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ON BOREL MAPS, CALIBRATED σ-IDEALS,

AND HOMOGENEITY

R. POL AND P. ZAKRZEWSKI

Abstract. Let μ be a Borel measure on a compactum X. The main objects
in this paper are σ-ideals Ipdimq, J0pμq, Jf pμq of Borel sets in X that can
be covered by countably many compacta which are finite-dimensional, or of
μ-measure null, or of finite μ-measure, respectively. Answering a question of J.
Zapletal, we shall show that for the Hilbert cube, the σ-ideal Ipdimq is not ho-
mogeneous in a strong way. We shall also show that in some natural instances
of measures μ with nonhomogeneous σ-ideals J0pμq or Jf pμq, the completions
of the quotient Boolean algebras BorelpXq{J0pμq or BorelpXq{Jf pμq may be
homogeneous.

We discuss the topic in a more general setting, involving calibrated σ-ideals.

1. Introduction

The results of this paper provide more information on the topic investigated in
our articles [12], [11], [13], which were strongly influenced by the work of Zapletal
[19], [21], Farah and Zapletal [3], and Sabok and Zapletal [17].

Given a subset E of a compactum (i.e., a compact metrizable space) or, more
generally, of a Polish (i.e., a separable completely metrizable) space X, we denote
by BorpEq the σ-algebra of Borel sets in E, and KpEq is the collection of compact
subsets of E.

A σ-ideal on X is a collection I Ď BorpXq, closed under taking Borel subsets
and countable unions of elements of I; it is generated by compact sets if any element
of I can be enlarged to a σ-compact set in I. We usually assume that X R I.

A σ-ideal I generated by compact sets in X is calibrated if for any K P KpXqzI
and Kn P I X KpXq, n P N, there is a compact set L Ď Kz

Ť

nPN

Kn not in I; cf.

Kechris, Louveau, and Woodin [8].
Let us recall that a compactum is countable-dimensional if it is a union of count-

ably many zero-dimensional sets; cf. [2].
One of the main results in this paper is the following theorem.

Theorem 1.1. Let I be a calibrated σ-ideal on a compactum X without isolated
points, containing all singletons, and let f : B Ñ Y be a Borel map from B P

BorpXqzI to a compactum Y without isolated points. Then

(i) there exists a compact meager set C Ď Y with f´1pCq R I;
(ii) if Y is countable-dimensional, there is a zero-dimensional compactum C in

Y with f´1pCq R I;
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(iii) for any σ-finite nonatomic Borel measure μ on Y , there is a compact set
C in Y with μpCq ă 8 and f´1pCq R I.

The statement in (i) strengthens a result in [13] concerning the “1-1 or constant”
property of Sabok and Zapletal [17], [16] (some deep refinements of this result, in
another direction, are given in the book by Kanovei, Sabok, and Zapletal [6, Section
6.1.1]); cf. Section 7.2.

To comment on (ii), let us recall the notion of homogeneity of σ-ideals introduced
by Zapletal [19], [20]: a σ-ideal I on a Polish space X is homogeneous, if for each
E P BorpXqzI there exists a Borel map f : X Ñ E such that f´1pAq P I, whenever
A P I.

Now, (ii) implies that the σ-ideal Ipdimq of Borel sets in the Hilbert cube r0, 1sN

that can be covered by countably many finite-dimensional compacta is not ho-
mogeneous in a strong way: there are compacta X, Y in r0, 1sN not in Ipdimq

such that for any Borel map f : B Ñ Y on B P BorpXqzIpdimq there is a zero-
dimensional compactum C in Y with f´1pCq R Ipdimq. Combined with a theory
developed by Zapletal [19], it shows that the forcings associated with the collec-
tions BorpXqzIpdimq and BorpY qzIpdimq, partially ordered by inclusion, are not
equivalent. This provides an answer to a question by Zapletal [21]; cf. Section 6.1
for more details.

In the context of homogeneity we shall discuss also the σ-ideals Jf pμq and J0pμq

associated with Borel measures μ on compacta X: Jf pμq (J0pμq) is the collection
of Borel sets in X that can be covered by countably many compact sets of finite
μ-measure (of μ-measure zero, respectively; cf. [1] and [16]).

The σ-ideal J0pμq is calibrated, and hence, if μ is σ-finite and nonatomic, (iii)
shows that for any Borel map f : B Ñ X on B P BorpXqzJ0pμq, there is a compact
set C in X with μpCq ă 8 and f´1pCq R J0pμq; cf. Section 7.6(A) for additional
information.

The classical Lusin theorem shows that J0pλq is not homogeneous for the Lebes-
gue measure λ on r0, 1s, and a refinement of the Lusin theorem (cf. [13, Proposition
6.2]) provides nonhomogeneity of the σ-ideal Jf pH 1q associated with the one-
dimensional Hausdorff measure H 1 on the Euclidean square r0, 1s2 (cf. Corollary
6.2.2).

Shifting our attention from the σ-ideals J0pμq and Jf pμq to the collections
BorpXqzJ0pμq and BorpXqzJf pμq, we get a different picture concerning homogene-
ity.

Let us recall that a Borel measure μ on a compactum X is semifinite if each
Borel set of positive μ-measure contains a Borel set of finite positive μ-measure
(σ-finite Borel measures and Hausdorff measures on Euclidean cubes are semifinite;
cf. [15]).

Theorem 1.2. Let μ be a nonatomic Borel measure on a compactum X.

(i) Assume that X R Jf pμq and every Borel set B R Jf pμq contains a Borel set
C R Jf pμq with μpCq ă 8. Then the completion of the quotient Boolean
algebra BorpXq{Jf pμq is homogeneous and isomorphic to the completion of
the quotient Boolean algebra Borpr0, 1s2q{Jf pH 1q.

(ii) If μ is semifinite, then the completion of the quotient Boolean algebra
BorpXq{J0pμq is homogeneous and isomorphic to the completion of the quo-
tient Boolean algebra Borpr0, 1sq{J0pλq.
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In particular, the partial order Borpr0, 1s2qzJf pH 1q is forcing homogeneous,
while the σ-ideal Jf pH 1q is not homogeneous, and the same is true if Jf pH 1q

is replaced by J0pλq. It seems that examples illustrating this phenomenon did not
appear in the literature (cf. [19], comments following Definition 2.3.7).

Let us, however, remark that if μ is a σ-finite nonatomic Borel measure on
a compactum X not in Jf pμq, then the σ-ideal Jf pμq can be homogeneous; cf.
Proposition 7.1.

The proof of Theorem 1.1 is presented in Sections 3, 4, and 5. They are preceded
by Section 2 containing some preliminaries. Our approach is similar to that in
[11] and [13], an essential difference being that we shall analyze compact-valued

functions qfU : Y Ñ KpXq associated with f´1 rather than functions pfU : U Ñ

KpY q considered in [11] or [13], associated with f .
Theorem 1.2 is based on results of Oxtoby [10], and its proof is presented in

Section 6.

2. Preliminaries

Our notation is standard and mostly agrees with [7]. In particular,

‚ N “ t0, 1, . . .u;
‚ N

ăN is the family of all finite sequences of natural numbers;
‚ in a given metric space: diampAq is the diameter of A, Bpx, rq is the open
r-ball centered at x, and BpA, εq is the open ε-ball around A.

The terminology concerning Boolean algebras agrees with [9].
As in our earlier work on this topic, the key element of our reasonings are general-

ized Hurewicz systems (cf. [13, 2.4]); such systems were introduced in some special
cases by Hurewicz [5] and significantly developed by Solecki [18] in connection with
σ-ideals generated by closed sets.

Let X be a compactum without isolated points. In this paper by a generalized
Hurewicz system we shall mean (adopting a slightly more restrictive definition than
in [13, 2.4]) a pair pUsqsPNăN , pLsqsPNăN of families of subsets of X with the following
properties, where G is a given nonempty Gδ-set inX, the diameters are with respect
to a fixed complete metric on G, and the closures are taken in X:

‚ Us Ď G is relatively open, nonempty, and diampUsq ď 2´lengthpsq;
‚ Us X Ut “ H for distinct s, t of the same length;
‚ Usˆi X G Ď Us;
‚ Ls Ď Us is compact;
‚ Ls X Usˆi “ H;
‚ Ls “

Ş

j

Ť

iąj Usˆi;

‚ limi diampUsˆiq “ 0.

If a pair pUsqsPNăN , pLsqsPNăN is a generalized Hurewicz system, then

P “
č

n

ď

tUs : lengthpsq “ nu

is the Gδ-subset of G (actually, a copy of the irrationals) determined by the system,
and we have (cf. [13, 2.4])

(1) P “ P Y
Ť

tLs : s P N
ăNu.
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Moreover,

(2) if V is a nonempty relatively open subset of P , then V contains Ls with
arbitrarily long s P N

ăN.

We shall use the generalized Hurewicz systems in the following situation.
Let I be a calibrated σ-ideal on a compactum X without isolated points, con-

taining all singletons, and let f : B Ñ Y be a Borel map from B P BorpXqzI to a
compactum Y without isolated points.

Moreover, suppose that G Ď B is a nonempty, Gδ-set in X such that

(3) V R I for any nonempty relatively open set V in G;
(4) f |G : G Ñ Y is continuous.

Such a set G can always be found by a theorem of Solecki [18].

Given a nonempty relatively open set U in G we shall consider the map qfU :
Y Ñ KpUq defined by

(5) qfU pyq “
Ş

n f
´1pBpy, 1

n qq X U ,

Bpy, rq being the open r-ball centered at y, with respect to a fixed metric on Y .

In other words, x P qfU pyq if and only if there is a sequence pxnq of elements of
U such that limn xn “ x and limn fpxnq “ y.

Notice that for y R fpUq, qfU pyq “ H. The map qfU is upper-semicontinuous so,

in particular, the set qfU rEs defined by

qfU rEs “

ď

t qfU pyq : y P Eu

is compact, whenever E is compact. Let us also notice that x P qfU pfpxqq for any

x P U , and hence, qfU rY s being compact,

(6) U “ qfU rY s.

Functions qfU , associated with f , G fixed, and U varying over nonempty open
subsets of G, will be used to define generalized Hurewicz systems providing some
control simultaneously over sets determined by the systems and their images under
f . This is explained by the following lemma where we gathered some observations
vital for the proof of Theorem 1.1.

Lemma 2.1. Assume that I is a calibrated σ-ideal on a compactum X without
isolated points, containing all singletons, and let f : B Ñ Y be a Borel map from
B P BorpXqzI to a compactum Y without isolated points. Moreover, suppose that
G Ď B is a nonempty Gδ-set in X satisfying conditions (3) and (4).

(A) Let U be a nonempty relatively open set in G, and assume that L Ď U and

M Ď fpUq are compacta such that

(A1) L is boundary in U and L R I,
(A2) f´1pMq P I,

(A3) L Ď qfU rM s.

Then there exist nonempty relatively open subsets Vi of U , i P N, such that

(A4) Vi X G Ď U ,
(A5) Vi are pairwise disjoint and disjoint from L,

(A6) L “
Ş

n

Ť

iěn

Vi,

(A7) fpViq are pairwise disjoint and disjoint from M ,
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(A8) lim
iÑ8

diampViq “ 0 and lim
iÑ8

diampfpViqq “ 0 with respect to fixed metrics on

G and Y , respectively,
(A9)

Ş

n

Ť

iěn

fpViq Ď M .

(B) Let pJsqsPNăN be a family of hereditary collections of closed subsets of Y . As-
sume that for every nonempty relatively open set U in G and each s, there exist
compacta L and M P Js with properties (A1)–(A3). Then there exists a generalized
Hurewicz system pUsqsPNăN, pLsqsPNăN with an associated family pMsqsPNăN such
that the following additional conditions are satisfied for each s P N

ăN:

(B1) Ls R I,

(B2) Ms P KpfpUsqq X Js,

(B3) fpUs�iq are pairwise disjoint and disjoint from Ms,
(B4) lim

iÑ8
diampUs�iq “ 0 and lim

iÑ8
diampfpUs�iqq “ 0 with respect to fixed met-

rics on G and Y , respectively,
(B5) Ms “

Ş

n

Ť

iěn

fpUs�iq.

(C) If P Ď G is the set determined by the system from part (B), then

(C1) P “ P Y
Ť

tLs : s P N
ăNu,

(C2) each nonempty relatively open subset of P contains some Ls (with arbitrar-
ily long s P N

ăN),
(C3) P R I,

(C4) fpP q “ fpP q Y
Ť

tMs : s P N
ăNu,

(C5) each nonempty relatively open subset of fpP q contains some Ms (with ar-
bitrarily long s P N

ăN).

Proof. In order to prove part (A), let us fix a countable dense set in L and list its
elements, repeating each point infinitely many times, as a0, a1, . . ..

We shall choose inductively nonempty relatively open sets Vi in U such that for
i ą 0

(7) Vi Ď Bpai,
1

i`1 q, Vi X G Ď U, diam fpViq ď
1

i`1 , fpViq Ď BpM, 1
i`1 q,

(8) Vi Ď UzpL Y
Ť

jăi Vjq, fpViq Ď fpUqzpM Y
Ť

jăi fpVjqq.

Suppose that Vj , j ă i, are already defined, where V0 “ H.

Since ai P L, by (A3) we have ai P qfU pbiq for some bi P M . Let δi ă
1

i`1 be such
that

(9) Bpai, δiq X
Ť

jăi Vj “ H, Bpbi, δiq X
Ť

jăi fpVjq “ H.

From (5),

(10) W “ Bpai, δiq X f´1pBpbi, δiqq X U ‰ H,

and by (4), W is relatively open in U . Since L is boundary in U , W zL ‰ H and
by (3), W zL R I. Since (cf. (A2)) f´1pMq P I, we can pick c P W zpL Y f´1pMqq.
Then fpcq P Bpbi, δiqzM (cf. (10)), and appealing again to continuity of f , we get
a relatively open neighborhood Vi of c in U with Vi Ď Bpai, δiqzL, Vi X G Ď U and

fpViq Ď Bpbi, δiqzM . By (9), Vi satisfies (8).
This completes the inductive construction. It is now easy to see that require-

ments (A4)–(A9) of part (A) are met.
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Having checked part (A), we can use it subsequently to define inductively a
generalized Hurewicz system in X with properties (B1)–(B4) and property (B5)
replaced by (cf. (A9))

č

n

ď

iěn

fpUs�iq Ď Ms.

Taking into account that Js is hereditary, to secure (B5), it suffices to replace Ms

by
Ş

n

Ť

iěn

fpUs�iq. This completes the proof of part (B).

To prove part (C), first note that properties (C1), (C2) hold for any generalized
Hurewicz system considered in this paper and (C3) follows from (B1) and (C2) by
a Baire category argument.

We proceed to the proof of (C4). The inclusion

fpP q Y

ď

tMs : s P N
ăN

u Ď fpP q

can easily be justified with the help of (B4) and (B5) combined with the observation
that Us X P ‰ H for each s.

To prove the opposite inclusion, first note that, by (B5), for each s we have

fpP X Usq “

ď

i

fpP X Us�iq Ď

ď

i

fpP X Us�iq Y Ms.

So assume that y P fpP qz
Ť

tMs : s P N
ăNu and notice that for each s, if

y P fpP X Usq, then there is (precisely one; cf. (B3)) i such that y P fpP X Us�iq.

Using the fact that y P fpP X UHq (recall that P Ď UH) this allows us to construct
inductively a sequence z P N

N with

y P fpP X Uz|nq for each n P N.

It follows, by the continuity of f , that if x P P is the unique element of
Ş

n Uz|n,
then y “ fpxq, which shows that y P fpP q, completing the proof of (C4).

Finally, (C5) can easily be justified with the help of (B5) and (B4). �

3. Proof of Theorem 1.1 (i)

Striving for a contradiction, let us assume that for any meager set C in Y ,
f´1pCq P I. In particular, since Y has no isolated points, it follows that f´1pyq P I
for any y P Y .

Using a theorem of Solecki [18], we can find a nonempty Gδ-set G in X such
that G Ď B,

(1) V R I for any nonempty relatively open V in G,
(2) f |G : G Ñ Y is continuous.

We shall apply Lemma 2.1, and to that end, we shall first establish the following
fact.

Claim 3.1. Let U be a nonempty relatively open set in G. Then there exist com-
pacta L Ď U and M Ď fpUq such that

(3) L is boundary in U and L R I,

(4) M is boundary in fpUq,

(5) L Ď qfU rM s.



ON BOREL MAPS, CALIBRATED σ-IDEALS, AND HOMOGENEITY 8965

To prove the claim, first note that fpUq has no isolated points. For suppose

that y is an isolated point in fpUq. Then, by the continuity of f , f´1pyq contains
a nonempty relatively open subset of G which, by (1), implies that f´1pyq R I,
contradicting our assumptions.

Now let us fix a countable set D dense in fpUq. We shall consider two cases.

Case 1. There exists d P D with qfU pdq R I.

Then, since all singletons of qfU pdq are in I and I is calibrated, there exists a

boundary in U compactum L Ď qfU pdq not in I, and we let M “ tdu.

Case 2. For all d P D, qfU pdq P I.

Then, I being calibrated and containing all singletons of X, we have a boundary

compactum L Ď Uz
Ť

dPD
qfU pdq, L R I. Let

M “ ty P Y : qfU pyq X L ‰ Hu.

The compactum M Ď fpUq is disjoint from D, and hence boundary in fpUq,

and we have (cf. (6) in Section 2) L Ď qfU rM s, which completes the proof of the
claim.

Having verified the claim, we shall modify the proof of Lemma 2.1 to get for any
nonempty relatively open set U in G a sequence pViq of nonempty relatively open
subsets of U with properties (A4)–(A9) and the following additional property:

(6) M Ď fpUqz
Ť

i

fpViq.

Namely, since M is boundary in fpUq and fpUq has no isolated points, we can

enlarge M to a compactum M˚ Ď fpUq such that

(7) M˚ is boundary in fpUq and M Ď M˚zM .

To get M˚, we fix a countable set C dense in M , and then we subsequently pick
points dn in fpUqzM so that dn P BpM, 1

n`1 q and each point in C is the limit of a

subsequence of pdnqnPN. Then we let M˚ “ M Y tdn : n P Nu.
Having defined M˚ satisfying (7), we proceed as in the proof of part (A) of

Lemma 2.1, and using the fact that our assumptions yield f´1pM˚q P I we can
choose inductively nonempty relatively open sets Vi in U such that

(8) Vi Ď Bpai,
1

i`1 q, Vi X G Ď U, diam fpViq ď
1

i`1 , fpViq Ď BpM, 1
i`1 q,

(9) Vi Ď UzpL Y
Ť

jăi Vjq, fpViq Ď fpUqzpM˚ Y
Ť

jăi fpVjqq.

Then requirements (A4)–(A9) of Lemma 2.1 are still met. In particular (cf. (8)),
Ş

n

Ť

iěn

fpViq Ď M which, combined with (9), guarantees that
Ť

i fpViq is disjoint

from M˚zM . However, by (7), the latter set contains M in its closure which
justifies (6).

We can now define a generalized Hurewicz system pUsqsPNăN , pLsqsPNăN with the
associated family pMsqsPNăN satisfying for each s P N

ăN conditions (B1)–(B5) (with
Js being the collection of meager compacta in Y ; see part (B) of Lemma 2.1) and
the following additional condition:

(10) Ms Ď fpUsqz
Ť

i

fpUs�iq.



8966 R. POL AND P. ZAKRZEWSKI

These conditions guarantee that the set P determined by this system not only
has properties (C1)–(C5) (see part (C) of Lemma 2.1) but satisfies the following
one as well:

(11) For each s, Ms Ď Y zfpP q.

To see this, it suffices to prove, by (10) and (C4), that for each s

pfpUsqz

ď

i

fpUs�iqq X pfpP q Y

ď

tMs : s P N
ăN

uq “ H.

So fix s P N
ăN, and let y P fpUsqz

Ť

i

fpUs�iq.

Striving for a contradiction, suppose first that y P fpP q. Let k “ lengthpsq.
Since

fpP q Ď

ď

tfpUtq : lengthptq “ ku,

where the sets fpUtq have pairwise disjoint closures, the fact that y P fpUsq X fpP q

implies that y P fpUsq. Consequently, since

fpP q X fpUsq Ď fpP X Usq Ď

ď

i

fpUs�iq,

we conclude that y P
Ť

i fpUs�iq, contrary to the assumption that y R
Ť

i

fpUs�iq.

Next, if y P Mt for some t P N
ăN, then a contradiction can easily be reached by

considering the four mutual positions of t and s (namely, s “ t, s Ĺ t, t Ĺ s, s and
t are incompatible).

Having justified (11), let us note that combined with (C5) it implies that fpP q

has an empty interior in Y . But, on the other hand, P R I; cf. (C3). In effect, for

the meager compactum C “ fpP q we have f´1pCq R I, and this contradiction with
our assumptions completes the proof of part (i) of Theorem 1.1.

4. Proof of Theorem 1.1 (ii)

The reasoning in this case goes along similar lines as for Theorem 1.1(i).
Striving for a contradiction, suppose that for any zero-dimensional compactum

C in Y , f´1pCq P I.
The compactum Y being countable-dimensional, Y has defined the small induc-

tive transfinite dimension indY ; see [2, Theorem 7.1.9]. Let Y 1 be a compactum
in Y such that f´1pY 1q R I with minimal transfinite dimension. Replacing Y by
Y 1 and B by f´1pY 1q, we can assume that f´1pKq P I for any compactum K in Y
with indK ă indY .

Let us choose a base for the topology of Y whose elements have boundaries
K0,K1, . . ., with indKi ă indY . Then

(1) f´1pKiq P I for any i and H “ Y z
Ť

i

Ki is zero-dimensional.

We have Bz
Ť

i

f´1pKiq R I, and using a theorem of Solecki [18], we can find a

nonempty Gδ-set G in X, G Ď Bz
Ť

i

f´1pKiq, such that V R I for any nonempty

relatively open V in G (cf. (1))

(2) f |G : G Ñ H is continuous.

A key element of our reasoning is the following counterpart of Claim 3.1.
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Claim 4.1. Let U be a nonempty relatively open set in G. Then there exist com-
pacta L Ď U and M Ď fpUq such that

(3) L is boundary in U and L R I,
(4) M is zero-dimensional,

(5) L Ď qfU rM s.

In order to prove the claim, let (cf. (1))

(6) Z “ fpUq, Ei “ Z X Ki,

and consider two cases.

Case 1. There exists i such that qfU rEis R I.

Then, let S be a compactum in Ei such that qfU rSs R I with minimal possible
transfinite dimension ind.

Considering, as we did before, a base in S whose elements have boundaries

S0, S1, . . ., with indSi ă indS, we have that qfU rSis P I and T “ Sz
Ť

i

Si is zero-

dimensional. Since I is calibrated and qfU rSs R I, there is a compactum L Ď

qfU rSsz
Ť

i

qfU rSis not in I and (since the singletons of X belong to I) we may demand

that L is boundary in U . Then M “ ty P S : qfU pyq X L ‰ Hu is a compact subset

of T , hence zero-dimensional, and L Ď qfU rM s.

Case 2. For all i, qfU rEis P I.

Then, as in Case 1, we can pick a boundary in U compactum L Ď Uz
Ť

i

qfU rEis

not in I and since the compactum M “ ty P Z : qfU pyq XL ‰ Hu is contained in H

(cf. (1) and (6)), M is zero-dimensional and L Ď qfU rM s.
Having justified the claim, we can use Lemma 2.1 to define a generalized Hurewicz

system pUsqsPNăN , pLsqsPNăN with the associated family pMsqsPNăN satisfying for
each s P N

ăN conditions (B1)–(B5) with Js being the collection of zero-dimensional
compacta in Y ; see part (B) of Lemma 2.1.

These conditions guarantee that the set P determined by this system apart from
properties (C1)–(C5) (which follow from part (C) of Lemma 2.1) satisfies also the
following one:

(8) The compactum fpP q contains no nontrivial continuum.

To prove this, let us first show that if a P fpP q and b P fpP qzfpP q, then there

exists a clopen in the fpP q set containing a and missing b.
Indeed, for some n P N there are sequences s P N

n, t P N
n`1 with b P Ms and

a P fpUtq. Let V “ fpUtq X fpP q.

Clearly, V is closed in fpP q. To see that it is also open in fpP q, let pxiqiPN be a

convergent sequence of elements in fpP qzV with x “ lim
iÑ8

xi. Let k be the smallest

natural number (possibly 0 but clearly not greater than n) such that

xi P

ď

j‰tpkq

fpUt|k�jq

for all but finitely many i P N (here t|k denotes t|tj P N : j ă ku, in particular t|0
is the empty sequence).
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It follows that x P
Ť

j‰tpkq

fpUt|k�jq Y Mt|k (cf. (B5)), and the latter set being

disjoint from fpUtq, we conclude that x R V .

Thus V is indeed clopen in fpP q, a P V and b R V , since Ms X fpUtq “ H.

Now, if C is any continuum in fpP q, the preceding observation shows that either
C Ď fpP q or C Ď

Ť

tMs : s P N
ăNu “ M ; cf. (C4). Since fpP q is a copy of

the irrationals, hence zero-dimensional, and so is M , being the countable union of
closed zero-dimensional sets Ms (cf. [2, Theorem 1.3.1]), in both cases, C must be
a singleton.

Having justified (8), we conclude that fpP q is zero-dimensional; cf. [2, Theorem
1.4.5]. On the other hand, P R I; cf. (C3). In effect, for the zero-dimensional com-

pactum C “ fpP q we have f´1pCq R I, and this contradiction with our assumptions
completes the proof of part (ii) of Theorem 1.1.

5. Proof of Theorem 1.1 (iii)

Again the scheme of the proof is analogous to the ones in preceding sections.
Striving for a contradiction, suppose that f´1pCq P I for any compactum C in

Y with μpCq ă 8.
Since the measure μ is σ-finite, there are compact sets Fi in Y with μpFiq ă 8

and such that if we let H “ Y z
Ť

i

Fi, then

(1) μpHq “ 0.

We have Bz
Ť

i

f´1pFiq R I and using a theorem of Solecki [18], we can find a

nonempty Gδ-set G in X, G Ď Bz
Ť

i

f´1pFiq, such that V R I for any nonempty

relatively open V in G and f |G : G Ñ H is continuous.
A key element of our reasoning is the following counterpart of Claims 3.1 and

4.1.

Claim 5.1. Let U be a nonempty relatively open set in G, and let ε ą 0. Then
there exist compacta L Ď U and M Ď fpUq such that

(2) L is boundary in U and L R I,
(3) μpMq ă ε,

(4) L Ď qfU rM s.

In order to prove the claim, we shall consider two cases.

Case 1. There exists i such that qfU rFis R I.

We can cover Fi by finitely many compacta M0, . . . ,Mn´1 with μpMjq ă ε for

each j. Then for some j, qfU rMjs R I. We let M “ Mj and pick a compactum

L Ď qfU rM s, not in I and boundary in U .

Case 2. For all i, qfU rFis P I.

Then we pick a compactum L Ď Uz
Ť

i

qfU rFis which is boundary in U and not

in I, and we let M “ ty P fpUq : qfU pyq X L ‰ Hu. Consequently, L Ď qfU rM s, and
since M is contained in H, μpMq “ 0; cf. (1).

Having justified the claim, we can use Lemma 2.1 to define a generalized Hurewicz
system pUsqsPNăN , pLsqsPNăN with the associated family pMsqsPNăN satisfying for
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each s P N
ăN conditions (B1)–(B5) with Js being the collection of compacta M in

Y with μpMq ă
1

2epsq , where e : NăN Ñ N is a fixed bijection.
These conditions guarantee that the set P determined by this system has prop-

erties (C1)–(C5) (granted by part (C) of Lemma 2.1) and, moreover, μp
Ť

tMs : s P

N
ăNuq ď 2. Since fpP q Ď H and μpHq “ 0 (cf. (1)), it follows (cf. (C4)) that

μpfpP qq ď 2. On the other hand, P R I so in effect, for the compactum C “ fpP q

we have μpCq ă 8 but f´1pCq R I which contradicts our assumptions and ends
the proof.

6. Homogeneity notions related to σ-ideals

Recall (cf. Section 1) that a σ-ideal I on a Polish space X is homogeneous, if
for each E P BorpXqzI there exists a Borel map f : X Ñ E such that f´1pAq P I,
whenever A P I (cf. [19], [20]). Examples of homogeneous σ-ideals include (cf. [19])

‚ the σ-ideal of countable subsets of X,
‚ the σ-ideal generated by compact sets in the irrationals,
‚ the σ-ideal of meager Borel sets in the Cantor set,
‚ the σ-ideal of Lebesgue-null Borel sets in the Cantor set.

6.1. The σ-ideal Ipdimq. Let (cf. Section 1) Ipdimq be the σ-ideal of Borel sets in
the Hilbert cube r0, 1sN that can be covered by countably many finite-dimensional
compacta, and let, for a compactum X Ď r0, 1sN, IXpdimq be the σ-ideal Ipdimq

restricted to BorpXq.
The σ-ideal Ipdimq is not homogeneous in a strong way. To see this, let X be

a Henderson compactum in r0, 1sN (cf. 7.1), and let Y Ď r0, 1sN be a countable-
dimensional compactum not in Ipdimq (cf. [2, Example 5.1.7]).

Since IXpdimq is calibrated (cf. 7.1), by Theorem 1.1(ii), there is no Borel map
f : B Ñ Y with B P BorpXqzIXpdimq such that f´1pAq P IXpdimq, whenever
A P IY pdimq.

Applying a theory developed by Zapletal [19], one infers that forcings associated
with the collections BorpXqzIXpdimq and BorpY qzIY pdimq, partially ordered by
inclusion, are not equivalent (cf. [19], the final part of Section 2.3).

This answers Question 3.1 of Zapletal [21] (a partial answer was given in [11]).

6.2. The σ-ideals J0pμq, Jf pμq. Given a Borel measure μ on a compactum X, let
(cf. Section 1) J0pμq, Jf pμq be the σ-ideals of Borel sets inX that can be covered by
countably many compact sets of μ-measure zero, or finite μ-measure, respectively.

Proposition 6.2.1. Let μ be a semifinite nonatomic Borel measure on a com-
pactum X with μpXq ą 0.

(i) The σ-ideal J0pμq is not homogeneous.
(ii) If, moreover, μ is not σ-finite (in particular, X R Jf pμq), there exists a

Borel set Y R Jf pμq with μpY q ă 8, and μ|KpXq is a Borel mapping on
the hyperspace KpXq, then the σ-ideal Jf pμq is not homogeneous.

Proof.

(i) Pick Y P BorpXqzJ0pμq with μpY q “ 0 and any Borel map f : X Ñ Y . By
the Lusin theorem, there is a compact set K in X with μpKq ą 0 such that
f |K is continuous. If C “ fpKq, then C P J0pμq but f´1pCq R J0pμq.
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(ii) Pick Y P BorpXqzJf pμq with μpY q ă 8. Let f : X Ñ Y be any Borel
function. By [13, Proposition 6.2], there is a compact set K in X with
K R Jf pμq (even of non-σ-finite μ-measure) such that f |K is continuous. If
C “ fpKq, then C P Jf pμq but f´1pCq R Jf pμq. �

In contrast to (ii) above, we shall show in Proposition 7.1 that for some σ-finite
measures μ on compacta X with X R Jf pμq, the σ-ideal Jf pμq can be homogeneous.

Recall that λ and H 1 denote the Lebesgue measure on r0, 1s and the one-
dimensional Hausdorff measure on the Euclidean square r0, 1s2, respectively. It is
well known that the measure H 1 (restricted to Borel sets in r0, 1s2) is nonatomic,
semifinite but not σ-finite, and H 1|Kpr0, 1s2q is a Borel map (cf. [15]). Moreover, it
is easy to construct a dense Gδ set Y in r0, 1s2 of H 1-measure zero. Consequently,
Y R Jf pH 1q since, nonempty open sets in r0, 1s2 having infinite H 1-measure, the
σ-ideal Jf pH 1q contains meager sets only. This leads to the following corollary of
Proposition 6.2.1.

Corollary 6.2.2. The σ-ideals J0pλq, J0pH 1q, and Jf pH 1q are not homogeneous.

6.3. The partial orders BorpXqzJ0pμq and BorpXqzJf pμq. Let us now shift
our attention from the σ-ideals J0pμq and Jf pμq to the collections of Borel sets
BorpXqzJ0pμq and BorpXqzJfpμq, partially ordered by inclusion. The key step in
the proof of Theorem 1.2 is the following result.

Theorem 6.3.1.

(i) There is a copy of the irrationals P in r0, 1s2 such that
‚ P R Jf pH 1q;
‚ if μ is any nonatomic Brel measure on a compactum X R Jf pμq such
that every Borel set B R Jf pμq contains a Borel set C R Jf pμq with
μpCq ă 8, then for each B P BorpXqzJf pμq there is a homeomorphic
embedding h : P Ñ B such that, for A Ď P , A P Jf pH 1q if and only
if hpAq P Jf pμq.

(ii) There is a copy of the irrationals P in r0, 1s such that
‚ P R J0pλq;
‚ for any semifinite nonatomic Borel measure μ on a compactum X with
μpXq ą 0 and for each B P BorpXqzJ0pμq there is a homeomorphic
embedding h : P Ñ B such that, for A Ď P , A P J0pλq if and only if
hpAq P J0pμq.

Proof. (i) Let G be a copy of the irrationals in r0, 1s2 which is H 1-null and dense in
r0, 1s2. Consequently, if U is a nonempty relatively open set in G, then U R Jf pH 1q;

and since H 1pGq “ 0, it follows that H 1pUzGq “ 8. Hence there is a Cantor set
L Ď UzG with H 1pLq “ 1 (cf. [15]).

This observation can be used to define a generalized Hurewicz system pUsqsPNăN ,
pLsqsPNăN such that, in particular, the following conditions are satisfied for each
s P N

ăN:

(1) Ls is a Cantor set with H 1pLsq “ 1;
(2) Us is a nonempty relatively clopen subset of G;
(3) lim

iÑ8
diampUs�iq “ 0, diampUsq ď 2´lengthpsq, with respect to a fixed com-

plete metric on G.
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These conditions guarantee (cf. Section 2) that the copy of the irrationals P
determined by this system has the following properties:

(4) P “ P Y
Ť

tLs : s P N
ăNu and Ls X Lt “ H for s ‰ t;

(5) each nonempty relatively open subset of P contains infinitely many sets Ls.

In particular, by a Baire category argument, P R Jf pH 1q.
Let us now consider an arbitrary B P BorpXqzJf pμq. By the properties of μ

without loss of generality we can assume that μpBq ă 8. By a theorem of Solecki
[18] we can first find a Gδ in B not in Jf pμq, and then shrinking it further we can
pick a copy of the irrationals G1 in B with μpG1q “ 0 such that for each nonempty
relatively open set U 1 in G1, we have U 1 R Jf pμq so, in particular, μpU 1zG1q “ 8.

A key element of our reasoning is the following observation.

Claim 6.3.2. Let U and U 1 be nonempty relatively open sets in G and G1, respec-
tively. Let L Ď UzU be a Cantor set with H 1pLq “ 1.

Then there exist a Cantor set L1 Ď U 1zU 1 and a homeomorphism g : U Y L Ñ

U 1 Y L1 such that μpL1q “ 1 and g|L is a measure preserving homeomorphism
between L and L1.

To prove the claim, we can first appeal to results of Oxtoby [10] to find a Cantor
set L1 Ď U 1zU 1 and a measure preserving homeomorphism f : L Ñ L1.

More precisely, let N denote the set of the irrationals in r0, 1s, and let λ be the
restriction of the Lebesgue measure on r0, 1s to the Borel subsets of N . Considering
the product P1 “ L ˆ N , one can identify L with a subspace of P1, a copy of the
irrationals equipped with a Borel measure ν such that

(6) νpP1q ă 8,
(7) νptxuq “ 0 for each x P P1,
(8) νpUq ą 0 for every nonempty open set in P1,
(9) ν coincides with H 1 on Borel sets in L.

In effect, by a theorem of Oxtoby [10, Theorem 1], properties (6)–(8) guarantee
that there is a homeomorphism ϕ1 : N Ñ P1 such that νpϕ1pAqq “ νpP1q ¨λpAq for
any Borel set A in N .

On the other hand, by theorems of Gelbaum [4] and Oxtoby [10, Theorem 2],
there is a copy of the irrationals P2 in U 1zU 1 with μpP2q “ νpP1q and a homeo-
morphism ϕ2 : N Ñ P2 such that μpϕ2pAqq “ νpP1q ¨ λpAq for any Borel set A
in N .

Now it suffices to let L1 “ pϕ2 ˝ϕ´1
1 qpLq and f “ ϕ2 ˝ϕ´1

1 |L to obtain a desired
Cantor set L1 and a measure preserving homeomorphism f : L Ñ L1.

Finally, since U YL and U 1 YL1 are copies of the irrationals, a theorem of Pollard
[14] provides an extension of f to a homeomorphism g : U Y L Ñ U 1 Y L1.

Having justified the claim, we can use it to define a generalized Hurewicz system
pU 1

sqsPNăN , pL1
sqsPNăN of subsets of G1 together with homeomorphisms

(10) hs : Ls Y
Ť

i Us�i Ñ L1
s Y

Ť

i U
1
s�i,

satisfying the following conditions for each s P N
ăN:

(11) hspUs�iq “ U 1
s�i;

(12) μpL1
sq “ 1 and hs|Ls : Ls Ñ L1

s is measure preserving;
(13) U 1

s is a nonempty relatively clopen subset of G1;
(14) lim

iÑ8
diampU 1

s�iq “ 0 and diampU 1
sq ď 2´lengthpsq, with respect to a fixed

complete metric on G1.
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More precisely, we let U 1
H “ G1, and given U 1

s, we select L1
s, U

1
s�i, and hs as

follows. Claim 6.3.2 provides a Cantor set L1
s Ď U 1

szU 1
s and a homeomorphism

gs : Us Y Ls Ñ U 1
s Y L1

s such that μpL1
sq “ 1 and gs|Ls is a measure preserving

homeomorphism between Ls and L1
s. For each i P N let Wi “ gspUs�iq, and

pick a nonempty relatively clopen set U 1
s�i Ď Wi in G1 such that diampU 1

s�iq ď

2´plengthpsq`iq (with respect to a fixed complete metric on G1). Since Wi and U 1
s�i

are copies of the irrationals, there are homeomorphisms ui : Wi Ñ U 1
s�i which give

rise to a homeomorphism hs, letting hs|Ls “ gs|Ls and hs|Us�i “ ui ˝ gs|Us�i.
Let P 1 Ď G1 Ď B be the copy of the irrationals determined by the system

pU 1
sqsPNăN , pL1

sqsPNăN . Then, exactly as in the case of P , we have (cf. (3), (4))

(15) P 1 “ P 1 Y
Ť

tL1
s : s P N

ăNu and L1
s X L1

t “ H for s ‰ t,
(16) P 1 R Jf pμq.

Note that if e P N
N, both

Ş

m Ue|m and
Ş

m U 1
e|m are singletons, which give rise

to a homeomorphism h : P Ñ P 1, defined by letting

(17) hpxq P
Ş

m U 1
e|m for x P

Ş

m Ue|m.

For any s P N
ăN, if x P P X Us�i, both hpxq and hspxq belong to the set U 1

s�i of

diameter less than 2´plengthpsq`iq. This, combined with (10), leads to the following
observation: for any relatively closed set C in P and s P N

ăN, hspC X Lsq “

hpCq X L1
s, and in effect, H 1pC X Lsq “ μphpCq X L1

sq.
Taking into account (4), (15), and the fact that H 1pP q “ μpP 1q “ 0, we conclude

that for each relatively closed set C in P , H 1pCq “ μphpCqq, and this shows that
for every A Ď P , A P Jf pH 1q if and only if hpAq P Jf pμq.

(ii) We shall modify the proof of part (i) above in the following way. Let G
be a copy of the irrationals in r0, 1s which is λ-null and dense in r0, 1s. Conse-
quently, if U is a nonempty relatively open set in G, then there is a Cantor set
L Ď UzG with λpLq ą 0. It follows that we may define a generalized Hurewicz
system pUsqsPNăN , pLsqsPNăN satisfying for each s P N

ăN conditions (1)–(5) with (1)
replaced by λpLsq ą 0. The copy of the irrationals P determined by this system
has properties (4) and (5), and in effect, P R J0pλq.

If now B P BorpXqzJ0pμq, then by the properties of μ and a theorem of Solecki
[18] we can pick a copy of the irrationals G1 in B with μpG1q “ 0 such that for
each nonempty relatively open set U 1 in G1, we have U 1 R J0pμq so, in particular,
μpU 1zG1q ą 0.

A refinement of the proof of Claim 6.3.2 leads to the following observation.

Claim 6.3.3. Let U and U 1 be nonempty relatively open sets in G and G1, respec-
tively. Let L Ď UzU be a Cantor set with λpLq ą 0.

Then there exist a Cantor set L1 Ď U 1zU 1 and a homeomorphism g : U Y L Ñ

U 1 Y L1 such that μpL1q ą 0 and g|L is a homeomorphism between L and L1

preserving the measure up to a positive constant factor. In particular, for every
A Ď L, λpAq “ 0 if and only if μpgpAqq “ 0.

We can now use the claim to define a generalized Hurewicz system pU 1
sqsPNăN ,

pL1
sqsPNăN of subsets of G1 together with homeomorphisms hs satisfying conditions

(10)–(14) with (12) replaced by the requirements that μpL1
sq ą 0 and hs|Ls : Ls Ñ

L1
s preserves the measure up to a positive constant factor.
Arguing as before, we conclude that for each relatively closed set C in P , λpCq “

0 if and only if μphpCqq “ 0, and this shows that for any A Ď P , A P J0pλq if
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and only if hpAq P J0pμq, completing the proof of part (ii) and the proof of the
theorem. �

Let us observe that the measure H 1 itself has the properties described in part
(i) of Theorem 6.3.1.

Remark 6.3.4. Every Borel set B R Jf pH 1q contains a Borel set C R Jf pH 1q with
H 1pCq “ 0.

Proof. By a theorem of Solecki [18] we find a nonempty Gδ set G in B such that no
nonempty relatively open set U in G is in Jf pH 1q. Consequently, every element
of Jf pH 1q below G is meager in G so it suffices to pick a dense Gδ subset C of G
with H 1pCq “ 0. �

6.4. The proof of Theorem 1.2. To begin let us make the following observation.

Proposition 6.4.1. Let μ be a nonatomic Borel measure on a compactum X.

(i) Assume that every Borel set B R Jf pμq contains a Borel set C R Jf pμq

with μpCq ă 8. If B P BorpXqzJf pμq, then there is a function ϕ : 2N Ñ

BorpBqzJf pμq such that for any distinct c, d P 2N, ϕpcq X ϕpdq “ H.
(ii) Assume that μ is semifinite. If B P BorpXqzJ0pμq, then there is a function

ϕ : 2N Ñ BorpBqzJ0pμq such that for any distinct c, d P 2N, ϕpcq X ϕpdq “

H.

Proof. To prove part (i), arguing as at the beginning of the proof of Theorem
6.3.1(i), we pick a copy of the irrationals G in B with μpGq “ 0 such that for
each nonempty relatively open set U in G, U R Jf pμq. This leads to a generalized
Hurewicz system pUsqsPNăN , pLsqsPNăN that determines a homeomorphic copy of the
set P R Jf pμq.

For each c P 2N we let

Sc “ t s P N
ăN : spiq ` cpiq is even for every i ă lengthpsq u

and
ϕpcq “

č

n

ď

tUs : s P Sc and lengthpsq “ n u.

Thus ϕpcq may be viewed as the copy of the irrationals in G determined by the
system pUsqsPSc

, pLsqsPSc
. In particular, ϕpcq R Jf pμq and, moreover, ϕpcqXϕpdq “

H for any distinct c, d P 2N.
Part (ii) can be proved analogously along the lines of the first part of the proof

of Theorem 6.3.1(ii). �

We are now ready to complete the proof of Theorem 1.2.
To prove part (i), let P be a copy of the irrationals in r0, 1s2, the existence

of which is guaranteed by Theorem 6.3.1(i). Let A (B) be the quotient Boolean
algebra BorpP q{pJfpH 1q X BorpP qq (BorpXq{Jf pμq, respectively).

Let us note that if B P BorpXqzJf pμq and h : P Ñ B is a homeomorphic embed-
ding such that, for A Ď P , A P Jf pH 1q if and only if hpAq P Jf pμq, then h induces
an isomorphism from A onto the quotient Boolean algebra BorphpP qq{pJfpμq X

BorphpP qq. Consequently, by Theorem 6.3.1(i), the family C of all nonzero ele-
ments c P B such that the relative algebra Bæc is isomorphic to A is dense in B.

Let A (B) be the completion of A (B, respectively). It follows that for each
c P C the relative algebra Bæc is isomorphic to A and C is dense in B. Moreover,



8974 R. POL AND P. ZAKRZEWSKI

Proposition 6.4.1 implies that for any nonzero element b P B, the algebra Bæb
has cellularity continuum from which it follows, C being dense below b, that Bæb
is isomorphic to the product of continuum many isomorphic copies of the algebra
A (cf. [9, Proposition 6.4]). This shows that the algebra B is homogeneous (cf.
[9, Definition 9.12]). In effect, since Bæb is isomorphic to A for some nonzero
b P B, the algebras B and A are isomorphic. In view of Remark 6.3.4, the same
applies to the completion of the quotient Boolean algebra Borpr0, 1s2q{Jf pH 1q

which completes the proof of part (i) of Theorem 6.3.1.
To prove part (ii), we follow closely the preceding argument, appropriately ap-

plying Theorem 6.3.1(ii). Thus the proof of Theorem 6.3.1 is completed. �
In particular, the partial order Borpr0, 1s2qzJf pH 1q is forcing homogeneous,

while the σ-ideal Jf pH 1q is not homogeneous, and the same is true if Jf pH 1q

is replaced by J0pλq. As already observed in Section 1, it seems that examples
illustrating this phenomenon did not appear in the literature (cf. [19], comments
following Definition 2.3.7).

Finally, note that while, by Theorem 6.3.1, the completion of the quotient
Boolean algebra Borpr0, 1s2q{Jf pH 1q is homogeneous, the algebra Borpr0, 1s2q{

Jf pH 1q itself is not, since by Sikorski’s theorem [7, 15.C], this would imply the
homogeneity of the σ-ideal Jf pH 1q. The same is also true if Jf pH 1q is replaced
by J0pλq.

7. Comments

7.1. Calibrated σ-ideals. If X is a Henderson compactum, i.e., dimX “ 8 but
X contains no one-dimensional subcompactum (cf. [2, Example 5.2.23]), then the
σ-ideal IXpdimq is calibrated (cf. [21], [11]).

Also, the σ-ideal JσpH 1q of Borel subsets of the Euclidean square r0, 1s2 that
can be covered by countably many compacta of σ-finite H 1-measure is calibrated
(cf. [13]).

7.2. The 1-1 or constant property of Sabok and Zapletal. From assertion
(i) in Theorem 1.1 it follows that any calibrated σ-ideal I on a compactum X has
the following property: whenever f : B Ñ N

N is a Borel map on B P BorpXqzI
with all fibers in I, then there exists C P BorpBqzI on which f is injective.

Indeed, the fact that this property can be derived from (i) was established by
Sabok and Zapletal [17] (the proof in [17] is based on some forcing related argu-
ments, and a justification in the realm of the classical descriptive set theory can be
found in [12]).

7.3. Inhomogeneity of Jf pH 1q. As was already proved in Corollary 6.2.2, the σ-
ideal Jf pH 1q on the Euclidean square r0, 1s2 is not homogeneous. Here is another
proof of this fact. Let Y Ď r0, 1s2 be a compactum not in Jf pH 1q on which H 1

is σ-finite, and let f : r0, 1s2 Ñ Y be any Borel function. As was recalled in
Section 7.1, the σ-ideal JσpH 1q Ě Jf pH 1q is calibrated in the square, and by
(iii) in Theorem 1.1, there exists a compact set C in Y with H 1pCq ă 8 and
f´1pAq R JσpH 1q.

7.4. Homogeneity of Jf pμq for σ-finite μ. The following result shows that the
requirement imposed on μ to be non-σ-finite cannot be dropped from the assump-
tions of Proposition 6.2.1(ii).
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Proposition 7.1. Let ν be a σ-finite nonatomic measure on a compactum X such
that all nonempty open sets have positive ν-measure, and let μ be a nonatomic Borel
measure on a compactum Y R Jf pμq.

Then for any B P BorpY qzJf pμq with μpBq ă 8 there is a Borel map f : X Ñ B
such that, whenever A P Jf pμq, f´1pAq P Jf pνq.

Proof. Let P Ď B be a copy of the irrationals defined as in the proof of Theorem
6.3.1(i), and let us adopt the notation from that proof. In particular, P “ P Y
Ť

tLs : s P N
ăNu, the Cantor sets Ls are pairwise disjoint, and μpLsq “ 1 for each

s P N
ăN.

Let us note that the compactum P is zero-dimensional as it contains no nontrivial
continuum (cf. the proof of (8) in Section 4). Since, moreover, P zP is dense in P ,
removing a countable dense set from P zP , we get a copy of the irrationals H such
that

(1) P Ď H Ď P , |P zH| ď ℵ0.

(A) Let us assume first that X is a copy of the irrationals.
The measure ν being σ-finite and nonatomic, by a result of Gelbaum [4], there

are pairwise disjoint Cantor sets C0, C1, . . . , in X with νpCnq ď 1 for each n P N

such that νpXz
Ť

i Ciq “ 0.
Let us fix a complete metric d on H.
We shall define inductively homeomorphisms hn : X Ñ H such that for each

n P N

(2) νpAq “ μphnpAqq for any Borel A Ď Cn,
(3) hn`1|pC0 Y ¨ ¨ ¨ Y Cnq “ hn|pC0 Y ¨ ¨ ¨ Y Cnq,
(4) dphn`1pxq, hnpxqq ď 2´n for any x P X.

To define h0, using results of Oxtoby [10], we fix a homeomorphism u : C0 Ñ

upC0q Ď LH X H such that νpAq “ μpupAqq for any Borel A Ď C0 (cf. the proof of
6.3.2), and let h0 be an extension of u to a homeomorphism from X onto H whose
existence is guaranteed by a theorem of Pollard [14].

Assume that hn is already defined, and let U be a disjoint cover ofH by relatively
clopen sets of d-diameter ď 2´n.

For each U P U , we consider V “ h´1
n pUq, and the homeomorphism hn`1|V :

V Ñ U will be defined as follows.
On T “ pC0 Y ¨ ¨ ¨ Y Cnq X V we let hn`1 coincide with hn. Since hnpT q is

compact and nowhere dense in H, UzhnpT q is a nonempty relatively open subset
of H, so one can find Ls such that Ls XH Ď UzhnpT q (cf. Section 2). Using again
results of Oxtoby [10] and Pollard [14], we first pick a homeomorphic embedding
w : Cn X V Ñ Ls X H such that νpAq “ μpwpAqq, for any Borel A Ď Cn X V , and
then extend w to a homeomorphism hn`1|V : V Ñ U .

Then, conditions (2), (3), and (4) are met.
Now, (4) guarantees that

(5) the sequence phnq uniformly converges to a continuous function g : X Ñ H,
(6) g|Cn “ hn|Cn for n P N.

From (2), (6), and the fact that the Cantor sets gpCnq are pairwise disjoint (cf.
(3)), we infer that for any Borel set A Ď X,

ν
´

A X
ď

n

Cn

¯

“
ÿ

n

νpA X Cnq “
ÿ

n

μpgpA X Cnqq “ μ
´

gpA X
ď

n

Cnq

¯

.
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Since νpXz
Ť

n Cnq “ 0, we conclude that

(7) νpAq ď μpgpAqq for any Borel A Ď X.

Let A P Jf pμq and assume that A Ď P . Then A Ď
Ť

j Fj , where Fj Ď P are

closed and μpFjq ă 8 for every j P N. It follows, by (5) and (7), that g´1pFjq are
closed sets of finite ν-measure, and hence g´1pAq P Jf pνq.

Since the range of g may not be contained in P , we shall slightly correct g to get
a required map f : X Ñ P Ď B.

Let M “ g´1p
Ť

s Lsq. Then, as we have noticed, M P Jf pνq. Now, we define
f : X Ñ P so that f coincides with g on XzM and takes M to a point in P .

(B) Now, let ν be a σ-finite nonatomic Borel measure on a compactum X such
that nonempty open sets have positive ν-measure.

By a result of Gelbaum [4], there is a countable open basis pUnq of X such that
νpBUnq “ 0 for all n P N, where BUn denotes the boundary of Un. Then L “

Ť

n BUn

is a σ-compact set in X with νpLq “ 0 such that XzL is a copy of the irrationals.
Let B be a Borel set in Y satisfying the assumptions.
Using (A), we define a Borel map f |pXzLq : XzL Ñ B such that for any Borel

A P Jf pμq,
pf |pXzLqq´1pAq P Jf pνq, and we let f send L to a point in B. �

7.5. A calibrated σ-ideal which is not coanalytic. If E is a subset of a com-
pactum X, E ‰ X, the σ-ideal KpEq is calibrated but need not be coanalytic.

However, we did not find in the literature examples of calibrated, non-coanalytic
σ-ideals I on compacta X with

Ť

I “ X.
The following construction provides examples of such σ-ideals of arbitrary high

complexity.

Proposition 7.2. Let I be a calibrated σ-ideal on a compactum X. For each
A Ď r0, 1s there exists a calibrated σ-ideal J on r0, 1s ˆX generated by compact sets
and a continuous function Φ : r0, 1s Ñ Kpr0, 1s ˆ Xq such that A “ Φ´1pJq.

Proof. Let J consist of Borel sets in r0, 1s ˆ X that can be covered by countably
many compact sets K with Kt “ tx P X : pt, xq P Ku P I, for each t R A.

Since I is calibrated, one readily checks that so is J .
The function Φptq “ ttu ˆ X, t P r0, 1s, is a continuous map from r0, 1s to

Kpr0, 1s ˆ Xq, and it is clear that A “ Φ´1pJq. �

7.6. Comparing BorpXq{J0pμq and BorpXq{Jf pμq. (A) Let μ be a σ-finite
nonatomic measure on a compactum X with X R Jf pμq. Then the consequence
of Theorem 1.1(iii) indicated in Section 1, combined with some results of Zapletal
[19] (indicated in Section 6.1 in the context of the σ-ideal Ipdimq), shows that the
forcings associated with the partial orders BorpXqzJ0pμq and BorpXqzJf pμq are
not equivalent. To be more specific, assume on the contrary that these forcings are
equivalent. Then the reasoning on page 32 in [19], applied to the σ-ideal I which
is the direct sum of the σ-ideals J0pμq and Jf pμq on X ˆ t0, 1u, and the Borel sets
Bi “ X ˆ tiu, i “ 0, 1, provides a Borel set C0 Ď B0 not in J0pμq and a Borel func-
tion f : C0 Ñ B1 such that f´1pAq P J0pμq, whenever A P Jf pμq. This, however, is
impossible by Theorem 1.1(iii), the σ-ideal J0pμq being calibrated.

In particular, neither of the quotient Boolean algebras BorpXq{J0pμq and
BorpXq{Jf pμq embeds densely into the completion of the other.
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(B) Let μh be a semifinite but not σ-finite Hausdorff measure on a compactum,
associated with a continuous nondecreasing function h : r0,`8s Ñ r0,`8s with
hprq ą 0 for r ą 0 and hp0q “ 0; cf. [15]. Then BorpXq{Jf pμhq does not embed
densely into BorpXq{J0pμhq.

This was proved in [13] under the additional assumption that the calibrated σ-
ideal J0pμhq has the 1-1 or constant property (cf. Section 7.2), but this is now
granted by Theorem 1.1 (i).

It is not clear, however, if BorpXq{Jfpμhq can be embedded densely into the
completion of BorpXq{J0pμhq.
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[6] Vladimir Kanovei, Marcin Sabok, and Jindřich Zapletal, Canonical Ramsey theory on Polish

spaces, Cambridge Tracts in Mathematics, vol. 202, Cambridge University Press, Cambridge,
2013. MR3135065

[7] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics,
vol. 156, Springer-Verlag, New York, 1995. MR1321597

[8] A. S. Kechris, A. Louveau, and W. H. Woodin, The structure of σ-ideals of compact sets,
Trans. Amer. Math. Soc. 301 (1987), no. 1, 263–288, DOI 10.2307/2000338. MR879573

[9] Sabine Koppelberg, Handbook of Boolean algebras. Vol. 1, North-Holland Publishing Co.,
Amsterdam, 1989. Edited by J. Donald Monk and Robert Bonnet. MR991565

[10] John C. Oxtoby, Homeomorphic measures in metric spaces, Proc. Amer. Math. Soc. 24
(1970), 419–423, DOI 10.2307/2037379. MR0260961

[11] Roman Pol, Note on Borel mappings and dimension, Topology Appl. 195 (2015), 275–283,
DOI 10.1016/j.topol.2015.09.034. MR3414891

[12] R. Pol and P. Zakrzewski, On Borel mappings and σ-ideals generated by closed sets, Adv.
Math. 231 (2012), no. 2, 651–663, DOI 10.1016/j.aim.2012.05.020. MR2955187

[13] R. Pol and P. Zakrzewski, On Boolean algebras related to σ-ideals generated by compact sets,
Adv. Math. 297 (2016), 196–213, DOI 10.1016/j.aim.2016.04.010. MR3498798

[14] Jean Pollard, On extending homeomorphisms on zero-dimensional spaces, Fund. Math. 67

(1970), 39–48, DOI 10.4064/fm-67-1-39-48. MR0270348
[15] C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970.

MR0281862
[16] Marcin Sabok, Forcing, games and families of closed sets, Trans. Amer. Math. Soc. 364

(2012), no. 8, 4011–4039, DOI 10.1090/S0002-9947-2012-05404-3. MR2912443
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