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INTERPOLATION OF THE MEASURE OF NONCOMPACTNESS

OF BILINEAR OPERATORS

MIECZYS�LAW MASTY�LO AND EDUARDO B. SILVA

Abstract. We study interpolation of the measure of noncompactness of bi-
linear operators. We prove a result of a general nature which states that for
a large class of interpolation functors preserving bilinear interpolation esti-
mates of measures of noncompactness of interpolated linear operators between
Banach couples can be lifted to bilinear operators. As an application, we show
that the measure of noncompactness of bilinear operators behave well under
the real method of interpolation.

1. Introduction

An important topic in the theory of interpolation is the study of which proper-
ties of operators are inherited to Banach spaces obtained by classical interpolation
methods. The well known methods of interpolation give estimates of norms of inter-
polated operators. These estimates are used to study several important properties
of operators. It should be mentioned that the compactness property has been stud-
ied intensively in recent years. An important question related to the behavior of
interpolation of compact operators is whether an operator acting between Banach
couples and which acts compactly on one or both of the “endpoint” spaces also acts
compactly on the interpolation spaces generated by the couples. This problem was
first studied by Lions and Peetre [16] in the case where the couple in the domain
or in the target is generated by a single Banach space. Persson [19] extended this
result for a large class of interpolation methods under the assumption that the tar-
get couple satisfies a certain approximation condition. Hayakawa [15] established
the so-called “two-sided” interpolation for compact operators for the real method
without any approximation condition. Cwikel [9] showed, solving a long-standing
problem, that “one-sided” variant of Hayakava’s result is true. One of the open
problems in the field concerns whether or not a similar result is true for the com-
plex interpolation spaces. Calderón [4, 10.4] proved an one-sided interpolation for
compact operators for the complex method under certain approximation condition.
We refer to the Cwikel and Kalton paper [10] about interpolation of compact op-
erators by the complex method. A novel approach to the interpolation of compact
operators has been developed in papers [8] and [7].
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We refer also to the paper by Cobos, Cwikel, and Matos [5] and references
therein, in which the authors proved almost optimal conditions for compactness-
type interpolation results in the sense of Lions–Peetre. In this paper the authors
consider the quantities called measures of noncompactness and prove interpolation
variants of Lions–Peetre results for linear operators. The interpolation estimates
for the measure of noncompactness of linear operators between real method spaces
were first proved by Teixeira and Edmunds [22] under certain interpolation approxi-
mation condition on the target space. Cobos, Fernández-Mart́ınez and Mart́ınez [6]
established a quantitative strengthening of this result. They showed that measure
of noncompactness of interpolated operators between real classical interpolation
spaces is logarithmically convex up to a multiplicative constant. This result was
extended by Szwedek [21] for the class the abstract real method spaces generated
by the parameters of the real method of interpolation.

A natural question to ask is: Does there exist an abstract approach to prove
variants of the mentioned results for bilinear operators? In the present paper,
we develop our main tool for deriving a positive answer to this question, and we
study interpolation of the measure of noncompactness of bilinear operators. In
Section 2 we prove some preliminary results. Combining these results we prove in
Section 3 theorems of general nature. The main result states that for a large class
of interpolation functors preserving bilinear interpolation estimates of measures of
noncompactness of interpolated linear operators between Banach couples can be
lifted to bilinear operators. As a byproduct, this leads to interpolation theorems
on compactness of one-sided compact bilinear operators. As an application, we
show that the measure of noncompactness behaves well under the real method of
interpolation. This yields a variant of the compactness interpolation theorem for
bilinear operators between real method spaces. In Section 4 one-sided interpolation
of measure of noncompactness of bilinear operators is studied. The results we prove
in this section correspond to the classical theorems of Lions–Peetre, Persson, and
Teixeira-Edmunds for linear operators.

2. Notation and preliminary results

We shall require considerable notation in what follows. An operator S : X → Y
between normed spaces is a continuous linear mapping. If X, Y are two normed
spaces, then the product X × Y is equipped with the standard norm ‖(x, y)‖ :=
max{‖x‖X , ‖y‖Y }, for all (x, y) ∈ X × Y . A 2-linear mapping T : X × Y → Z
between normed spaces is called a bilinear operator if it is bounded. As usual, the
norm of T is defined by

‖T‖ = inf{C > 0; ‖T (x, y)‖Z ≤ C‖x‖X ‖y‖Y for all (x, y) ∈ X × Y }.

The space of all bilinear operators from X × Y into Z is denoted by L2(X,Y ;Z).
If Z = K is a scalar field we write L2(X,Y ) instead of L2(X,Y ;K). A bilinear
operator T : X×Y → Z is said to be compact if T (BX ×BY ) is precompact, where
BX is the closed unit ball in the normed space X. For examples of bilinear compact
operators, we refer to article [1].

For basic notation for interpolation theory, we refer to [2] and [3]. We shall

recall that a mapping F from the category �B of all couples of Banach spaces into the
category of all Banach spaces is said to be an interpolation functor if, for any couple
�X := (X0, X1), the Banach space F (X0, X1) is intermediate with respect to �X (i.e.,
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Δ( �X) := X0 ∩X1 ↪→ F ( �X) ↪→ Σ( �X) := X0 +X1), and T : F (X0, X1) → F (Y0, Y1)
for all T : (X0, X1) → (Y0, Y1); here as usual the notation T : (X0, X1) → (Y0, Y1)
means that T : X0 +X1 → Y0 + Y1 is a linear operator such that the restrictions of
T to the space Xj is a bounded operator from Xj to Yj , for both j = 0 and j = 1.

The real and the complex methods of interpolation are of powerful interest in
applications in various areas of modern analysis. We recall here that the real

interpolation functor KE( �X), generated by any Banach sequence lattice E modeled

on Z, such that {min{1, 2n}}n∈Z ∈ E, is defined for any Banach couple �X =
(X0, X1) to be the Banach space of all x ∈ X0 +X1 equipped with the norm

‖x‖ = ‖{K(2n, x; �X)}‖E .
In particular, the choice E = �q(2

−nθ) yields the usual real interpolation space

denoted by �Xθ,q, 0 < θ < 1, 1 ≤ q ≤ ∞.

If X is an intermediate Banach space with respect to a couple �X = (X0, X1),

we let X◦ be the closed hull of Δ( �X) in X. A Banach couple �X is called regular if
X◦

j = Xj for j = 0, 1. We also define its relative completion Xc to be the Banach
space of all limits in X0 + X1 of sequences that are bounded in X and equipped
with the natural norm. If Xc = X, then X is said to be relatively complete.

If F is an interpolation functor, F ◦ (resp., F c) is the functor defined by F ◦( �X) =

F ( �X)◦ (resp., F c( �X) = F ( �X)c) for all �X ∈ �B. We say that F is regular (resp.,

relatively complete) on �X if F ( �X) = F ( �X)◦ (resp., F ( �X) = F ( �X)c). If F = F ◦

(resp., F = F c), then it is called a regular (resp., relatively complete) interpolation
functor. We will use the well known facts that (·)θ,q is both regular and relatively
complete functor for any 0 < θ < 1 and 1 ≤ q < ∞.

The space X ′, dual to the intermediate space X of a Banach couple �X =
(X0, X1), is defined by X ′ = (X0 ∩ X1, ‖ · ‖X)∗. In what follows, the isometric
isomorphism εX of X ′ onto (X◦)∗ is defined by εX(x′) = x̄′, where x̄′ is the unique

continuous extension of x′ onto X◦. If X = Σ( �X), then the map εX will be denoted

by ε �X . The Banach couple (X ′
0, X

′
1) is denoted by �X ′, and the category of all dual

couples �X ′ is denoted by �B′.
We will use the well known duality formulas which state that, for any Banach

couple (X0, X1), we have (X0 ∩X1)
′ = X ′

0 +X ′
1 and (X0 +X1)

′ = X ′
0 ∩X ′

1 with
equality of norms (see, e.g., [3, Prop. 2.4.6]). For the sake of completeness we recall
here an important concept of a dual operator (see [3, Def. 2.4.18]). The operator

T ′ := (T |Δ( �X))
∗

is called a dual operator with respect to an operator T : �X → �Y between Banach
couples. We note that (see [3, Prop. 2.4.19])

T ′ : �Y ′ → �X ′ and ‖T ′‖�Y ′→ �X′ ≤ ‖T‖ �X→�Y ,

where strict equality takes place for regular couple �X.

Let �X be a regular couple; i.e., Δ( �X) is dense in both X0 and X1. Following
[3, Def. 2.4.10], we define the map κ �X by

κ �X = (ε �X)∗ κΣ( �X),

where, as usual for a given Banach space Y , we denote by κY : Y → Y ∗∗ the
canonical isometric embedding defined by κY y(y

∗) = y∗(y), for all (y, y∗) ∈ Y ×Y ∗.
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We note that by the abovementioned duality formulas, we get that

((X0 +X1)
′)∗ = (X ′

0 ∩X ′
1)

∗ = X ′′
0 +X ′′

1

isometrically. This implies that

κ �X : (X0, X1) → (X ′′
0 , X

′′
1 )

with norm less or equal than 1.
In what follows, for a given Banach space A, 〈·, ·〉A will stand for a canonical

bilinear form on A∗ × A, and the corresponding subscript will be omitted if there
is no confusion.

We will use the following easily verified formula (see [3, Prop. 2.4.11]):

〈κ �X(x), x′〉Δ( �X′) = 〈ε �X(x′), x〉Σ( �X),

which is true for all x ∈ X0 +X1, x
′ ∈ X ′

0 ∩X ′
1.

For a given interpolation functor, F , we define a mapping F ′ from the category
�B′ into the category B of all Banach spaces by

F ′( �X ′) := F ( �X)′, �X ′ ∈ �B′.

Following [3, Def. 2.4.29] the functor DF is called a dual for a given functor F if it
is maximal among those functors G for which

G( �X ′) ↪→ F ( �X)′

with norm of the inclusion map less or equal than 1 for every regular Banach couple
�X. We refer to [3, pp. 201–209] for descriptions of the dual functors DF for the
functors of an orbit and co-orbit in the sense of Aronszajn and Gagliardo.

Let �X = (X0, X1), �Y = (Y0, Y1), and �Z = (Z0, Z1) be fixed Banach couples, and
let X, Y, and Z be Banach spaces such that X0 ∩ X1 ↪→ X, Y0 ∩ Y1 ↪→ Y, and

Z0 ∩ Z1 ↪→ Z. For typographical convenience, we denote the space L2

(
X̃, Ỹ ; Z̃

)
by B(X,Y ;Z), and in what follows, X̃ denotes X0 ∩X1 endowed with the induced

norm ‖ · ‖X ; i.e., X̃ := (X0 ∩ X1, ‖ · ‖X). In the case when Z is a scalar field, we
write B(X,Y ) for short. We notice that for every T ∈ B(X,Y ) we have

|T (x, y)| ≤ C‖x‖X‖y‖Y , (x, y) ∈ Δ( �X)×Δ(�Y ),

where C = ‖T‖
˜X×˜Y . This implies that

|T (x, y)| ≤ C‖x‖Δ( �X)‖y‖Δ(�Y ), (x, y) ∈ Δ( �X)×Δ(�Y ).

Hence T ∈ B
(
Δ( �X),Δ(�Y )) with ‖T‖Δ( �X)×Δ(�Y ) ≤ C, and so

B(X,Y ) ↪→ B
(
Δ( �X),Δ(�Y ))

with the norm of the inclusion map less than or equal to 1. In particular, we

conclude that, for any Banach couples �X = (X0, X1) and �Y = (Y0, Y1),

B(Xj , Yj) ↪→ B
(
Δ( �X),Δ(�Y )

)
, j ∈ {0, 1}.

Thus, (B(X0, Y0),B(X1, Y1)) forms a Banach couple. In the case when Banach

couples �X and �Y are fixed and there is no confusion, we write �B instead of(
B(X0, Y0),B(X1, Y1)

)
.

For given Banach couples �X = (X0, X1), �Y = (Y0, Y1), and �Z = (Z0, Z1), we

denote by B( �X, �Y ; �Z) the space of all 2-linear mappings T : Δ( �X)×Δ(�Y ) → Δ(�Z),



INTERPOLATION OF THE MEASURE OF NONCOMPACTNESS 8983

such that T : X̃j × Ỹj → Z̃j are bounded bilinear maps for both j = 0 and j = 1(
i.e., T ∈ B(X0, Y0;Z0) ∩ B(X1, Y1;Z1)

)
.

If X, Y, and Z are intermediate Banach spaces with respect to �X, �Y , and �Z,
respectively, then X, Y, and Z are said to be bilinear interpolation with respect to
�X, �Y , and �Z

(
(X,Y ;Z) ∈ Bint( �X, �Y ; �Z) for short

)
if, for every T ∈ B( �X, �Y ; �Z),

we have T ∈ B(X,Y ;Z).

Throughout the paper we write (X,Y ;Z) ∈ BintC( �X, �Y ; �Z) whenever there

exists a constant C > 0 such that, for every operator T ∈ B( �X, �Y ; �Z), we have

‖T (x, y)‖Z ≤ C‖x‖X ‖y‖Y , (x, y) ∈ Δ( �X)×Δ(�Y ) .

If F0, F1, and F2 are interpolation functors such that(
F0( �X), F1(�Y );F2(�Z)

)
∈ Bint( �X, �Y ; �Z)

for all Banach couples �X, �Y , and �Z, then we say that a bilinear interpolation
theorem F0 × F1 → F2 holds. If there exists a constant C > 0 such that(

F0( �X), F1(�Y );F2(�Z)
)
∈ BintC( �X, �Y ; �Z)

for all Banach couples �X, �Y , and �Z, then we say that a bilinear interpolation
theorem F0 × F1 → F2 holds with a constant C. We refer to general abstract
results on interpolation of bilinear operators to [17].

The following theorems will be useful later.

Theorem 2.1. Let F0, F1, F be interpolation functors, and let �X = (X0, X1), �Y =

(Y0, Y1) be Banach couples. Assume that
(
F0( �X), F1( �B);F (�Y )′

)
∈ BintC( �X, �B; �Y ′)

for any Banach couple �B. Then, the following statements are true:

(i) For every T ∈ B(X0, Y0) ∩ B(X1, Y1), we have T ∈ B
(
F0( �X), F (�Y )

)
with

‖T‖B(F0( �X), F (�Y )) ≤ C‖T‖F1(B(X0,Y0),B(X1,Y1)).

(ii) If F1 is a regular functor, then

F1

(
B(X0, Y0),B(X1, Y1)

)
↪→ B

(
F0( �X), F (�Y )

)
with norm of the inclusion map less than or equal to C.

Proof. (i). We let �B = (B0, B1), where Bj := B(Xj , Yj) for j ∈ {0, 1}. Define

a map Φ on Δ( �X)×Δ( �B) by

Φ(x, T ) = T (x, ·), (x, T ) ∈ Δ( �X)×Δ( �B).

Clearly Φ: Δ( �X)×Δ( �B) → Δ(�Y ′) is a 2-linear map and

Φ: X̃j × B̃j → Y ′
j

with ‖Φ‖
˜Xj× ˜Bj→Y ′

j
≤ 1 for j ∈ {0, 1}. Thus, Φ ∈ B( �X, �B; �Y ′), and our hypothesis

yields that

‖Φ(x, T )‖F (�Y )′ ≤ C‖x‖F0( �X) ‖T‖F1(�B), (x, T ) ∈ Δ( �X)×Δ( �B).

Since

‖Φ(x, T )‖F (�Y )′ = sup{|T (x, y)|; ‖y‖F (�Y ) ≤ 1, y ∈ Δ(�Y )},

the desired estimate follows.
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(ii). We use the following result from [4] which states that if (A,B) is a Banach
couple and M ⊂ A ∩B is a dense subset in A such that

‖x‖B ≤ C‖x‖A, x ∈ M,

then A ↪→ B, with the norm of inclusion map less than or equal to C.

Let A := F1

(
B(X0, Y0),B(X1, Y1)

)
and B := B

(
F0( �X), F (�Y )

)
. Since we have

A ↪→ B(Δ( �X),Δ(�Y )) and B ↪→ B(Δ( �X),Δ(�Y )), (A,B) forms a Banach couple.
We notice that, from our hypothesis, F1 is a regular functor; then it follows that
M := B(X0, Y0) ∩ B(X1, Y1) is a dense subspace in A. To conclude, it is enough to
apply the mentioned result and the statement(i) to the Banach spaces A and B. �

In a similar fashion we prove the following result.

Theorem 2.2. Let F0, F1, F be interpolation functors, and let �X = (X0, X1), �Y =

(Y0, Y1) be Banach couples. Assume that
(
F0( �B), F1( �X);F (�Y )′

)
∈ BintC( �B, �X; �Y ′)

for any Banach couple �B. Then the following statements are true:

(i) For every T ∈ B(X0, Y0) ∩ B(X1, Y1), we have T ∈ B
(
F1( �X), F (�Y )

)
with

‖T‖B(F1( �X), F (�Y )) ≤ C‖T‖F0(B(X0,Y0),B(X1,Y1)).

(ii) If F0 is a regular functor, then

F0(B
(
X0, Y0),B(X1, Y1)

)
↪→ B

(
F1( �X), F (�Y )

)
with norm of the inclusion map less than or equal to C.

As an application of Theorem 2.1, we obtain the following corollary.

Corollary 2.1. Assume that F0, F1, and F are interpolation functors such that
a bilinear interpolation theorem F0 × F1 → DF holds with a constant C > 0. If F1

is a regular functor, then for all Banach couples �X = (X0, X1) and �Y = (Y0, Y1),
one has

F1

(
B(X0, Y0),B(X1, Y1)

)
↪→ B

(
F0( �X), F (�Y ◦)

)
with the norm of the inclusion map less than or equal to C.

Proof. Since DF is a dual functor to F , DF (�Y ′) ↪→ F (�Y ◦)′ with the norm of the

inclusion map less than or equal to 1 for any Banach couple �Y , then the required
continuous inclusion follows from Theorem 2.1(ii). �

We introduce an interpolation variant of a general adjoint operator. This is
motivated by work done by Ramanujan and Schock [20], where they studied ideals
of bilinear operators between Banach spaces. Let X, Y, and Z be normed spaces.
Following Ramanujan and Schock [20], for a given bilinear operator T : X×Y → Z
we define the generalized linear map T× : Z∗ → L2(X,Y ) by

T×z∗(x, y) = z∗(T (x, y)), z∗ ∈ Z∗, (x, y) ∈ X × Y.

Clearly T× is a linear operator, and ‖T‖ = ‖T×‖. In [20, Theorem 2.6] the
analogous of Schauder’s theorem was proved, which states that if T : X×Y → Z is
a bilinear operator between Banach spaces, then T is compact if, and only if, T× is
compact. Here, T is a compact bilinear operator, which means that T (BX × BY )
is a relatively compact subset in Z. We point out that the proof works for normed
spaces.
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Let �X = (X0, X1), �Y = (Y0, Y1), and �Z = (Z0, Z1) be Banach couples, and let

T ∈ B( �X, �Y ; �Z). Clearly T×
0 = T×

1 on Z ′
0 ∩Z ′

1, where we put Tj := T for a bilinear

operator T : X̃j × Ỹj → Z̃j for each j ∈ {0, 1}. This implies that the formula

T⊗(z′) := T×
0 (z′0) + T×

1 (z′1), z′ = z′0 + z′1 ∈ Z ′
0 + Z ′

1

with z′0 ∈ Z ′
0 and z′1 ∈ Z ′

1 defines a linear mapping from Z ′
0 + Z ′

1 into B(X0, Y0) +
B(X1, Y1).

Since T⊗|Z′
j
= T×

j : Z ′
j → B(Xj , Yj) is a bounded operator for each j ∈ {0, 1},

we conclude that

T⊗ : (Z ′
0, Z

′
1) →

(
B(X0, Y0),B(X1, Y1)

)
.

For given Banach couples �X = (X0, X1) and �Y = (Y0, Y1) we define the 2-linear
mapping

J : Δ( �X)×Δ(�Y ) →
(
B(X0, Y0) ∩ B(X1, Y1)

)∗
= B(X0, Y0)

′ + B(X1, Y1)
′

by the formula 〈J(x, y), B〉 := B(x, y) for all (x, y) ∈ Δ( �X)×Δ(�Y ), B ∈ B(X0, Y0)∩
B(X1, Y1). Clearly

J :
(
X̃0 × Ỹ0, X̃1 × Ỹ1

)
→

(
B(X0, Y0)

′, B(X1, Y1)
′)

with ‖J‖
˜Xj×˜Yj→B(Xj ,Yj)′

= 1 for each j ∈ {0, 1}.

Proposition 2.1. Let X, Y, and Z be Banach spaces intermediate with respect

to Banach couples �X, �Y , and �Z, respectively. Then for every bilinear operator

T ∈ B( �X, �Y ; �Z),

(i) (T⊗)′J = κ�Z◦T .
(ii) If, in addition, T ∈ B(X,Y ;Z), then the operator T× : Z ′ → B(X,Y )

satisfies T× = T⊗|Z′ .

Proof. (i). For all (x, y) ∈ Δ( �X)×Δ(�Y ) and z′ ∈ Z ′
0 + Z ′

1, one has〈
(T⊗)′J(x, y), z′

〉
=

〈
(T⊗)′(J(x, y)), z′

〉
=

〈
J(x, y), T⊗z′

〉
= T⊗z′(x, y) = z′(T (x, y)) =

〈
κ�Z◦T (x, y), z

′〉.
Thus, we get that

(T⊗)′J(x, y) = κ�Z◦T (x, y),

and so the required formula holds.
(ii). Since Z0 ∩ Z1 ↪→ Z, we obtain Z ′ ↪→ Z ′

0 + Z ′
1. If z′ ∈ Z ′ and z′ = z′0 + z′1

with z′0 ∈ Z ′
0, z

′
1 ∈ Z ′

1, then we have for all (x, y) ∈ Δ( �X) ∩Δ(�Y )

T×z′(x, y) = z′(T (x, y)) = z′0(T (x, y)) + z′1(T (x, y)) = T⊗z′(x, y).

Thus, T×z′ = T⊗z′ for all z′ ∈ Z ′, and this completes the proof. �

3. Main results

Let us recall that if A is a bounded subset of a metric space X , the Kuratowski
measure of noncompactness of A is defined by

ψX (A) = inf{ε > 0; A may be covered by finitely many sets of diameter ≤ ε};
the ball measure of noncompactness of A is defined by

ψ̃X (A) = inf{ε > 0; A may be covered by finitely many balls of radius ≤ ε}.
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It is easy to check that ψ̃X (A) ≤ ψX (A) ≤ 2ψ̃X (A) for every bounded set A in X .
Recall that in a Banach space X, a set S is called an ε-net of A if A ⊂ S+ εBX .

Thus, the definition of ψ̃X measure in a Banach space is equivalent to the following:

ψ̃X(A) = inf{ε > 0; A has a finite ε-net}.
The Kuratowski and the ball measure of noncompactness of a linear operator

S : X → Y between normed spaces are defined by

β(S : X → Y ) := ψY (S(BX))

and

β̃(S : X → Y ) := ψ̃Y (S(BX)),

respectively. An operator S : X → Y between normed spaces is called a k-ball

contraction if ψ̃Y (S(B)) ≤ kψ̃X(B) for every bounded set B ⊂ X. We will use
the following easily verified fact later on without any references (cf. [12, Lemma
2.8(ii)]):

β̃(S : X → Y ) = inf{k > 0; S is a k-ball contraction}.
Let X, Y, and Z be normed spaces. Following the linear case, the Kuratowski,

and the ball measure of noncompactness of a bilinear operator T : X × Y → Z are
defined by

β(T : X × Y → Z) := ψZ(T (BX ×BY ))

and

β̃(T : X × Y → Z) = ψ̃Z(T (BX ×BY )),

respectively. Clearly that T : X × Y → Z is a compact operator if, and only if,
β(T : X × Y → Z) = 0.

In what follows we will use the following easily verified properties:

(i) β(T : X × Y → Z) ≤ ‖T‖ since T (BX ×BY ) ⊂ ‖T‖BZ .

(ii) β̃(T ) ≤ β(T ) ≤ 2β̃(T ).

(iii) β̃(T ) ≤ 2β̃(IT ) for any metric injection I : Z → W ; that is, ‖Iz‖W = ‖z‖Z
for all z ∈ Z, where W is a normed space.

The following relationships between measures of noncompactness of a linear oper-
ator S : X → Y acting between Banach spaces and its dual operator S∗ : Y ∗ → X∗

hold (see [12, Theorem 2.9])

(iv) β(S) ≤ β̃(S∗) and β(S∗) ≤ β̃(S).

We notice that the proof of these estimates works for operators between normed
spaces.

We now state and prove the following lemma, which will be the focal point for
our later arguments.

Lemma 3.1. Let X, Y, and Z be Banach spaces intermediate with respect to

Banach couples �X, �Y , and �Z, respectively, and suppose that T ∈ B( �X, �Y ; �Z).

(i) If T ∈ B(X,Y ;Z), then

β
(
T× : Z ′ → B(X,Y )

)
≤ β̃

(
T : X̃ × Ỹ → Z̃

)
.

In particular we have for both j = 0 and j = 1,

β(T× : Z ′
j → B(Xj , Yj)) ≤ β̃

(
T : X̃j × Ỹj → Z̃j

)
.
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(ii) If (X,Y ;Z) ∈ Bint( �X, �Y ; �Z), where Z is a regular and relatively complete
Banach space, then

β
(
T : X̃ × Ỹ → Z̃

)
≤ 2 β̃(T× : Z ′ → B(X,Y )).

Proof. (i) Put β̃(T ) := β̃
(
T : X̃ × Ỹ → Z̃

)
. Let S ⊂ Z ′ be a bounded set with

diam(S) ≤ d, d > 0. Given ε > 0, there exists a finite subset {z1, ..., zn} of Δ(�Z)
such that

T (B
˜X ×B

˜Y ) ⊂
n⋃

j=1

(
zi + rB

˜Z

)
,

where r = β̃(T ) + ε
2d .

For each 1 ≤ j ≤ n, we define the set {z′(zj); z′ ∈ S} ⊂ K. Since S is bounded,
all sets are relatively compact. Without loss of generality, we may assume that
K = R. Thus, for each 1 ≤ j ≤ n, each above set can be covered by closed intervals
Ij,1, ..., Ij,k(j) with length less than or equal to ε/2.

Let p = (p1, ..., pn), where pj ∈ {1, 2, ..., k(j)}, and let us set

Ep := {z′ ∈ S; 〈zj , z′〉 ∈ Ij,pj
, 1 ≤ j ≤ n}.

We have

T×(S) ⊂
⋃
p

T×(Ep).

We claim that diam(T×(Ep)) < dβ̃(T ) + ε. To prove it, fix p and take z′1, z
′
2 ∈ Ep.

Then

‖T×z′1 − T×z′2‖B(X,Y ) = sup
{
|〈T (x, y), z′1 − z′2〉|; (x, y) ∈ B

˜X ×B
˜Y

}
= sup

{
|〈z, z′1 − z′2〉|; z ∈ T (B

˜X ×B
˜Y )
}
.

Now, we observe that, for every z ∈ T (B
˜X × B

˜Y ), there exists 1 ≤ j ≤ n such
that z ∈ zj + rB

˜Z . Since z′1, z′2 ∈ Ep, |〈zj , z′1 − z′2〉| ≤ ε/2. This implies, by

‖z′1 − z′2‖Z′ ≤ d and ‖z − zj‖Z ≤ β̃(T ) + ε/2d,

|〈z − zj , z
′
1 − z′2〉| ≤ ‖z′1 − z′2‖Z′ ‖z − zj‖Z ≤ dβ̃(T ) + ε/2.

Hence, for z ∈ T (B
˜X ×B

˜Y ),

|〈z, z′1 − z′2〉| ≤ |〈z − zj , z
′
1 − z′2〉|+ |〈zj , z′1 − z′2〉| ≤ dβ̃(T ) + ε.

Combining the above estimates, yields∣∣(T×z′1 − T×z′2)(x, y)
∣∣ ≤ dβ̃(T ) + ε, (x, y) ∈ B

˜X ×B
˜Y .

Since ε > 0 is arbitrary, we get that∥∥T×z′1 − T×z′2
∥∥
B(X,Y )

≤ dβ̃(T ),

and this completes the proof.

(ii) We put �B := (B(X0, Y0),B(X1, Y1)). Our hypothesis means that Δ( �B) ⊂
B(X,Y ). Since both spaces Δ( �B) and B(X,Y ) are continuously embedded into

B(Δ( �X),Δ(�Y )), it follows from the closed graph theorem that Δ( �B) ↪→ B(X,Y ).
This implies

B(X,Y )′ ↪→
(
B(X0, Y0) ∩ B(X1, Y1)

)∗
= B(X0, Y0)

′ + B(X1, Y1)
′.
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Now, observe that the 2-linear mapping J : Δ( �X) × Δ(�Y ) → Δ( �B)∗ satisfies (by

Δ( �B) ⊂ B(X,Y ))

|〈J(x, y), S〉| = |S(x, y)| ≤ ‖S‖B(X,Y )‖x‖ ˜X‖y‖
˜Y ,

for all S ∈ Δ( �B) and (x, y) ∈ X̃ × Ỹ . This yields that J : X̃ × Ỹ → B(X,Y )′ is
a bilinear operator, with ‖J‖ ≤ 1, and so

J(B
˜X ×B

˜Y ) = J(B
˜X×˜Y ) ⊂ BB(X,Y )′ .

The hypothesis that Z is a regular and relatively complete Banach space yields that
κ�Z◦ : Z → Z ′′ is an isometric injection. In particular, we have that

‖κ�Z◦(T (x, y))‖Z′′ = ‖T (x, y)‖Z , (x, y) ∈ X̃ × Ỹ .

Combining all together, with (T⊗)′J = κ�Z◦T and T⊗|Z′ = T× : Z ′ → B(X,Y ) (by
Proposition 2.1), yields

β
(
T : X̃ × Ỹ → Z̃

)
= β

(
κ�Z◦T : X̃ × Ỹ → Z ′′) = β

(
(T⊗)′J : X̃ × Ỹ → Z ′′)

= ψZ′′
(
(T×)′J(B

˜X ×B
˜Y )
)
≤ ψZ′′

(
(T×)′(BB(X,Y )′)

)
= β

(
(T×)′ : B(X,Y )′ → Z ′′).

Now we apply the mentioned properties (i)–(iv) on the measure of noncompactness
for linear operators. At first, by property (iv), we get the following estimate

β
(
(T×)′ : B(X,Y )′ → Z ′′) = β

(
(T×|W )∗ :

(
Δ( �B), ‖ · ‖B(X,Y )

)∗ →
(
Δ(�Z ′), ‖ · ‖Z′

)∗)
≤ β̃

(
T×|W : W →

(
Δ( �B), ‖ · ‖B(X,Y )

))
,

where W := (Δ(�Z ′), ‖ · ‖Z′). Since BW ⊂ BZ′ , it follows by property (ii) that

β̃
(
T×|W : W →

(
Δ( �B), ‖ · ‖B(X,Y )

))
≤ 2 β̃

(
T×|W : W → B(X,Y )

)
≤ 2 β̃

(
T× : Z ′ → B(X,Y )

)
.

In consequence, we conclude that

β(T ) ≤ 2β̃
(
T× : Z ′ → B(X,Y )

)
,

and this completes the proof. �

Before we state and prove the first result on interpolation of bilinear compact
operators, we introduce the following definition. An interpolation functor F has

the left (resp., right) side compactness property if, for all Banach couples �X =

(X0, X1) and �Y = (Y0, Y1), and every operator T : �X → �Y such that T : X0 → Y0

(resp., T : X1 → Y1) is compact, then T : F̃ ( �X) → F̃ (�Y ) is also compact, where

F̃ ( �A) :=
˜
F ( �A) for any Banach couple �A.

Theorem 3.1. Let �X = (X0, X1), �Y = (Y0, Y1), and �Z = (Z0, Z1) be Banach
couples, and let F , G, and Fj, for j ∈ {0, 1}, be interpolation functors such

that
(
F0( �X), G( �B);F ′

1(
�Y ′)

)
∈ BintC( �X, �B; �Y ′) for all Banach couples �B, for some

C > 0. Assume that G is regular and that it has the left (resp., the right) side com-

pactness property, F (�Z)′ ↪→ G(�Z ′), and F (�Z) is regular and relatively complete.

Then, for any T ∈ B( �X, �Y ; �Z) such that T ∈ B(F0( �X), F1(�Y );F (�Z)), we have that

T : F̃0( �X) × F̃1(�Y ) → F̃ (�Z) is a compact operator whenever T : X̃0 × Ỹ0 → Z̃0

(resp., T : X̃1 × Ỹ1 → Z̃1) is compact.
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Proof. Assume, without loss of generality, that the functor G has the left side

compactness property. Fix T ∈ B( �X, �Y ; �Z) and put X := F0( �X), Y := F1(�Y ), and

Z := F (�Z). It follows by the discussion after Corollary 2.1 that

T⊗ : (Z ′
0, Z

′
1) → (B(X0, Y0),B(X1, Y1)).

Suppose that the operator T : X̃0×Ỹ0 → Z̃0 is compact (i.e., β
(
T : X̃0×Ỹ0 → Z̃0

)
=

0 and that T ∈ B(X,Y ;Z). As a consequence of Lemma 3.1(i) (by T⊗|Z′
0
= T×),

T× : Z ′
0 → B(X0, Y0) is compact, so

T⊗ : G(Z ′
0, Z

′
1) → G(B(X0, Y0),B(X1, Y1))

is also a compact operator. From Theorem 2.1 we get that

G(B(X0, Y0),B(X1, Y1)) ↪→ B(X,Y ).

Combining Proposition 2.1(ii) with our assumption that Z ′ = F (�Z)′ ↪→ G(�Z ′), we
conclude that

T× : Z ′ → B(X,Y )

is a compact operator, so β̃(T× : Z ′ → B(X,Y )) = 0. This yields, by Lemma
3.1(ii), that

β
(
T : X̃ × Ỹ → Z̃

)
= 0,

and this completes the proof. �

For the case of the real method we have the following result that seems interesting
on its own.

Theorem 3.2. Let θ ∈ (0, 1), p, q ∈ [1,∞), and r ∈ (1,∞) satisfy 1/p + 1/q =

1+ 1/r, and let �X = (X0, X1), �Y = (Y0, Y1), and �Z = (Z0, Z1) be Banach couples.
Then, there exists a constant C = C(θ) > 0 such that for any bilinear operator

T ∈ B( �X, �Y ; �Z),

β̃
(
T : �̃Xθ,p × �̃Y θ,q → �̃Zθ,r

)
≤ Cβ̃

(
T : X̃0 × Ỹ0 → Z̃0

)1−θ
β̃
(
T : X̃1 × Ỹ1 → Z̃1

)θ
.

Proof. We consider the following interpolation functors, F0 = (·)θ,p, F1 = (·)θ,q,
F = (·)θ,r, and G = (·)θ,r′ , where as usual 1/r′ := 1 − 1/r. By the well known
duality formula ((Y0, Y1)θ,q)

′ = (Y ′
0 , Y

′
1)θ,q′ , up to equivalence of norms (see, e.g.,

[2] or [3]), it follows that

F1(Y0, Y1)
′ = (Y ′

0 , Y
′
1)θ,q′ .

Our hypothesis 1/p + 1/q = 1 + 1/r implies 1/p + 1/r′ = 1 + 1/q′. Thus, the
Lions–Peetre theorem [16] on interpolation of bilinear operators by the real method
is applicable, and we can deduce the existence of C > 0 such that(

F0( �X), F1(�Y );F (�Z)
)
∈ BintC( �X, �Y ; �Z)

and

(∗)
(
F0( �X), G( �B);F1(�Y )′

)
∈ BintC( �X, �B; �Y ′)

for all Banach couples �B.
We put Bj := Bj(Xj , Yj) for j = 0, 1. Then, from Lemma 3.1, we get that

T⊗ : (Z ′
0, Z

′
1) → (B0,B1).
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Applying [6, Theorem 1.2], we deduce that there exists a constant C1 = C1(θ) > 0
such that

β̃(T⊗ : G(Z ′
0, Z

′
1) → G(B0,B1)) ≤ C1β̃(T

× : Z ′
0 → B0)

1−θβ̃(T× : Z ′
1 → B1)

θ.

Since r′ ∈ [1,∞), G is a regular functor. Thus Theorem 2.1 is applicable (by (∗)),
and we can deduce that

G(B0,B1) ↪→ B(F0( �X), F1(�Y )).

Combining T⊗|F (�Z)′ = T× (by Proposition 2.1) with the above estimate and the

duality formula (up to equivalence of norms), one has

F (�Z)′ = ((Z0, Z1)θ,r)
′ = (Z ′

0, Z
′
1)θ,r′ = G(�Z ′).

Thus, we get that there exists a constant C2 = C2(θ) > 0 such that

β̃
(
T× : F (�Z)′ → B(F0( �X), F1(�Y )

)
≤ C2β̃(T

× : Z ′
0 → B0)

1−θβ̃(T× : Z ′
1 → B1)

θ.

To finish we recall that F = (·)θ,r is both a regular and relatively complete functor.
Thus Lemma 3.1(ii) applies and the required estimate follows. �

It is worth pointing out that Theorem 3.2 is a quantitative version of the qual-
itative result given in Theorem 3.3 of the recent paper [14] by Fernández-Cabrera
and Mart́ınez.

4. One-sided interpolation of the measure of noncompactness

In the theory of interpolation of operators the set of interpolation functions (de-
noted by Φ) plays a key role. We recall that ϕ ∈ Φ if ϕ : (0,∞) × (0,∞) →
(0,∞) and ϕ is nondecreasing in each variable and positively homogeneous (i.e.,
ϕ(λs, λt) = λϕ(s, t) for all λ, s, t > 0). Note that interpolation functions are con-
tinuous by the monotonicity. Clearly every ϕ ∈ Φ can be extended by continuity
to [0,∞) × [0,∞). In what follows, this extension will be denoted by the same
symbol ϕ. We denote by Φ0 the set of interpolation functions such that ϕ(s, 0) = 0
and ϕ(0, t) = 0, for all s, t > 0. The simplest examples of interpolation functions
are as + bt, max{as, bt}, and min{as, bt}, where a, b > 0 and the power functions
s1−θtθ, where 0 ≤ θ ≤ 1.

We will need to introduce a function which measures the position of a given

intermediate space within a given Banach couple. Let �X = (X0, X1) be a Banach
couple, and let X be a Banach space such that X0 ∩X1 ↪→ X. The characteristic
function of X with respect to (X0, X1) is defined by (see [11])

ϕX(s, t) = sup
{
‖x‖X ; x ∈ X0 ∩X1, ‖x‖X0

≤ s, ‖x‖X1
≤ t

}
, s, t > 0.

We prove a bilinear variant of Lions–Peetre result on one-sided interpolation of
compact operators.

Theorem 4.1. Let �Z = (Z0, Z1) be a Banach couple, let Z be an intermediate

Banach space with respect to �Z, and let X and Y be any Banach spaces. If T : X×
Y → Z0 ∩ Z1 is a bounded bilinear operator, then

β̃(T : X × Y → Z) ≤ 2ϕZ

(
β̃(T : X × Y → Z0), β̃(T : X × Y → Z1)

)
,

where ϕZ is the characteristic function of Z with respect to (Z0, Z1). In particular
this implies that, if the restrictions T : X × Y → Zi is compact for i = 0 or i = 1,
then T : X × Y → Z is also compact whenever ϕZ ∈ Φ0.
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Proof. Let β̃(Ti) := β̃(T : X × Y → Zi) for i ∈ {0, 1}. For every ε > 0 and each
i ∈ {0, 1} there exists a finite subset S(ε, i) of Z such that

(∗) T (BX ×BY ) ⊂
⋃

z∈S(ε,i)

(
z + (ε+ β̃(Ti)

)
BZi

)
.

Similarly as in the linear case (see [5, Theorem 3.2]), we construct a subset Z̃(ε) of
Z0 ∩ Z1 as follows: for each choice z0 ∈ S(ε, 0) and z1 ∈ S(ε, 1), if the set

E(z0, z1) =
(
z0 + (ε+ β̃(T0))BZ0

)
∩
(
z1 + (ε+ β̃(T1))BZ1

)
is nonempty, we choose exactly one element w = w(z0, z1) from this set; i.e.,

Z̃(ε) = {w = w(z0, z1); z0 ∈ S(ε, 0), z1 ∈ S(ε, 1), E(z0, z1) �= ∅}.
Fix (x, y) ∈ BX × BY . Then, it follows from (∗) that there exist z0 ∈ S(ε, 0) and
z1 ∈ S(ε, 1) such that

T (x, y) ∈
(
z0 + (ε+ β̃(T0))BZ0

)
∩
(
z1 + (ε+ β̃(T1))BZ1

)
,

so E(z0, z1) �= ∅. Thus, for any w = w(z0, z1) ∈ Z̃(ε) one has

‖T (x, y)− w‖Z0
≤ ‖T (x, y)− z0‖Z0

+ ‖z0 − w‖Z1
≤ 2(ε+ β̃(T0))

and
‖T (x, y)− w‖Z1

≤ ‖T (x, y)− z1‖Z1
+ ‖z1 − w‖Z1

≤ 2(ε+ β̃(T1)).

This implies that

‖T (x, y)− w‖Z ≤ 2ϕZ

(
ε+ β̃(T0), ε+ β̃(T1)

)
.

Hence
β̃(T : X × Y → Z) ≤ 2ϕZ

(
ε+ β̃(T0), ε+ β̃(T1)

)
.

Since ε is arbitrary, the required estimate follows. �
Before we state and prove a second variant of the Lions–Petree result, we need

to recall the definition of the next important interpolation function in the theory of

interpolation. Let �X = (X0, X1) be a Banach couple, and let X be a Banach space
such that X ↪→ X0+X1. Following [11], we define a function ψX : (0,∞)×(0,∞) →
(0,∞) by

ψX(s, t) = sup{K(s, t;x; �X); x ∈ BX},
where for every s, t > 0 and x ∈ X0 +X1,

K(s, t, x; �X) = inf{s‖x0‖X0
+ t‖x1‖X1

; x = x0 + x1, xj ∈ Xj , j = 0, 1}.
Clearly, ψX is an interpolation function whenever X is a nontrivial space.

In the sequel we put, as usual for every x ∈ X0 +X1,

K(t, x; �X) := K(1, t, x; �X), t > 0.

Theorem 4.2. Let �X = (X0, X1), �Y = (Y0, Y1) be Banach couples and let Z be
a Banach space. Assume that X and Y are Banach spaces such that X ↪→ X0+X1,
Y ↪→ Y0+Y1 and let T : (X0+X1)× (Y0+Y1) → Z be a bounded bilinear operator.
Then, there exists a constant C depending on T such that the following estimate
holds for all t > 0:

β̃(T : X × Y → Z) ≤ ψX(1, t)ψY (1, t)
(
β̃(T : X0 × Y0 → Z)

+ t−2β̃(T : X1 × Y1 → Z)
)
+ Ct−1(ψX(1, t) + ψY (1, t)).
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If, in addition ψX(1, t)/t → 0 and ψY (1, t)/t → 0 as t → ∞, and the restriction
T : X0×Y0 → Z is compact, then T : X×Y → Z is also a compact bilinear operator.

Proof. For simplicity of notation we put ρX(t) = ψX(1, t) and ρY (t) = ψY (1, t), for

all t > 0 and β̃(Ti) := β̃(T : Xi × Yi → Z) for i ∈ {0, 1}. For every ε > 0 and each
i ∈ {0, 1} there exists a finite subset Z(ε, i) of Z such that

(∗∗) T (BXi
×BYi

) ⊂
∑

z∈Z(ε,i)

(
z + (ε+ β̃(Ti))BZ)

)
.

Let (x, y) ∈ BX × BY , and let t, δ > 0 be fixed. Since K(t, x; �X) < δ + ρX(t) and

K(t, y; �Y ) < δ + ρY (t), there exist decompositions x = x0 + x1 with xj ∈ Xi and
y = y0 + y1 with yi ∈ Yi, for i ∈ {0, 1}, such that ‖x0‖X0

+ t‖x1‖X1
< δ + ρX(t)

and ‖y0‖Y0
+ t‖y1‖Y1

< δ + ρY (t). Hence

±xi ∈ t−i(δ + ρX(t))BXi
, yi ∈ t−i(δ + ρY (t))BYi

, i ∈ {0, 1}.
Combining with (∗∗), we obtain that for some z0 ∈ Z(ε, 0) and z1 ∈ Z(ε, 1) we
have

T (x0, y0) ∈ (δ + ρX(t))(δ + ρY (t))z0

+ (δ + ρX(t))(δ + ρY (t))
(
ε+ β̃(T0)

)
BZ ,

and

T (−x1, y1) ∈ t−2(δ + ρX(t))(δ + ρY (t))z1

+ t−2(δ + ρX(t))(δ + ρY (t))
(
ε+ β̃(T1)

)
BZ .

Since the bilinear map T : (X0 +X1)× (Y0 + Y1) → Z is bounded, X ↪→ X0 +X1

and Y ↪→ Y0 + Y1, then there exists a constant C > 0 such that, T : X × Y1 → Z
and T : (X0 +X1)× Y → Z with norms less than or equal to C.

Combining, we get from the formula T (x, y) = T (x0 + x1, y0 + y1) = T (x0, y0) +
T (−x1, y1) + T (x, y1) + T (x1, y) that

T (x, y)∈(δ + ρX(t))(δ + ρY (t))(z0 + t−2z1) + (δ + ρX(t))(δ + ρY (t))
(
ε+ β̃(T0))BZ

+Ct−1(2δ + ρX(t) + ρY (t))BZ + t−2(δ + ρX(t))(δ + ρY (t))
(
ε+β̃(T1)

)
BZ .

Observe that the set {(δ+ ρX(t))(δ+ ρY (t))(z0+ t−2z1); z0 ∈ Z(ε, 0), z1 ∈ Z(ε, 1)}
is finite, and so we conclude that

β̃(T : X × Y → Z) ≤(δ + ρX(t))
(
δ + ρY (t))

(
ε+ β̃(T0) + t−2(ε+ β̃(T1))

)
+ Ct−1(2δ + ρX(t) + ρY (t)).

Since ε and δ may be chosen arbitrarily small,

β̃(T : X × Y → Z) ≤ ρX(t)ρY (t)
(
β̃(T0) + t−2β̃(T1)

)
+ Ct−1(ρX(t) + ρY (t)).

If we assume that the restriction T : X0 × Y0 → Z is a compact bilinear operator,

then β̃(T0) = 0. Thus, the above estimate yields

β̃(T : X × Y → Z) ≤ lim
t→∞

ρX(t)

t

ρY (t)

t
β̃(T1)

+ C lim
t→∞

(ρX(t)

t
+

ρY (t)

t

)
= 0,

and this completes the proof. �
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To show general examples we recall, following [18], that the function ϕ, which
corresponds to an exact interpolation functor F by the equality

F (sR, tR) = ϕ(s, t)R, s, t > 0

is called the characteristic function of the functor F . Here αR denotes R equipped
with the norm ‖ · ‖αR = α| · | for α > 0.

We note that, for any exact interpolation functor F (see [18, p. 372]) and for

any Banach couple �X = (X0, X1), we have

‖x‖F( �X) ≤ ϕ(‖x‖X0
, ‖x‖X1

), x ∈ X0 ∩X1

and moreover, by [18, Lemma 7.7.1], for all s, t > 0,

K(s, t, x; �X) ≤ ϕ∗(s, t)‖x‖F ( �X), x ∈ F ( �X),

where ϕ∗(s, t) := 1/ϕ(s−1, t−1). Hence, for a Banach space X := F ( �X),

ϕX(s, t) ≤ ϕ(s, t), ψX(s, t) ≤ ϕ∗(s, t), s, t > 0.

In particular, this implies that ϕX ∈ Φ0 and ψX ∈ Φ0 whenever ϕ ∈ Φ0. Com-
bining these observations with the above results, we obtain variants of one-sided
compactness results for the real interpolation functor KE generated by any Banach
sequence lattice E modelled on Z, such that {min{1, 2n}}n ∈ E. It is obvious
that the characteristic function of the exact interpolation functor KE is given by
ϕ(s, t) = ‖{min{s, t2n}}n‖E for all s, t > 0. In particular, applying this observation
to special type of spaces E, we recover the results of Lions–Peetre type from [13].

We conclude this section by proving a bilinear variant of Teixeira and Edmunds’
result proved for linear operators [22], under the condition that the couple in the
target of the operator satisfies the approximation property (H). At first, we intro-
duce a minor modification of the previously mentioned approximation property.

A Banach couple �X = (X0, X1) is said to have the approximation property (H̃)
if there exists a constant c > 0 such that, for any given ε > 0 and any finite subsets

F0 ⊂ X0 and F1 ⊂ X1, there is an operator P : �X → �X with ‖P‖ �X→ �X ≤ c,
P : X0 + X1 → X0 ∩ X1, P : X0 → X0 is compact, and ‖x − Px‖Xi

≤ ε for each
x ∈ Fi, i ∈ {0, 1}.

We note that it follows from [19] that a Banach couple (Lp0
, Lp1

) of Lp spaces
on a locally compact measure space with Radon measure, with 1 ≤ p0 < ∞ and
1 ≤ p1 < ∞ satisfies the approximation property with c = 1. In fact, a minor
modification of the original proof shows that this is true for any measure space
(see [13]).

We need the following result which is a bilinear variant of a lemma [22, p. 37]
for linear operators.

Lemma 4.1. Let �X = (X0, X1), �Y = (Y0, Y1) and �Z = (Z0, Z1) be Banach couples,

and let T ∈ B( �X, �Y ; �Z). Suppose that �Z has the approximation property (H̃). Then

there exists a constant C such that for every ε > 0 there exists P : �Z → �Z satisfying

‖T − PT‖
˜Xi×˜Yi→ ˜Zi

≤ Cβ̃
(
T : X̃i × Ỹi → Z̃i

)
+ ε, i ∈ {0, 1}.

Proof. For typographical convenience we put β̃(Ti) := β̃
(
Ti : X̃i × Ỹi → Z̃i

)
, for

i ∈ {0, 1}. Let c be a positive constant in the definition of the approximation
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property (H̃) of �Z. Fix ε > 0. There are finite sets F0 ⊂ Z̃0 and F1 ⊂ Z̃1 such
that, for each i ∈ {0, 1}, we have

sup
(x,y)∈B

˜Xi
×B

˜Yi

‖T (x, y)− z‖Zi
≤ β̃(Ti) +

ε

2(1 + c)
, z ∈ Fi.

Our hypothesis implies that there exists P : �Z → �Z such that, for each i ∈ {0, 1},
we have with C = 1 + c,

‖Pz − z‖Zi
<

ε

2C
, z ∈ Fi.

Combining the above estimates for all (x, y) ∈ B
˜Xi

× B
˜Yi

and each i ∈ {0, 1}, we
get that

‖(I − P )T (x, y)‖Zi
= ‖(I − P )(T (x, y)− z) + (I − P )z‖Zi

≤ (1 + c)‖T (x, y)− z‖Zi
+ ‖z − Pz‖Zi

≤ C
(
‖T (x, y)− z‖Zi

+
ε

2C

)

≤ Cβ̃(Ti) + ε.

and this completes the proof. �

In what follows, we write (X,Y ;Z) ∈ Bint( �X, �Y ; �Z) is a ϕ-bilinear interpolation
for some ϕ ∈ Φ whenever we have

‖T‖
˜X×˜Y→ ˜Z ≤ ϕ

(
‖T‖

˜X0×˜Y0→ ˜Z0
, ‖T‖

˜X1×˜Y1→˜Z1

)
.

We note that
(
[ �X]θ, [�Y ]θ; [�Z]θ

)
∈ Bint

(
�X, �Y ; �Z

)
and

(
�Xθ,p, �Yθ,q; �Zθ,r

)
∈ Bint

(
�X, �Y ;

�Z
)
are ϕ-bilinear interpolation with ϕ(s, t) = s1−θtθ for all s, t > 0, and p, q, r ∈

[1,∞) with 1/p+ 1/q = 1+ 1/r, where [ · ]θ and (·)θ,q, with 0 < θ < 1, 1 ≤ q < ∞,
are the complex and the real method of interpolation, respectively (see [4], [16]).

We are ready to state a general bilinear version of the mentioned result.

Theorem 4.3. Let X, Y, and Z be intermediate Banach spaces with respect to
�X = (X0, X1), �Y = (Y0, Y1), and �Z = (Z0, Z1), respectively, such that (X,Y ;Z) ∈
Bint( �X, �Y ; �Z) is a ϕ-bilinear interpolation for some ϕ ∈ Φ0. Suppose that �Z has

the approximation property (H̃). Then, there exists a constant C > 0 such that for

every bilinear operator T ∈ B( �X, �Y ; �Z),

β̃(T : X̃ × Ỹ → Z̃) ≤ ϕ
(
β̃
(
T : X̃0 × Ỹ0 → Z̃0

)
, β̃

(
T : X̃1 × Ỹ1 → Z̃1

))
.

In particular this implies that T : X̃× Ỹ → Z̃ is a compact operator if T : X̃i× Ỹi →
Z̃i is compact for i = 0 or i = 1.

Proof. Fix ε > 0. Then it follows by Lemma 4.1 that there exists P : �Z → �Z, such
that P : Z0 + Z1 → Z0 ∩ Z1, P : Z0 → Z0 is compact and

‖T − PT‖
˜Xi×˜Yi→ ˜Zi

≤ Cβ̃
(
T : X̃i × Ỹi → Z̃i

)
+ ε, i ∈ {0, 1}.

Since P : Z0 → Z0 is compact and

PT : X̃ × Ỹ → Z̃0 ∩ Z̃1 ↪→ Z,
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β̃
(
PT : X̃ × Ỹ → Z̃

)
= 0. Combining the above with T = PT + (T − PT ) yields

β̃
(
T : X̃ × Ỹ → Z̃

)
≤ β̃

(
PT : X̃ × Ỹ → Z̃

)
+ β̃

(
T − PT : X̃ × Ỹ → Z̃

)
≤ ‖T − PT‖

˜X×˜Y→ ˜Z

≤ Cϕ
(
β̃
(
T : X̃0 × Ỹi → Z̃i

)
+ ε, β̃

(
T : X̃1 × Ỹ1 → Z̃1

)
+ ε

)
.

Since ε may be chosen arbitrarily small, the desired statement follows. �

We close this section with the general observation that the above theorem may be
applied for bilinear operators between a large class of interpolation spaces generated
by interpolation functors. We begin with the following definition. Let F be an

interpolation functor. If there is a constant C > 0 such that for every T : �X → �Y

‖T‖F ( �X)→F (�Y ) ≤ Cmax
{
‖T‖X0→Y0

, ‖T‖X1→Y1

}
,

then F is called bounded. Clearly we always have C ≥ 1, and if C = 1 then F
is called exact. For a bounded interpolation functor F , we define the fundamental
function φF : (0,∞)× (0,∞) → (0,∞) of F by

φF (s, t) := sup
{
‖T‖F ( �X)→F (�Y )

}
, s, t > 0

where the supremum is taken over all Banach couples �X, �Y , and all operators

T : �X → �Y such that ‖T‖X0→Y0
≤ s and ‖T‖X1→Y1

≤ t. We note that from the

definition, it follows for all couples �X, �Y and all T : �X → �Y , that

‖T‖F ( �X)→F (�Y ) ≤ φF

(
‖T‖X0→Y0

, ‖T‖X1→Y1

)
.

We also remark that it is well known that the fundamental function of the
classical real interpolation functor F = (·)θ,q with 0 < θ < 1, 1 ≤ q ≤ ∞, is
given by φF (s, t) = s1−θtθ for all s, t > 0.

Lemma 4.2. Let F , G, and Fj for j ∈ {0, 1} be interpolation functors such that

there exists C1 > 0 with
(
F0( �X), G(�Y );F1(�Z)′

)
∈ BintC1

( �X, �Y ; �Z ′) for all Ba-

nach couples �X, �Y , and �Z. Assume that G is a bounded regular functor such that

‖id : F (�Z)′ ↪→ G(�Z ′)‖ ≤ C2 and F (�Z) is regular. If a bilinear interpolation theo-

rem F0×F1 → F holds, then
(
F0( �X), F1(�Y );F (�Z)

)
∈ Bint( �X, �Y ; �Z) is a ϕ-bilinear

interpolation for all Banach couples �X, �Y , and �Z with ϕ(s, t) ≤ CφG(s, t) for all
s, t > 0, where φG is the fundamental function of G and C = C1C2.

Proof. Fix T ∈ B( �X, �Y ; �Z). For simplicity of notation, we put X := F0( �X), Y :=

F1(�Y ), and Z := F (�Z). Since

T⊗ : (Z ′
0, Z

′
1) → (B(X0, Y0),B(X1, Y1))

and then, by interpolation property

(�) T⊗ : G(Z ′
0, Z

′
1) → G(B(X0, Y0),B(X1, Y1)).

Applying Theorem 2.1(ii), we get that

G
(
B(X0, Y0),B(X1, Y1)

)
↪→ B

(
F0( �X), F1(�Y )

)
= B(X,Y )

with the norm of the inclusion map less than or equal to C1. Since ‖id : F (�Z)′ ↪→
G(�Z ′)‖ ≤ C2, we conclude that

T× : F (�Z)′ → B(X,Y )
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with norm less than or equal to C := C1C2. Combining (�) with the definition of
the fundamental function of G, one has

‖T×‖Z′→B(X,Y ) ≤ CφG

(
‖T×‖Z′

0→B(X0,Y0), ‖T×‖Z′
1→B(X1,Y1)

)
.

Our hypothesis is that a bilinear interpolation theorem F0 × F1 → F holds. In

particular this implies that T : X̃ × Ỹ → Z̃ is a bilinear operator, and so we have

‖T‖
˜X×˜Y→ ˜Z = ‖T×‖Z′→B(X,Y ).

Hence the above inequality yields

‖T‖
˜X×˜Y→ ˜Z ≤ CφG

(
‖T‖

˜X0×˜Y0→Z0
, ‖T‖

˜X1×˜Y1→Z1

)
,

and this completes the proof. �
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