The nonproper dissipative extensions of a dual pair
HTML articles powered by AMS MathViewer
- by Christoph Fischbacher PDF
- Trans. Amer. Math. Soc. 370 (2018), 8895-8920 Request permission
Abstract:
We consider dissipative operators $A$ of the form $A=S+iV$, where both $S$ and $V\geq 0$ are assumed to be symmetric, but neither of them needs to be (essentially) self-adjoint. After a brief discussion of the relation of the operators $S\pm iV$ to dual pairs with the so-called common core property, we present a necessary and sufficient condition for any extension of $A$ with domain contained in $\mathcal {D}((S-iV)^*)$ to be dissipative. We will discuss several special situations in which this condition can be expressed in a particularly nice form—accessible to direct computations. Examples involving ordinary differential operators are given.References
- Alberto Alonso and Barry Simon, The Birman-Kreĭn-Vishik theory of selfadjoint extensions of semibounded operators, J. Operator Theory 4 (1980), no. 2, 251–270. MR 595414
- A. Alonzo and B. Simon, Addenda to: “The Birman-Kreĭn-Vishik theory of selfadjoint extensions of semibounded operators” [J. Operator Theory 4 (1980), no. 2, 251–270; MR 81m:47038], J. Operator Theory 6 (1981), no. 2, 407. MR 643699
- Tsuyoshi Ando and Katsuyoshi Nishio, Positive selfadjoint extensions of positive symmetric operators, Tohoku Math. J. (2) 22 (1970), 65–75. MR 264422, DOI 10.2748/tmj/1178242861
- Yu. M. Arlinskiĭ, On proper accretive extensions of positive linear relations, Ukraïn. Mat. Zh. 47 (1995), no. 6, 723–730 (English, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 47 (1995), no. 6, 831–840 (1996). MR 1355979, DOI 10.1007/BF01058773
- Yury Arlinskiĭ, Boundary triplets and maximal accretive extensions of sectorial operators, Operator methods for boundary value problems, London Math. Soc. Lecture Note Ser., vol. 404, Cambridge Univ. Press, Cambridge, 2012, pp. 35–72. MR 3050303
- Yuri Arlinskii, Sergey Belyi, and Eduard Tsekanovskii, Conservative realizations of Herglotz-Nevanlinna functions, Operator Theory: Advances and Applications, vol. 217, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2828331, DOI 10.1007/978-3-7643-9996-2
- Yury Arlinskiĭ, Yury Kovalev, and Eduard Tsekanovskiĭ, Accretive and sectorial extensions of nonnegative symmetric operators, Complex Anal. Oper. Theory 6 (2012), no. 3, 677–718. MR 2944079, DOI 10.1007/s11785-011-0169-7
- Yury Arlinskiĭ and Eduard Tsekanovskiĭ, The von Neumann problem for nonnegative symmetric operators, Integral Equations Operator Theory 51 (2005), no. 3, 319–356. MR 2126815, DOI 10.1007/s00020-003-1260-x
- Yu. Arlinskiĭ and E. Tsekanovskiĭ, M. Kreĭn’s research on semi-bounded operators, its contemporary developments, and applications, Modern analysis and applications. The Mark Krein Centenary Conference. Vol. 1: Operator theory and related topics, Oper. Theory Adv. Appl., vol. 190, Birkhäuser Verlag, Basel, 2009, pp. 65–112. MR 2568624, DOI 10.1007/978-3-7643-9919-1_{5}
- Gr. Arsene and A. Gheondea, Completing matrix contractions, J. Operator Theory 7 (1982), no. 1, 179–189. MR 650203
- M. Š. Birman, On the theory of self-adjoint extensions of positive definite operators, Mat. Sb. N.S. 38(80) (1956), 431–450 (Russian). MR 0080271
- M. S. Brodskiĭ and M. S. Livšic, Spectral analysis of non-selfadjoint operators and intermediate systems, Amer. Math. Soc. Transl. (2) 13 (1960), 265–346. MR 0113144
- B. M. Brown and W. D. Evans, Selfadjoint and $m$ sectorial extensions of Sturm-Liouville operators, Integral Equations Operator Theory 85 (2016), no. 2, 151–166. MR 3511362, DOI 10.1007/s00020-016-2296-z
- Laurent Bruneau, Jan Dereziński, and Vladimir Georgescu, Homogeneous Schrödinger operators on half-line, Ann. Henri Poincaré 12 (2011), no. 3, 547–590. MR 2785138, DOI 10.1007/s00023-011-0078-3
- Michael G. Crandall, Norm preserving extensions of linear transformations on Hilbert spaces, Proc. Amer. Math. Soc. 21 (1969), 335–340. MR 238092, DOI 10.1090/S0002-9939-1969-0238092-8
- Michael G. Crandall and Ralph S. Phillips, On the extension problem for dissipative operators, J. Functional Analysis 2 (1968), 147–176. MR 0231220, DOI 10.1016/0022-1236(68)90015-3
- V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), no. 1, 1–95. MR 1087947, DOI 10.1016/0022-1236(91)90024-Y
- V. A. Derkach, M. M. Malamud, and È. R. Tsekanovskiĭ, Sectorial extensions of a positive operator, and the characteristic function, Dokl. Akad. Nauk SSSR 298 (1988), no. 3, 537–541 (Russian); English transl., Soviet Math. Dokl. 37 (1988), no. 1, 106–110. MR 925955
- D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR 929030
- W. Desmond Evans and Ian Knowles, On the extension problem for accretive differential operators, J. Funct. Anal. 63 (1985), no. 3, 276–298. MR 808264, DOI 10.1016/0022-1236(85)90089-8
- W. Desmond Evans and Ian Knowles, On the extension problem for singular accretive differential operators, J. Differential Equations 63 (1986), no. 2, 264–288. MR 848270, DOI 10.1016/0022-0396(86)90050-1
- C. Fischbacher: On the Theory of Dissipative Extensions, PhD Thesis, University of Kent (2017), https://kar.kent.ac.uk/61093.
- Christoph Fischbacher, Sergey Naboko, and Ian Wood, The proper dissipative extensions of a dual pair, Integral Equations Operator Theory 85 (2016), no. 4, 573–599. MR 3551233, DOI 10.1007/s00020-016-2310-5
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142
- Gerd Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 425–513. MR 239269
- M. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Rec. Math. [Mat. Sbornik] N.S. 20(62) (1947), 431–495 (Russian, with English summary). MR 0024574
- M. S. Livšic, On a class of linear operators in Hilbert space, Amer. Math. Soc. Transl. (2) 13 (1960), 61–83. MR 0113142, DOI 10.1090/trans2/013/04
- M. S. Livšic, On spectral decomposition of linear nonself-adjoint operators, Mat. Sbornik N.S. 34(76) (1954), 145–199 (Russian). MR 0062955
- V. È. Lyantse and O. G. Storozh, Metody teorii neogranichennykh operatorov, “Naukova Dumka”, Kiev, 1983 (Russian). MR 757535
- M. M. Malamud and V. I. Mogilevskii, On extensions of dual pairs of operators, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 1 (1997), 30–37 (English, with Ukrainian summary). MR 1490700
- M. M. Malamud and V. I. Mogilevskii, On Weyl functions and $Q$-functions of dual pairs of linear relations, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 4 (1999), 32–37 (English, with Ukrainian summary). MR 1708283
- M. M. Malamud and V. I. Mogilevskii, Kreĭn type formula for canonical resolvents of dual pairs of linear relations, Methods Funct. Anal. Topology 8 (2002), no. 4, 72–100. MR 1942823
- J. v. Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1930), no. 1, 49–131 (German). MR 1512569, DOI 10.1007/BF01782338
- R. S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc. 90 (1959), 193–254. MR 104919, DOI 10.1090/S0002-9947-1959-0104919-1
- Béla Sz.-Nagy, Ciprian Foias, Hari Bercovici, and László Kérchy, Harmonic analysis of operators on Hilbert space, Revised and enlarged edition, Universitext, Springer, New York, 2010. MR 2760647, DOI 10.1007/978-1-4419-6094-8
- E. R. Tsekanovskiĭ: Non-self-adjoint accretive extensions of positive operators and theorems of Friedrichs-Krein-Phillips, Func. Anal. Appl. 14, 156-157 (1980).
- E. R. Tsekanovskiĭ, The Friedrichs and Kreĭn extensions of positive operators, and holomorphic semigroups of contractions, Funktsional. Anal. i Prilozhen. 15 (1981), no. 4, 91–92 (Russian). MR 639213
- M. I. Višik, On general boundary problems for elliptic differential equations, Trudy Moskov. Mat. Obšč. 1 (1952), 187–246 (Russian). MR 0051404
Additional Information
- Christoph Fischbacher
- Affiliation: Department of Mathematics, The University of Alabama, Birmingham, Alabama 35294
- MR Author ID: 1080234
- Email: cfischb@uab.edu
- Received by editor(s): June 13, 2017
- Received by editor(s) in revised form: October 26, 2017
- Published electronically: September 5, 2018
- Additional Notes: The author is indebted to the UK Engineering and Physical Sciences Research Council (Doctoral Training Grant Ref. EP/K50306X/1).
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 8895-8920
- MSC (2010): Primary 47B44, 47A20; Secondary 47E05
- DOI: https://doi.org/10.1090/tran/7511
- MathSciNet review: 3864399