The uniform Martin’s conjecture for many-one degrees
HTML articles powered by AMS MathViewer
- by Takayuki Kihara and Antonio Montalbán PDF
- Trans. Amer. Math. Soc. 370 (2018), 9025-9044 Request permission
Abstract:
We study functions from reals to reals which are uniformly degree invariant from Turing equivalence to many-one equivalence, and we compare them “on a cone”. We prove that they are in one-to-one correspondence with the Wadge degrees, which can be viewed as a refinement of the uniform Martin’s conjecture for uniformly invariant functions from Turing equivalence to Turing equivalence.
Our proof works in the general case of many-one degrees on $\mathcal {Q}^{\omega }$ and Wadge degrees of functions ${\omega }^{\omega }\to \mathcal {Q}$ for any better-quasi-ordering $\mathcal {Q}$.
References
- Howard Becker, A characterization of jump operators, J. Symbolic Logic 53 (1988), no. 3, 708–728. MR 960994, DOI 10.2307/2274567
- Alexander C. Block, Operations on a Wadge-type hierarchy of ordinal-valued functions, 2014. Thesis (master’s)–Universiteit van Amsterdam.
- Jörg Brendle and Benedikt Löwe, Solovay-type characterizations for forcing-algebras, J. Symbolic Logic 64 (1999), no. 3, 1307–1323. MR 1779764, DOI 10.2307/2586632
- Douglas Cenzer, Rodney Downey, Carl Jockusch, and Richard A. Shore, Countable thin $\Pi ^0_1$ classes, Ann. Pure Appl. Logic 59 (1993), no. 2, 79–139. MR 1197208, DOI 10.1016/0168-0072(93)90001-T
- Rodney G. Downey and Richard A. Shore, There is no degree invariant half-jump, Proc. Amer. Math. Soc. 125 (1997), no. 10, 3033–3037. MR 1401736, DOI 10.1090/S0002-9939-97-03915-4
- J. Duparc, Wadge hierarchy and Veblen hierarchy. I. Borel sets of finite rank, J. Symbolic Logic 66 (2001), no. 1, 56–86. MR 1825174, DOI 10.2307/2694911
- J. Duparc, The Steel hierarchy of ordinal valued Borel mappings, J. Symbolic Logic 68 (2003), no. 1, 187–234. MR 1959317, DOI 10.2178/jsl/1045861511
- P. Erdös and A. Tarski, On families of mutually exclusive sets, Ann. of Math. (2) 44 (1943), 315–329. MR 8249, DOI 10.2307/1968767
- Fred Galvin and Karel Prikry, Borel sets and Ramsey’s theorem, J. Symbolic Logic 38 (1973), 193–198. MR 337630, DOI 10.2307/2272055
- Leo A. Harrington and Alexander S. Kechris, On the determinacy of games on ordinals, Ann. Math. Logic 20 (1981), no. 2, 109–154. MR 622782, DOI 10.1016/0003-4843(81)90001-2
- Alexander S. Kechris, Benedikt Löwe, and John R. Steel (eds.), Wadge degrees and projective ordinals. The Cabal Seminar. Volume II, Lecture Notes in Logic, vol. 37, Association for Symbolic Logic, La Jolla, CA; Cambridge University Press, Cambridge, 2012. MR 2906066
- Takayuki Kihara and Antonio Montalbán, On the structure of the Wadge degrees of BQO-valued Borel functions (to be published).
- S. C. Kleene and Emil L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379–407. MR 61078, DOI 10.2307/1969708
- Steffen Lempp, The computational complexity of torsion-freeness of finitely presented groups, Bull. Austral. Math. Soc. 56 (1997), no. 2, 273–277. MR 1470080, DOI 10.1017/S0004972700031014
- Alain Louveau and Jean Saint-Raymond, On the quasi-ordering of Borel linear orders under embeddability, J. Symbolic Logic 55 (1990), no. 2, 537–560. MR 1056369, DOI 10.2307/2274645
- Alain Louveau and Stephen G. Simpson, A separable image theorem for Ramsey mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), no. 3-4, 105–108 (English, with Russian summary). MR 673430
- Andrew Marks, Theodore A. Slaman, and John R. Steel, Martin’s conjecture, arithmetic equivalence, and countable Borel equivalence relations, Ordinal definability and recursion theory: The Cabal Seminar. Vol. III, Lect. Notes Log., vol. 43, Assoc. Symbol. Logic, Ithaca, NY, 2016, pp. 493–519. MR 3469180
- Andrew S. Marks, Uniformity, universality, and computability theory, J. Math. Log. 17 (2017), no. 1, 1750003, 50. MR 3651212, DOI 10.1142/S0219061317500039
- Donald A. Martin, The axiom of determinateness and reduction principles in the analytical hierarchy, Bull. Amer. Math. Soc. 74 (1968), 687–689. MR 227022, DOI 10.1090/S0002-9904-1968-11995-0
- Donald A. Martin, Borel determinacy, Ann. of Math. (2) 102 (1975), no. 2, 363–371. MR 403976, DOI 10.2307/1971035
- C. St. J. A. Nash-Williams, On well-quasi-ordering infinite trees, Proc. Cambridge Philos. Soc. 61 (1965), 697–720. MR 175814, DOI 10.1017/s0305004100039062
- Anil Nerode and Richard A. Shore, Reducibility orderings: theories, definability and automorphisms, Ann. Math. Logic 18 (1980), no. 1, 61–89. MR 568916, DOI 10.1016/0003-4843(80)90004-2
- Piergiorgio Odifreddi, Classical recursion theory, Studies in Logic and the Foundations of Mathematics, vol. 125, North-Holland Publishing Co., Amsterdam, 1989. The theory of functions and sets of natural numbers; With a foreword by G. E. Sacks. MR 982269
- Victor L. Selivanov, Hierarchies of $\Delta ^0_2$-measurable $k$-partitions, MLQ Math. Log. Q. 53 (2007), no. 4-5, 446–461. MR 2351943, DOI 10.1002/malq.200710011
- Stephen G. Simpson, “Bqo-theory and Fraïssé’s conjecture", in Richard Mansfield and Galen Weitkamp, Recursive Aspects of Descriptive Set Theory, Oxford Logic Guides, Vol. 11, Oxford University Press, Oxford, 1985, Chap. 9.
- Theodore A. Slaman and John R. Steel, Definable functions on degrees, Cabal Seminar 81–85, Lecture Notes in Math., vol. 1333, Springer, Berlin, 1988, pp. 37–55. MR 960895, DOI 10.1007/BFb0084969
- John R. Steel, A classification of jump operators, J. Symbolic Logic 47 (1982), no. 2, 347–358. MR 654792, DOI 10.2307/2273146
- Fons van Engelen, Arnold W. Miller, and John Steel, Rigid Borel sets and better quasi-order theory, Logic and combinatorics (Arcata, Calif., 1985) Contemp. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1987, pp. 199–222. MR 891249, DOI 10.1090/conm/065/891249
- Robert Van Wesep, Wadge degrees and descriptive set theory, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77) Lecture Notes in Math., vol. 689, Springer, Berlin, 1978, pp. 151–170. MR 526917
- William Wilfred Wadge, Reducibility and determinateness on the Baire space, ProQuest LLC, Ann Arbor, MI, 1983. Thesis (Ph.D.)–University of California, Berkeley. MR 2633374
- W. Hugh Woodin, The axiom of determinacy, forcing axioms, and the nonstationary ideal, De Gruyter Series in Logic and its Applications, vol. 1, Walter de Gruyter & Co., Berlin, 1999. MR 1713438, DOI 10.1515/9783110804737
Additional Information
- Takayuki Kihara
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Address at time of publication: Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
- MR Author ID: 892476
- Email: kihara@i.nagoya-u.ac.jp
- Antonio Montalbán
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Email: antonio@math.berkeley.edu
- Received by editor(s): October 5, 2017
- Received by editor(s) in revised form: January 23, 2018
- Published electronically: September 18, 2018
- Additional Notes: The first-named author was partially supported by JSPS KAKENHI grants 17H06738 and 15H03634, and the JSPS Core-to-Core Program (A. Advanced Research Networks).
The second-named author was partially supported by NSF grant DMS-0901169 and the Packard Fellowship. - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 370 (2018), 9025-9044
- MSC (2010): Primary 03D30; Secondary 03E15, 03E60
- DOI: https://doi.org/10.1090/tran/7519
- MathSciNet review: 3864404