Interpolation of the measure of noncompactness of bilinear operators
HTML articles powered by AMS MathViewer
- by Mieczysław Mastyło and Eduardo B. Silva PDF
- Trans. Amer. Math. Soc. 370 (2018), 8979-8997 Request permission
Abstract:
We study interpolation of the measure of noncompactness of bilinear operators. We prove a result of a general nature which states that for a large class of interpolation functors preserving bilinear interpolation estimates of measures of noncompactness of interpolated linear operators between Banach couples can be lifted to bilinear operators. As an application, we show that the measure of noncompactness of bilinear operators behave well under the real method of interpolation.References
- Árpád Bényi and Rodolfo H. Torres, Compact bilinear operators and commutators, Proc. Amer. Math. Soc. 141 (2013), no. 10, 3609–3621. MR 3080183, DOI 10.1090/S0002-9939-2013-11689-8
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
- Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation functors and interpolation spaces. Vol. I, North-Holland Mathematical Library, vol. 47, North-Holland Publishing Co., Amsterdam, 1991. Translated from the Russian by Natalie Wadhwa; With a preface by Jaak Peetre. MR 1107298
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Fernando Cobos, Michael Cwikel, and Pedro Matos, Best possible compactness results of Lions-Peetre type, Proc. Edinb. Math. Soc. (2) 44 (2001), no. 1, 153–172. MR 1879216, DOI 10.1017/S0013091598001163
- Fernando Cobos, Pedro Fernández-Martínez, and Antón Martínez, Interpolation of the measure of non-compactness by the real method, Studia Math. 135 (1999), no. 1, 25–38. MR 1686369
- Fernando Cobos, Thomas Kühn, and Tomas Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal. 106 (1992), no. 2, 274–313. MR 1165856, DOI 10.1016/0022-1236(92)90049-O
- Fernando Cobos and Jaak Peetre, Interpolation of compactness using Aronszajn-Gagliardo functors, Israel J. Math. 68 (1989), no. 2, 220–240. MR 1035891, DOI 10.1007/BF02772662
- Michael Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), no. 2, 333–343. MR 1150590, DOI 10.1215/S0012-7094-92-06514-8
- M. Cwikel and N. J. Kalton, Interpolation of compact operators by the methods of Calderón and Gustavsson-Peetre, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 2, 261–276. MR 1335873, DOI 10.1017/S0013091500019076
- V. I. Dmitriev, S. G. Kreĭn, and V. I. Ovčinnikov, Fundamentals of the theory of interpolation of linear operators, Geometry of linear spaces and operator theory (Russian), Jaroslav. Gos. Univ., Yaroslavl, 1977, pp. 31–74 (Russian). MR 0634076
- D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR 929030
- Luz M. Fernández-Cabrera and Antón Martínez, On interpolation properties of compact bilinear operators, Math. Nachr. 290 (2017), no. 11-12, 1663–1677. MR 3683453, DOI 10.1002/mana.201600203
- L. M. Fernández-Cabrera and A. Martínez, Real interpolation of compact bilinear operators, J. Fourier Anal. Appl. (2017). https://doi.org/10.1007/s00041-017-9561-7.
- Kantaro Hayakawa, Interpolation by the real method preserves compactness of operators, J. Math. Soc. Japan 21 (1969), 189–199. MR 250057, DOI 10.2969/jmsj/02120189
- J.-L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68 (French). MR 165343
- Mieczysław Mastyło, Bilinear interpolation theorems and applications, J. Funct. Anal. 265 (2013), no. 2, 185–207. MR 3056700, DOI 10.1016/j.jfa.2013.05.001
- V. I. Ovchinnikov, The method of orbits in interpolation theory, Math. Rep. 1 (1984), no. 2, i–x and 349–515. MR 877877
- Arne Persson, Compact linear mappings between interpolation spaces, Ark. Mat. 5 (1964), 215–219 (1964). MR 166598, DOI 10.1007/BF02591123
- M. S. Ramanujan and E. Schock, Operator ideals and spaces of bilinear operators, Linear and Multilinear Algebra 18 (1985), no. 4, 307–318. MR 826681, DOI 10.1080/03081088508817695
- Radosław Szwedek, Measure of non-compactness of operators interpolated by the real method, Studia Math. 175 (2006), no. 2, 157–174. MR 2261731, DOI 10.4064/sm175-2-4
- M. F. Teixeira and D. E. Edmunds, Interpolation theory and measures of noncompactness, Math. Nachr. 104 (1981), 129–135. MR 657887, DOI 10.1002/mana.19811040110
Additional Information
- Mieczysław Mastyło
- Affiliation: Faculty of Mathematics and Computer Sciences, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
- MR Author ID: 121145
- Email: mastylo@amu.edu.pl
- Eduardo B. Silva
- Affiliation: Departamento de Matemática, Universidade Estadual de Maringá, Maringá, Paraná, 870300-110, Brazil
- MR Author ID: 690171
- Email: ebsilva@uem.br
- Received by editor(s): July 15, 2017
- Received by editor(s) in revised form: September 29, 2017, and November 17, 2017
- Published electronically: September 18, 2018
- Additional Notes: The first-named author was supported by the National Science Centre, Poland, project no. 2015/17/B/ST1/00064.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 8979-8997
- MSC (2010): Primary 46B70, 47B07; Secondary 47B38, 42B20
- DOI: https://doi.org/10.1090/tran/7501
- MathSciNet review: 3864402