## A rigidity theorem on the second fundamental form for self-shrinkers

HTML articles powered by AMS MathViewer

- by Qi Ding PDF
- Trans. Amer. Math. Soc.
**370**(2018), 8311-8329 Request permission

## Abstract:

In Theorem 3.1 of*The rigidity theorems of self-shrinkers*(2014), the author and Y. L. Xin proved a rigidity result for self-shrinkers under the integral condition on the norm of the second fundamental form. In this paper, we relax such a bound to any finite constant (see Theorem 4.4 for details).

## References

- Huai-Dong Cao and Haizhong Li,
*A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension*, Calc. Var. Partial Differential Equations**46**(2013), no. 3-4, 879–889. MR**3018176**, DOI 10.1007/s00526-012-0508-1 - Albert Chau, Jingyi Chen, and Yu Yuan,
*Rigidity of entire self-shrinking solutions to curvature flows*, J. Reine Angew. Math.**664**(2012), 229–239. MR**2980136**, DOI 10.1515/crelle.2011.102 - Qun Chen and Hongbing Qiu,
*Rigidity of self-shrinkers and translating solitons of mean curvature flows*, Adv. Math.**294**(2016), 517–531. MR**3479571**, DOI 10.1016/j.aim.2016.03.004 - Qing-Ming Cheng and Shiho Ogata,
*2-dimensional complete self-shrinkers in $\mathbf {R}^3$*, Math. Z.**284**(2016), no. 1-2, 537–542. MR**3545504**, DOI 10.1007/s00209-016-1665-2 - Qing-Ming Cheng and Yejuan Peng,
*Complete self-shrinkers of the mean curvature flow*, Calc. Var. Partial Differential Equations**52**(2015), no. 3-4, 497–506. MR**3311901**, DOI 10.1007/s00526-014-0720-2 - Qing-Ming Cheng and Guoxin Wei,
*A gap theorem of self-shrinkers*, Trans. Amer. Math. Soc.**367**(2015), no. 7, 4895–4915. MR**3335404**, DOI 10.1090/S0002-9947-2015-06161-3 - Xu Cheng and Detang Zhou,
*Volume estimate about shrinkers*, Proc. Amer. Math. Soc.**141**(2013), no. 2, 687–696. MR**2996973**, DOI 10.1090/S0002-9939-2012-11922-7 - Tobias H. Colding and William P. Minicozzi II,
*Generic mean curvature flow I: generic singularities*, Ann. of Math. (2)**175**(2012), no. 2, 755–833. MR**2993752**, DOI 10.4007/annals.2012.175.2.7 - Tobias Holck Colding, Tom Ilmanen, and William P. Minicozzi II,
*Rigidity of generic singularities of mean curvature flow*, Publ. Math. Inst. Hautes Études Sci.**121**(2015), 363–382. MR**3349836**, DOI 10.1007/s10240-015-0071-3 - Qi Ding and Zhizhang Wang,
*On the self-shrinking systems in arbitrary codimensional spaces*, arXiv:1012.0429v2, 2010. - Qi Ding and Y. L. Xin,
*Volume growth, eigenvalue and compactness for self-shrinkers*, Asian J. Math.**17**(2013), no. 3, 443–456. MR**3119795**, DOI 10.4310/AJM.2013.v17.n3.a3 - Qi Ding and Y. L. Xin,
*The rigidity theorems of self-shrinkers*, Trans. Amer. Math. Soc.**366**(2014), no. 10, 5067–5085. MR**3240917**, DOI 10.1090/S0002-9947-2014-05901-1 - Qi Ding and Yuanlong Xin,
*The rigidity theorems for Lagrangian self-shrinkers*, J. Reine Angew. Math.**692**(2014), 109–123. MR**3274548**, DOI 10.1515/crelle-2012-0081 - Qi Ding, Y. L. Xin, and Ling Yang,
*The rigidity theorems of self shrinkers via Gauss maps*, Adv. Math.**303**(2016), 151–174. MR**3552523**, DOI 10.1016/j.aim.2016.08.019 - Klaus Ecker,
*On regularity for mean curvature flow of hypersurfaces*, Calc. Var. Partial Differential Equations**3**(1995), no. 1, 107–126. MR**1384839**, DOI 10.1007/BF01190894 - Klaus Ecker,
*Partial regularity at the first singular time for hypersurfaces evolving by mean curvature*, Math. Ann.**356**(2013), no. 1, 217–240. MR**3038128**, DOI 10.1007/s00208-012-0853-6 - Klaus Ecker and Gerhard Huisken,
*Mean curvature evolution of entire graphs*, Ann. of Math. (2)**130**(1989), no. 3, 453–471. MR**1025164**, DOI 10.2307/1971452 - L. Escauriaza, G. Seregin, and V. Šverák,
*Backward uniqueness for parabolic equations*, Arch. Ration. Mech. Anal.**169**(2003), no. 2, 147–157. MR**2005639**, DOI 10.1007/s00205-003-0263-8 - Xiaoli Han and Jun Sun,
*An $\varepsilon$-regularity theorem for the mean curvature flow*, J. Geom. Phys.**62**(2012), no. 12, 2329–2336. MR**2992516**, DOI 10.1016/j.geomphys.2012.07.009 - Klaus Ecker and Gerhard Huisken,
*Interior estimates for hypersurfaces moving by mean curvature*, Invent. Math.**105**(1991), no. 3, 547–569. MR**1117150**, DOI 10.1007/BF01232278 - L. Escauriaza, G. Seregin, and V. Šverák,
*Backward uniqueness for parabolic equations*, Arch. Ration. Mech. Anal.**169**(2003), no. 2, 147–157. MR**2005639**, DOI 10.1007/s00205-003-0263-8 - Gerhard Huisken,
*Asymptotic behavior for singularities of the mean curvature flow*, J. Differential Geom.**31**(1990), no. 1, 285–299. MR**1030675** - Gerhard Huisken,
*Local and global behaviour of hypersurfaces moving by mean curvature*, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 175–191. MR**1216584**, DOI 10.1090/pspum/054.1/1216584 - Qiang Guang and Jonathan J. Zhu,
*Rigidity and curvature estimates for graphical self-shrinkers*, Calc. Var. Partial Differential Equations**56**(2017), no. 6, Paper No. 176, 18. MR**3721649**, DOI 10.1007/s00526-017-1277-7 - Qiang Guang, Jonathan J. Zhu,
*On the rigidity of mean convex self-shrinkers*, arXiv:1603.09435. - Rongli Huang and Zhizhang Wang,
*On the entire self-shrinking solutions to Lagrangian mean curvature flow*, Calc. Var. Partial Differential Equations**41**(2011), no. 3-4, 321–339. MR**2796234**, DOI 10.1007/s00526-010-0364-9 - T. Ilmanen,
*Singularities of mean curvature flow of surfaces*(1995), http://www.math.ethz.ch/ilmanen/papers/pub.html. - T. Ilmanen,
*Lectures on Mean Curvature Flow and Related Equations*, 1995 (revised 1998), http://www.math.ethz.ch/ilmanen/papers/pub.html. - Nam Q. Le and Natasa Sesum,
*The mean curvature at the first singular time of the mean curvature flow*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**27**(2010), no. 6, 1441–1459. MR**2738327**, DOI 10.1016/j.anihpc.2010.09.002 - Nam Q. Le and Natasa Sesum,
*Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers*, Comm. Anal. Geom.**19**(2011), no. 4, 633–659. MR**2880211**, DOI 10.4310/CAG.2011.v19.n4.a1 - Haizhong Li and Yong Wei,
*Lower volume growth estimates for self-shrinkers of mean curvature flow*, Proc. Amer. Math. Soc.**142**(2014), no. 9, 3237–3248. MR**3223379**, DOI 10.1090/S0002-9939-2014-12037-5 - Fanghua Lin and Xiaoping Yang,
*Geometric measure theory—an introduction*, Advanced Mathematics (Beijing/Boston), vol. 1, Science Press Beijing, Beijing; International Press, Boston, MA, 2002. MR**2030862** - Ovidiu Munteanu and Jiaping Wang,
*Analysis of weighted Laplacian and applications to Ricci solitons*, Comm. Anal. Geom.**20**(2012), no. 1, 55–94. MR**2903101**, DOI 10.4310/CAG.2012.v20.n1.a3 - Leon Simon,
*Lectures on geometric measure theory*, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR**756417** - Antoine Song,
*A maximum principle for self-shrinkers and some consequences*, arXiv:1412.4755. - Lu Wang,
*A Bernstein type theorem for self-similar shrinkers*, Geom. Dedicata**151**(2011), 297–303. MR**2780753**, DOI 10.1007/s10711-010-9535-2 - Lu Wang,
*Uniqueness of self-similar shrinkers with asymptotically conical ends*, J. Amer. Math. Soc.**27**(2014), no. 3, 613–638. MR**3194490**, DOI 10.1090/S0894-0347-2014-00792-X - Lu Wang,
*Uniqueness of self-similar shrinkers with asymptotically cylindrical ends*, J. Reine Angew. Math.**715**(2016), 207–230. MR**3507924**, DOI 10.1515/crelle-2014-0006 - Mu-Tao Wang,
*Mean curvature flow of surfaces in Einstein four-manifolds*, J. Differential Geom.**57**(2001), no. 2, 301–338. MR**1879229** - Brian White,
*A local regularity theorem for mean curvature flow*, Ann. of Math. (2)**161**(2005), no. 3, 1487–1519. MR**2180405**, DOI 10.4007/annals.2005.161.1487 - Yuanlong Xin,
*Mean curvature flow with convex Gauss image*, Chinese Ann. Math. Ser. B**29**(2008), no. 2, 121–134. MR**2392328**, DOI 10.1007/s11401-007-0212-1 - Hongwei Xu and Zhiyuan Xu,
*New result on Chern conjecture for minimal hypersurfaces and its application*, arXiv:1605.07250.

## Additional Information

**Qi Ding**- Affiliation: Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200438, China
- MR Author ID: 926792
- Email: dingqi@fudan.edu.cn, dingqi09@fudan.edu.cn
- Received by editor(s): January 23, 2017
- Published electronically: September 13, 2018
- Additional Notes: The author was supported partially by NSFC
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**370**(2018), 8311-8329 - MSC (2010): Primary 53A10, 53C24, 53C44
- DOI: https://doi.org/10.1090/tran/7578
- MathSciNet review: 3864377