃
n As�n.

Let R(s, �x, Y ) (for Y ∈ H) be the set of all (zk) for which there is an n such
that for all Z ∈ H � Y , I has no strategy in F [�x�(z0, . . . , zn), Z] for playing into
((As�n)Δ)

c. By Lemma 8.8 and the (p)-property, there is a Y ∈ H � X such that
for all �x and s ∈ N<N, either

(i) I has a strategy in F [�x, Y ] for playing into ((As)Δ/2)
c, or

(ii) II has a strategy in G[Y ] for playing into R(s, �x,X).

Suppose I has no strategy in F [Y ] for playing into (AΔ/2)
c = ((A∅)Δ/2)

c. We
will describe a strategy for II in G[Y ] for playing into AΔ: As II has a strategy
in G[Y ] for playing into R(∅, ∅, Y ), they follow this strategy until (z0, . . . , zn0

)
has been played such that I has no strategy in F [(z0, . . . , zn0

), Y ] for playing into
((As�n0

)Δ)
c. By the assumption on Y , II must have a strategy in G[Y ] to play

in R((n0), (z0, . . . , zn0
), Y ). II follows this until a further (zn0+1, . . . , zn0+n1+1) has

been played so that I has no strategy in F [(z0, . . . , zn0
, . . . , zn0+n1+1), Y ] for playing

into ((As�n0
�n1

)Δ)
c.

We continue in this fashion, exactly as in the proof of Theorem 5 in [34], so that
the outcome Z = (zn) satisfies that for all k, with mk = (

∑
j≤k nk) + k, there is

some Zk � (z0, . . . , zmk
) in (A(n0,...,nk))Δ = (F ′′(N(n0,...,nk)))Δ. Continuity of F

ensures that, for α = (n0, n1, . . .), d(F (α), Z) ≤ Δ. �

The following result provides the link between strategically Ramsey sets and
weakly Ramsey sets:

Theorem 8.10 (Rosendal [34], [35]). Suppose that, for some X ∈ bb∞1 (E), I has
a strategy in F [X] to play into some set A ⊆ bb∞1 (E). Then, for any Δ > 0, there
is a sequence of finite intervals I0 < I1 < · · · in N such whenever Y = (yn) � X
and ∀n∃m(I0 < yn < Im < yn+1), we have that Y ∈ AΔ.

Inspired by this theorem, we define the following:

Definition 8.11. A family H ⊆ bb∞1 (E) is spread if whenever X = (xn) ∈ H and
I0 < I1 < · · · is a sequence of intervals in N, there is a Y = (yn) ∈ H � X such that
∀n∃m(I0 < yn < Im < yn+1).

This property is analogous to the “(q)-property” (see Lemma 7.4 of [40]) for
coideals on N; one can show that a coideal H on N has the (q)-property if and only
if for every x ∈ H and sequence of finite intervals I0 < I1 < · · · , there is a y ∈ H � x
such that ∀n∃m(I0 < yn < Im < yn+1).

By appropriately thinning down a block sequence, we see the following.
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Lemma 8.12. Given a sequence of intervals I0 < I1 < · · · in N, the set

{(yn) : ∀n∃m(I0 < yn < Im < yn+1)}
is �-dense open in bb∞1 (E). �

Clearly, bb∞1 (E) itself is spread. As in §5, one can build spread filters (which
are full, almost full, strategic, etc.) under additional set-theoretic hypotheses or by
forcing. We note that the strong (p)-property suffices:

Lemma 8.13. If H ⊆ bb∞1 (E) is a strong (p)-family, then it is spread. In partic-
ular, strategic families are spread.

Proof. Fix X ∈ H, and let I0 < I1 < · · · be an increasing sequence of intervals in
N. Consider the following strategy σ for I in F [X]: σ(∅) = max(I0). If II responds
with some y0 > σ(∅), then let σ(y0) = max(Im), where Im is the first interval
entirely above supp(y0). Continue in this fashion. Any outcome (yn) will satisfy
∀n∃m(I0 < yn < Im < yn+1). Since H is a strong (p)-family, Theorem 4.3 implies
that some outcome is in H. �
Theorem 8.14. Let H ⊆ bb∞1 (E) be a spread (p∗)-family. Then, every analytic
set is H-weakly Ramsey.

Proof. Let A ⊆ bb∞1 (E) be analytic. Fix X ∈ H and Δ > 0. By Theorem 8.9, there
is Y ∈ H � X such that either I has a strategy in F [Y ] for playing into (AΔ/2)

c, or
II has a strategy in G[Y ] for playing into AΔ. In the latter case, we are done, so
assume the former. Theorem 8.10 and H being spread implies that there is some
Z ∈ H � Y with [Z] ⊆ ((AΔ/2)

c)Δ/2 ⊆ Ac. �
In order to extend to sets in L(R), we will use the following analogue of Lemma 7.8:

Lemma 8.15. Let F ⊆ bb∞1 (E) be a (p∗)-filter. If A ⊆ bb∞1 (E) is such that
continuous images of A are universally Baire, then for any X ∈ F and Δ > 0,
there is a Y ∈ F � X for which II has a strategy in G[Y ] for playing into one of
(AΔ/8)

c or AΔ.

Proof. Let X ∈ F and Δ > 0. By Lemma 8.6, there is a Y ∈ F � X such that
either (∅, Y ) is Δ-good or I has a strategy σ in F [Y ] for playing into

{(zn) : ∀n(z0, . . . , zn, Y ) is Δ/2-bad}.
In the former case, we are done, so assume the latter.

By hypothesis, AΓ is universally Baire for all Γ. In particular, we may let ȦΔ/4

be a P(F)-name for AΔ/4 and D a countable collection of dense open subsets of
P(F) such that

(i) {q ∈ P(F) : q decides Ẋgen ∈ Ȧ} is in D, and

(ii) whenever G is D-generic in P(F), Ẋgen is in bb∞1 (E) and Ẋgen(G) is in

AΔ/4 if and only if there is a q ∈ G such that q �P(F) Ẋgen ∈ ȦΔ/4.

We claim that (∅, Y, σ) �P(F) Ẋgen /∈ ȦΔ/4.
Suppose not. Then, there is a (�y, Z, τ ) ≤ (∅, Y, σ), with Z ∈ F , such that

(ẏ, Z, τ ) �P(F) Ẋgen ∈ ȦΔ/4. Applying Lemma 7.7(b) and Theorem 8.9, there is a
W ∈ F � Z such that II has a strategy α in G[�y,W ] for playing into (GD,(�y,Z,τ))Δ/4.
As in the proof of Lemma 7.8, GD,(�y,Z,τ) ⊆ AΔ/4, so α is a strategy for II in G[�y,W ]
for playing into AΔ/2. This, however, contradicts the fact that σ ensures (�y, Z) is
Δ/2-bad.
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Thus, (∅, Y, σ) �P(F) Ẋgen /∈ ȦΔ/4. But then, exactly as in the preceding para-
graph, we may find W ∈ F � Y such that II has a strategy in G[W ] for playing
into (GD,(∅,Y,σ))Δ/8, and, thus, into ((AΔ/4)

c)Δ/8 ⊆ (AΔ/8)
c, where the last con-

tainment follows from Lemma 8.1(d). �

In what follows, we strengthen the hypotheses on the basis (en), asserting that
there is some K > 0 such that for all m ≤ n and scalars (ak),

‖
∑
k≤m

akek‖ ≤ K‖
∑
k≤n

akek‖.

This is equivalent to (en) being a Schauder basis of the completion E of E; cf. Propo-
sition 1.1.9 [2]. The infimum of all such K as above is called the basis constant of
(en). The following lemma about perturbations of blocks sequences appears to be
well known:

Lemma 8.16. For any Δ > 0, there is a Γ > 0 such that whenever X = (xn), X
′ =

(x′
n) ∈ bb∞1 (E) satisfy d(X ′, X) ≤ Γ, then [X ′] ⊆ [X]Δ. In fact, if Y ′ ∈ [X ′], then

Ỹ ∈ [X] and d(Y ′, Ỹ ) ≤ Δ, where Ỹ is the normalization of the image of Y ′ under
the linear map extending x′

n �→ xn.

Proof. Let Δ > 0. If K is the basis constant of (en), then by Lemma 1.3.5 in [2],
the basis constant of X is ≤ K. Pick Γ > 0 with

∑
n≥m γn ≤ min{1/6K, δm/8K}.

For X ′ = (x′
n) with d(X ′, X) ≤ Γ, consider the map on the completions T : 〈X〉 →

〈X ′〉 extending xn �→ x′
n. T is a bounded linear isomorphism, as whenever v =∑

anxn ∈ 〈X〉,

‖Tv‖ − ‖v‖ ≤ ‖Tv − v‖ ≤ ‖
∑

anx
′
n −

∑
anxn‖ ≤ sup

n
|an|

∑
‖x′

n − xn‖

≤ 2K‖v‖
∑

‖x′
n − xn‖ ≤ 1/3‖v‖,

and so ‖T‖ ≤ 4/3. Using 1/‖T−1‖ = inf‖v‖=1 ‖Tv‖, we have ‖T−1‖ ≤ 3/2.

As the basis constant for X ′ is also ≤ K, for v′ =
∑

n≥m anx
′
n ∈ 〈X ′〉, we have

that ‖T−1v′ − v′‖ ≤ δm/4‖v′‖ by a similar argument as above.
If v′ is a unit vector, then we also have that

|1− 1

‖T−1v′‖ | ≤ ‖T‖‖T−1v′ − v′‖ ≤ (4/3)(δm/4) ≤ δm/3.

For Y ′ = (y′m) ∈ [X ′], we claim d(Y ′, Ỹ ) ≤ Δ, where Ỹ is the normalization of
Y = (ym) = (T−1(y′m)). Observe that

‖ym − 1

‖ym‖ym‖ ≤
∣∣∣∣1− 1

‖T−1(y′m)‖

∣∣∣∣ ‖T−1(y′m)‖ ≤ (δm/3)(3/2) = δm/2.

Thus, for all m,

‖y′m − 1

‖ym‖ym‖ = ‖y′m − ym‖+ ‖ym − 1

‖ym‖ym‖ ≤ δm. �
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The following lemma expresses the uniform continuity of the games F [X] and
G[X]:

Lemma 8.17. Let A ⊆ bb∞1 (E) and Δ > 0. There is a Γ > 0 such that whenever
X ∈ bb∞1 (E) is such that I (II, respectively) has a strategy in F [X] (G[X], respec-
tively) for playing into A and d(X,X ′) ≤ Γ, then I (II, respectively) has a strategy
in F [X ′] (G[X ′], respectively) for playing into AΔ.

Proof. Take Γ > 0 as in Lemma 8.16. Suppose I has a strategy σ in F [X] for
playing into A and d(X,X ′) ≤ Γ. We define a strategy σ′ for I in F [X ′]. Let
σ′(∅) = σ(∅). Inductively, suppose that σ′(y′0, . . . , y

′
k) has been defined and is

equal to σ(y0, . . . , yk), where y0, . . . , yk is a valid play by II in F [X] against σ, and
‖y′i − yi‖ ≤ γi for 0 ≤ i ≤ k. Suppose that y′k+1 > σ′(y′0, . . . , y

′
k) in S(〈X ′〉). By

our choice of Γ, there is a yk+1 > σ′(y′0, . . . , y
′
k) = σ(y0, . . . , yk) in S(〈X〉) with

‖y′k+1 − yk+1‖ ≤ γk+1. Let σ′(y′0, . . . , y
′
k, y

′
k+1) = σ(y0, . . . , yk, yk+1). It follows

that σ′ is a strategy for playing into AΔ.
Suppose that II has a strategy α in G[X] for playing into A, and d(X,X ′) ≤ Γ.

Let T : 〈X〉 → 〈X ′〉 be as in the proof of Lemma 8.16. We define a strategy α′ for II

in G[X ′]. Suppose that I begins by playing Y ′
0 ∈ [X ′]. Let α′(Y ′

0) = T̃ (α(T̃−1(Y ′
0))),

where T̃ and T̃−1 indicate taking normalizations. Continue in this fashion. Then,
α is a strategy for playing into AΔ. �
Theorem 8.18. Assume that there is a supercompact cardinal. Let F ⊆ bb∞1 (E)
be a strategic (p∗)-filter. Then, every set A ⊆ bb∞1 (E) in L(R) is F-weakly Ramsey.

Proof. Let A ⊆ bb∞1 (E) be in L(R), X ∈ F , and Δ > 0. By Theorem 7.2, the set
D of all Y � X such that either I has a strategy in F [Y ] for playing into (AΔ/2)

c,
or II has a strategy in G[Y ] for playing into AΔ/2, is �-dense open, and is clearly in
L(R). By Lemmas 4.4 and 8.15, there is a Y ∈ F � X such that II has a strategy for
playing into DΓ, where Γ is as in Lemma 8.17 applied to Δ/4. Since F is strategic,
there is a Z ∈ F � Y which is in DΓ. By our choice of Γ, then either I has a strategy
in F [Z] for playing into ((AΔ/2)

c)Δ/4 ⊆ (AΔ/2)
c, or II has a strategy in G[Z] for

playing into AΔ. In the latter case, we are done, and in the former case, we need
only apply Theorem 8.10 and Lemma 8.13. �

We will use the following analogue of Lemma 5.4, whose proof is similar and left
to the reader:

Lemma 8.19. For H ⊆ bb∞1 (E) a (p∗)-family, forcing with (H,�∗) adds no new
reals and if G ⊆ H is L(R)-generic for (H,�∗), G will be a (p∗)-filter. If H is
strategic (spread, respectively), then G will also be strategic (spread, respectively).

Theorem 8.20. Assume that there is a supercompact cardinal. Let H ⊆ bb∞1 (E) be
a strategic (p∗)-family. Then, every set A ⊆ bb∞1 (E) in L(R) is H-weakly Ramsey.

Proof. The proof is similar to that of Theorem 1.3, using Lemma 8.19 and Theorem
8.18. �

Some of the above can be simplified in the case when the family H in question is
invariant under small perturbations ; that is, there is some Δ > 0 so that HΔ = H.
The reason lies in the following fact:

Proposition 8.21. If H is a strategic (p∗)-family which is invariant under small
perturbations, then H is a (p+)-family as well.
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Proof.8 Let D ⊆ S(E) be H-dense below some X ∈ H and put D = {Y � X :
S(〈Y 〉) ⊆ D}. Take Δ > 0 so that HΔ = H. Note that D is closed and, thus, it and
its continuous images are universally Baire. Let G be a V-generic filter for (H,�∗)
which contains X, so that by Lemma 8.19, G is a strategic (p∗)-filter in V[G]. By
Lemma 8.15 in V[G], there is a Y ∈ G � X so that II has a strategy in G[Y ] for
playing into one of (DΔ/8)

c or DΔ. However, as I has a strategy in G[Y ] for playing
into D, and (DΔ/8)

c ⊆ Dc by Lemma 8.1(c), II’s strategy must be for playing into
DΔ. Since forcing with (H,�∗) added no new reals, such a strategy must exist in
V (we are using Lemma 4.7 implicitly here). As H is strategic and HΔ = H, we
have that H ∩ D �= ∅, showing that H is full. �

We now extend these principles to Banach spaces. In what follows, B is a
(separable) Banach space with normalized Schauder basis (en). We say that a
countable field F is suitable if the norm on EF , the F -span of E, takes values
in F . Let 〈X〉F the F -span of X ∈ bb∞(EF ). If V is a subspace of B, let
S(V ) = {v ∈ V : ‖v‖ = 1}.

Let bb∞1 (B) be the set of all infinite block sequences (with respect to (en)) in
B, which we endow with the Polish topology inherited from BN. The relations �
and �∗ extend to bb∞1 (B). For Y ∈ bb∞1 (B), let [Y ]∗ = {Z ∈ bb∞1 (B) : Z � Y }.
We denote by G∗[Y ] the Gowers game defined as before, except that the players
may now play real (complex) block sequences and block vectors. The notions of
family, (p)-family, spread, and strategic are defined as before, with appropriate
modifications for real (complex) scalars.

Strategic families in bb∞1 (B) arise naturally from strategic families in bb∞1 (EF ):

Given a strategic H ⊆ bb∞1 (EF ), if Ĥ is invariant under small perturbations and
equal to the � upwards closure of HΔ (taken in bb∞1 (B)) for some small Δ > 0,

then Ĥ is strategic. This follows from the fact that Lemma 8.16 and the proof of
Lemma 8.17 can be carried out in B.

Definition 8.22. We say that H is almost full if whenever D ⊆ S(B) is closed
and H-dense below some X ∈ H (that is, for all Y ∈ H � X, there is a Z � Y with

S(〈Z〉) ⊆ D), then for any ε > 0, there is a Y ∈ H � X with S(〈Y 〉) ⊆ Dε.

Definition 8.23. An almost full (p)-family in bb∞1 (B) is called a (p∗)-family.

While we have reused this terminology, the meaning should be clear from context.
The following is the relativized version of Gowers’s weakly Ramsey property [19].

Definition 8.24. Given a family H ⊆ bb∞1 (B), a set A ⊆ bb∞1 (B) is H-weakly
Ramsey if for every Δ > 0 and X ∈ H, there is a Y ∈ H � X such that either

(i) [Y ]∗ ⊆ Ac, or
(ii) II has a strategy in G∗[Y ] for playing into AΔ.

Proving Theorems 1.4 and 1.5 amounts to showing that for spread (strategic)
(p∗)-families H ⊆ bb∞1 (B) which are invariant under small perturbations, analytic
(L(R)) sets are H-weakly Ramsey.

Lemma 8.25. Let F be suitable. If X0 � X1 � X2 � · · · is a �-decreasing
sequence in bb∞1 (EF ), X ∈ bb∞1 (B) is such that X � Xn for all n, and Δ > 0,
then there is an X ′ ∈ bb∞1 (EF ) with X ′ ∈ [X]Δ, and X ′ �∗ Xn for all n.

8We suspect that an elementary proof of this result can be found and that “strategic” can be
relaxed to “spread”.
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Proof. Let (Xn), X, and Δ > 0 be as described, say with X = (xn). We construct

X ′ = (x′
n) as follows: There is an M0 ∈ N so that 〈X/M0〉F ⊆ 〈X0〉F . Let xn0

be
the first entry of X/M0. Pick a unit vector x′

0 ∈ 〈X0〉F such that d(xn0
, x′

0) ≤ δ0.
Continue inductively. At stage k, we have chosen M0 < · · · < Mk and x′

0 < · · · < x′
k

so that if xni
is the first entry of X/Mi, then x′

i ∈ 〈Xi〉F and d(xni
, x′

i) ≤ δi, for
i ≤ k. By construction, X ′/n � Xn for all n, and X ′ ∈ [X]Δ. �

Lemma 8.26. If H ⊆ bb∞1 (B) is a (p∗)-family which is invariant under small
perturbations, then H ∩ bb∞1 (EF ) is a (p∗)-family for any suitable subfield F of R
(or C). If H is spread (strategic, respectively), then so is H ∩ bb∞1 (EF ).

Proof. Let H and F be as described and put H̃ = H ∩ bb∞1 (EF ). Lemma 8.25

implies that H̃ is a (p)-family. To see that H̃ is almost full, let D ⊆ S(EF ) be H̃-

dense belowX ∈ H̃, and take ε > 0. Consider Dε/3 ⊆ S(B). For Δ = (ε/3, ε/3, . . .),

let Γ be as in Lemma 8.16. For any Y ∈ H � X, there is a Y ′ ∈ H̃ � X, with
d(Y, Y ′) ≤ Γ and Z ′ � Y ′ with S(〈Z〉) ⊆ D. By our choice of Γ, there is a Z ∈ [Y ]∗

with S(〈Z〉) ⊆ Dε/3, and so S(〈Z〉) ⊆ Dε/3. Thus, Dε/3 is H-dense below X. By

almost fullness of H, there is a W ∈ H � X with S(〈W 〉) ⊆ (Dε/3)ε/3. Then, one

can find a W ′ ∈ H̃ � X with S(〈W ′〉) ⊆ Dε, showing that H̃ is almost full.

To see that H being strategic implies that Ĥ is strategic, let α be a strategy

for II in G[X], with X ∈ Ĥ. Define a strategy α′ in G∗[X] which is equal to α
on their shared domain, and otherwise plays so that the outcomes are sufficiently
small (using Lemma 8.16 and our assumption about H) perturbations of outcomes

of α. Then, if any outcome of α′ is in H, an outcome of α must be in Ĥ. The proof
for being spread is left to the reader. �

Proof of Theorem 1.4. Suppose that A ⊆ bb∞1 (B) is analytic, Δ > 0, and X ∈ H
is such that for no Y ∈ H � X is [Y ]∗ ⊆ Ac. Let F be a suitable field for (en). Let

H̃ = H ∩ bb∞1 (EF ). If there was some Y ∈ H̃ � X with [Y ] ⊆ (AΔ/3)
c ∩ bb∞1 (EF ),

then [Y ]∗ ⊆ ((AΔ/3)
c)Δ/3 ⊆ Ac, contrary to our assumption. Thus, by Lemma

8.26 and Theorem 8.14, there is a Y ∈ H̃ � X such that II has a strategy in G[Y ]
for playing into AΔ/2 ∩ bb∞1 (EF ). Easy perturbation arguments show that II has
a strategy in G∗[Y ] for playing into AΔ. �

Proof of Theorem 1.5. The proof is similar to that of Theorem 1.4, using Theorem
8.20, or, alternatively Proposition 8.21 and Theorem 1.3. �

The following is an analytical example of a strategic (p∗)-family, which, though
trivial in the sense that is �-downwards closed, we hope suggests further applica-
tions:

Example 8.27. Given B as above, suppose that B contains a normalized block
sequence X equivalent to the standard basis of c0 or �

p for 1 ≤ p < ∞. Let H be the
set of all block sequences in B which have a further block subsequence equivalent to
X. Then, H is a strategic (p∗)-family which is invariant under small perturbations.
These facts follow from the block homogeneity characterization of the standard
bases of c0 and �p, Lemma 2.1.1 in [2].
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9. Projections in the Calkin algebra

Given a Banach space with a Schauder basis, one might wish to develop a no-
tion of forcing with block sequences “modulo small perturbation” and then prove
an analogue of Theorem 1.2 characterizing L(R)-generic filters.9 We focus on a
particular variant of this which is of significant interest.

Let H be a complex infinite-dimensional separable Hilbert space with orthonor-
mal basis (en). Note that any normalized block sequence (with respect to (en)) is
necessarily orthonormal. Throughout, E will denote the Q-linear span of (en) in H,
bb∞1 (E) the space of infinite normalized block sequences in E, and forX ∈ bb∞1 (E),
〈X〉 is the Q-span of X.

For X ∈ bb∞1 (E), let PX be the orthogonal projection onto 〈X〉. Note that, for
X,Y ∈ bb∞1 (E), X � Y if and only if PX ≤ PY in the usual ordering of projections
(that is, P ≤ Q if ran(P ) ⊆ ran(Q), or equivalently PQ = P ). We call such
projections block projections.

Let B(H) be the C*-algebra of bounded operators on H and K(H) the ideal of
compact operators on H. The quotient C(H) = B(H)/K(H) is also a C*-algebra
called the Calkin algebra. We write π : B(H) → C(H) for the quotient map.

Denote by P(H) (P∞(H), respectively) the set (infinite-rank, respectively) pro-
jections in B(H), and P(C(H)) (P(C(H))+, respectively) the set of (nonzero, re-
spectively) projections, i.e., self-adjoint idempotents, in C(H). By Proposition 3.1
in [41], P(C(H)) = π(P(H)). The ordering ≤ on P(C(H)) is inherited from the
ordering on P(H).

Definition 9.1.

(a) For projections P,Q ∈ P(H), we write P ≤ess Q if π(P ) ≤ π(Q) in P(C(H))
and P ≡ess Q if π(P ) = π(Q).

(b) For X,Y ∈ bb∞1 (E), we write X ≤ess Y if PX ≤ess PY and X ≡ess Y if
PX ≡ess PY .

The last sentence of the following lemma requires a slight modification of the
original proof and is left to the reader:

Lemma 9.2 (Proposition 3.3 in [41]). For P and Q projections on H, the following
are equivalent:

(i) P ≤ess Q.
(ii) For every ε > 0, there is a finite-codimensional subspace V of ran(P ) such

that every unit vector v ∈ V satisfies d(v, ran(Q)) ≤ ε.

In the event that P = PX and Q = PY for X,Y ∈ bb∞1 (E), one can replace
“finite-codimensional subspace” in (ii) with “tail subspace”.

The following lemma is well known:

Lemma 9.3. Suppose that Δ = (δn) > 0 is summable and P and Q are projections
on H whose ranges have orthonormal bases (xn) and (yn), respectively. If for all
n, ‖xn − yn‖ ≤ δn, then P ≡ess Q.

Proof. Assuming that for all n, ‖xn − yn‖ ≤ δn, we will show that P ≤ess Q. The
result follows by symmetry. Let ε > 0 and choose an N such that

∑
n≥N δn ≤ ε.

9There are obstacles to this being a meaningful endeavor in general; e.g., in a hereditarily
indecomposable Banach space, the collection of all infinite-dimensional subspaces modulo small
perturbations forms a filter (cf. (iii) on p. 820 of [19]), and is, thus, trivial as a forcing notion.
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Let V = 〈(xn)n≥N 〉, a finite-codimensional subspace of ran(P ). If v ∈ V is a unit
vector, say with v =

∑
n≥N anxn, then for y =

∑
n≥N anyn ∈ ran(Q), we have

‖v − y‖ = ‖
∑
n≥N

an(xn − yn)‖ ≤
∑
n≥N

‖xn − yn‖ ≤ ε.

The claim follows by Lemma 9.2. �

In particular, ≡ess-invariant families in bb∞1 (E) or bb∞1 (H) are invariant under
small perturbations. The following observation can be proved using Lemma 9.3
and standard manipulations with basic sequences (cf. Proposition 1.3.10 in [2]):

Lemma 9.4. The set of block projections is dense in (P∞(H),≤ess).

It follows that (P(C(H))+,≤), (P∞(H),≤ess), and (bb∞1 (E),≤ess) are equivalent
as notions of forcing. It is for this reason that we focus on (bb∞1 (E),≤ess).

Lemma 9.5. If X0 � X1 � X2 � · · · is a �-decreasing sequence in bb∞1 (E) and
X ∈ bb∞1 (E) is such that X ≤ess Xn for all n, then there is an X ′ ≤ess X such
that X ′ �∗ Xn for all n.

Proof. This can be proved using Lemmas 9.2 and 9.3 in a way similar to Lemma
8.25. �

Clearly, any �-dense subset of bb∞1 (E) is also ≤ess-dense. The following lemma
is a converse to this:

Lemma 9.6. If D ⊆ bb∞1 (E) is ≤ess-dense open, then it is �-dense open.

Proof. Suppose D ⊆ bb∞1 (E) is ≤ess-dense open. Given any X ∈ bb∞1 (E), there is
a Y ∈ D with Y ≤ess X. Applying Lemma 9.5 (with Xn = X for all n), there is a
Y ′ ≤ess Y with Y ′ � X. Then, Y ′ ∈ D. �

We can now establish Theorem 1.6, an analogue of Theorem 1.2 for projections
in the Calkin algebra. We first prove a more general result.

Theorem 9.7.

(a) If G is an L(R)-generic filter for (bb∞1 (E),≤ess), then G is a strategic (p+)-
family.

(b) Assume that there is a supercompact cardinal. If G ⊆ bb∞1 (E) is a strategic
(p∗)-family which is also a ≤ess-filter, then G is L(R)-generic for
(bb∞1 (E),≤ess).

Proof. (a) Let G be as described. Clearly, it is a family. To see that it is full,
suppose that D ⊆ S(E) is G-dense below some X ∈ G. Let

D0 = {Z : 〈Z〉 ⊆ D or ∀V � X(〈V 〉 ⊆ D → V⊥Z)},

where ⊥ denotes incompatibility with respect to �. D0 is �-dense open by Lemma
2.7, thus, ≤ess-dense as well, and clearly in L(R), so there is a Z ∈ D0 ∩ (G � X).
Then, there is a Z ′ � Z � X with S(〈Z ′〉) ⊆ D, so we have that 〈Z〉 ⊆ D, showing
that G is full.

To see that G is a (p)-family, let X0 � X1 � X2 � · · · in G. Let

D1 = {Y : ∀n(Y �∗ Xn) or ∃n(Y⊥essXn)},
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where ⊥ess denotes incompatibility with respect to ≤ess. We want to show that D1

is ≤ess-dense. The set

D′
1 = {Y : ∀n(Y ≤ess Xn) or ∃n(Y⊥essXn)}

is ≤ess-dense open. Then, given any X, we can find a Y ∈ D′
1 below X. If Y⊥essXn

for some n, we are done. Otherwise, Y ≤ess Xn for all n, and we can apply Lemma
9.5 to find a Y ′ ≤ess Y with Y �∗ Xn for all n. Such a Y ′ is in D1, verifying
that this set is ≤ess-dense. As D1 is in L(R), G ∩ D1 �= ∅, and anything in this
intersection must be a diagonalization of (Xn). It is likewise easy to see that G
must be strategic.

(b) Let D ⊆ bb∞1 (H) be ≤ess-dense open and in L(R). By Lemma 9.6, D is also
�-dense open. For Δ > 0 summable, DΔ = D by Lemma 9.3. Thus, by Theorem
8.14, there is an X ∈ H such II has a strategy for playing into D. Since G is
strategic, it follows that G ∩ D �= ∅. �

Proof of Theorem 1.6. The (⇒) direction is proved by a straightforward verification
of the relevant sets being �-dense open, thus, ≤ess-dense by Lemma 9.6. The (⇐)
direction follows from Theorem 9.7(b) or Theorem 1.5. �

We conclude this section by describing a hoped-for application of our machinery
and its limitations. A state τ on B(H) is a linear functional on B(H) which is
positive; that is, τ (T ∗T ) ≥ 0 for all T , and it satisfies τ (I) = 1, where I is the
identity operator. The set of states forms a weak*-compact convex subset of the
dual of B(H) and, thus, has extreme points called pure states. These definitions
generalize to any unital C*-algebra, including C(H).

A state on B(H) is singular if it vanishes on K(H). Composing with the quotient
map π : B(H) → C(H) yields a bijective correspondence between singular pure
states on B(H) and pure states on C(H).

For any choice of orthonormal basis (fk) for H, and any ultrafilter U on N, the
functional defined by τU (T ) = limk→U 〈Tfk, fk〉 is a pure state which is singular if
and only if U is nonprincipal (cf. Theorem 4.21 and Example 6.1 in [15]). Such
pure states are said to be diagonalizable. On an abelian C*-algebra, pure states
coincide with characters, so the aforementioned τU restricts to a pure state on the
atomic maximal abelian self-adjoint subalgebra (or masa) generated by the rank-
one projections corresponding to the fk. The following problem asks to what extent
this is true of all pure states:

Problem (Kadison and Singer [21]). Does every pure state on B(H) restrict to a
pure state on some (atomic or continuous) masa?

Anderson conjectured that not only is the answer to this question “yes”, but
that every pure state is of the form τU for some choice of orthonormal basis (fk)
and ultrafilter U :

Conjecture (Anderson [3]). Every pure state on B(H) is diagonalizable.

Akemann and Weaver [1] showed that the above problem of Kadison and Singer
has a negative answer, and, thus, Anderson’s conjecture is false, assuming CH. It
remains an open question whether Anderson’s conjecture is consistent with ZFC.

By the recent positive solution [29] to the Kadison–Singer problem regarding
extensions of pure states (which differs from the above), Anderson’s conjecture is
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equivalent to saying that every pure state on B(H) restricts to a pure state on some
atomic masa.

Following [8], we say that a subset F ⊆ P(C(H))+ is centered10 if for every
finite subset of F has a lower bound in P(C(H))+. F is linked if every pair of
elements in F has a lower bound in P(C(H))+. Maximal centered has the obvious
meaning. Similarly, we define ≤ess-centered, ≤ess-linked, and maximal ≤ess-centered
in bb∞1 (E).

Theorem 9.8 (Farah and Weaver, Theorem 6.42 in [15]). There is a bijective cor-
respondence between singular pure states τ on B(H) and maximal centered subsets
of P(C(H))+ via τ �→ Fτ = {p ∈ P(C(H))+ : τ (p) = 1}.

If F = Fτ as above and τ fails to restrict to a pure state on any atomic masa,
we say that F yields a counterexample to Anderson’s conjecture.

Theorem 9.9 (essentially Farah and Weaver, cf. Theorem 6.46 in [15]). If G is
V-generic for P(C(H))+, then G is a maximal centered set which yields a coun-
terexample to Anderson’s conjecture.

In fact, this result uses much less than full genericity, or even genericity over
L(R). By considering the complexity of the dense sets involved in the proof, we
obtain Theorem 1.7:

Proof of Theorem 1.7. Let H⊆ bb∞1 (E) be spread (p∗)-family which is

≤ess-centered and Ĥ the upwards closure of π(H) in P(C(H))+. First, we claim

that Ĥ is a maximal centered set. Clearly, Ĥ is centered. For maximality, let

p ∈ P(C(H))+ be such that p is compatible with every finite subset of Ĥ. Let
P ∈ P(H) be such that π(P ) = p, and define

DP = {X : PX ≤ess P or PX⊥essP},
which is a coanalytic and ≤ess-dense open subset of bb∞1 (H). By Lemma 9.6, DP

is �-dense open, so by Theorem 8.14, we can find a Y ∈ H � X with Y ∈ DP . It

must then be the case that PY ≤ess P and so p ∈ Ĥ.

To see that Ĥ yields a counterexample to Anderson’s conjecture, we refer to the
proof of Theorem 6.46 in [15] and omit the details except to note that it suffices to
show that H meets the ≤ess-dense open sets

D �J = {X ∈ bb∞1 (E) : ∀n(‖P (fk)
Jn∪Jn+1

PX‖ < 1/2)},

where �J = (Jn) is a partition of N into finite intervals Jn and P
(fk)
J denotes the

orthogonal projection onto span{fk : k ∈ J}, for (fk) an orthonormal basis of
H. These sets are easily seen to be Borel, and meeting them with H uses the
combination of Lemma 9.6 and Theorem 8.14 as before. �

For spread (p∗)-families being ≤ess-linked implies being a ≤ess-filter:

Lemma 9.10. Let H ⊆ bb∞1 (E) be a spread (p∗)-family which is, moreover, ≤ess-
linked. Then, H is a ≤ess-filter.

Proof. Let X,Y ∈ H, and consider the set

D = {Z : (Z ≤ess X and Z ≤ess Y ) or (Z⊥essX or Z⊥essY )}.

10These were called quantum filters by Farah and Weaver [15].
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It is easy to check that D is coanalytic. Clearly, D is ≤ess-dense open, thus, �-dense
open by Lemma 9.6. By Theorem 8.14 applied to the analytic set A = Dc, there
is a Z ∈ H with [Z]1 ⊆ D. In particular, Z ∈ D. Since D is ≤ess-linked, we must
have that Z ≤ess X and Z ≤ess Y . �

By Lemma 9.10, the maximal centered sets in Theorem 1.7 are also filters in
P(C(H))+. The following result of Bice, using Shelah’s model without p-points
(VI. §4 in [36]) presents an obstacle to ZFC constructions.

Theorem 9.11 (Bice [8]). It is consistent with ZFC that no maximal centered set
in P(C(H))+ is a filter.

Consequently, we have the following:

Corollary 9.12. It is consistent with ZFC that no spread (p∗)-family in bb∞1 (E)
can be ≤ess-linked, and in particular, that there are no spread (p∗)-filters.

10. Further questions

Despite our constructions, under additional hypotheses, of (p+)-filters, there
remains a lack of examples of interesting, purely analytical (p+)- and (p∗)-families,
Example 8.27 notwithstanding.

Question. Are there naturally occurring nontrivial (ZFC) examples of (p+)- or
(p∗)-families of block sequences?

While Theorem 1.6 does give a criterion for L(R)-genericity for filters of projec-
tions in the Calkin algebra, it would be desirable to have a such criterion expressed
in the language of C*-algebras.

Question. Can the (local) Ramsey theory of block sequences in a separable infinite-
dimensional Hilbert space be described in C*-algebraic terms? Under large cardi-
nals, is there a C*-algebraic characterization of L(R)-generic filters in the projec-
tions in the Calkin algebra?

Lastly, as the sufficient conditions described in Theorem 1.7 for producing a
counterexample to Anderson’s conjecture cannot be satisfied in Shelah’s model
without p-points, the status of Anderson’s conjecture in that model appears to be
a natural test question.

Question. Does Anderson’s conjecture hold in Shelah’s model without p-points?11
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[5] Joan Bagaria and Jordi López-Abad, Weakly Ramsey sets in Banach spaces, Adv. Math. 160
(2001), no. 2, 133–174, DOI 10.1006/aima.2001.1983. MR1839387
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