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A RIGIDITY THEOREM ON THE SECOND FUNDAMENTAL

FORM FOR SELF-SHRINKERS

QI DING

Abstract. In Theorem 3.1 of The rigidity theorems of self-shrinkers (2014),
the author and Y. L. Xin proved a rigidity result for self-shrinkers under the
integral condition on the norm of the second fundamental form. In this paper,

we relax such a bound to any finite constant (see Theorem 4.4 for details).

1. Introduction

Self-similar solutions for mean curvature flow play a key role in understanding the
possible singularities that the flow goes through. Self-shrinkers are type I singularity
models of the flow. Huisken made pioneer work on self-shrinking solutions of the
flow [22,23]. Colding and Minicozzi [8] gave a comprehensive study for self-shrinking
hypersurfaces and solved a long-standing conjecture raised by Huisken.

Colding–Ilmanen–Minicozzi [9] showed that cylindrical self-shrinkers are rigid in
a very strong sense. Namely, any other shrinker that is sufficiently close to one
of them on a large but compact set, must itself be a round cylinder. See [25]
by Guang–Zhu for further results. Lu Wang in [37, 38] proved strong uniqueness
theorems for self-shrinkers asymptotic to regular cones or generalized cylinders of
infinite order.

For Bernstein type theorems, Ecker–Huisken [17] and Wang [36] showed the
nonexistence of nontrivial graphic self-shrinking hypersurfaces in Euclidean space.
For 2 ≤ n ≤ 6, Guang–Zhu showed that any smooth complete self-shrinker in R

n+1

which is graphical inside a large, but compact, set must be a hyperplane. Ding–
Xin–Yang [14] studied the sharp rigidity theorems with the condition on Gauss map
of self-shrinkers. In high codimensions, see [2, 3, 10, 13, 26] for more Bernstein type
theorems.

Le-Sesum [30] showed that any complete embedded self-shrinking hypersurface
with polynomial volume growth must be a hyperplane provided the squared norm
of the second fundamental form |B|2 < 1

2 . Cao–Li [1] showed that any complete
self-shrinker (with high codimension) with polynomial volume growth must be a
generalized cylinder provided |B|2 ≤ 1

2 . Later, Cheng–Peng [5] removed the con-

dition of polynomial volume growth in the case of |B|2 < 1
2 (see [4, 6, 12, 42] for

more results on the gap theorems of the norm of the second fundamental form). In
[12], Ding–Xin proved a rigidity result for self-shrinkers if the integration of |B|n is
small. In this paper, we improve the small constant to any finite constant.

For a complete properly immersed self-shrinker Σn ⊂ Rn+1, Ilmanen showed
that there exists a cone C ⊂ Rn+1 with the cross section being a compact set in
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Sn such that λΣn → C as λ → 0+ locally in the Hausdorff metric on closed sets
(see [28, Lecture 2, B, remark on p. 8]). In [35], Song gave a simple proof by
a “maximum principle for self-shrinkers”. For high codimensions, with backward
heat kernel (see [8]) we show the uniqueness of tangent cones at infinity for self-
shrinkers with Euclidean volume growth in the current sense with the condition on
mean curvature (see Theorem 3.3).

ε-regularity theorems for the mean curvature flow have been studied by Ecker
[15,16], Han-Sun [19], Ilmanen [27], Le-Sesum [29]. Now we use the one showed by
Ecker [16] starting from self-similar solutions, and obtain the curvature estimates
for self-shrinkers, see Theorem 4.2. Combining Theorem 3.3, Theorem 4.2 and
backward uniqueness for parabolic operators [18], we can show that self-shrinkers
with finite integration on |B|n must be planes, which improves a previous rigidity
theorem in [12]. A litter more, we obtain the following Theorem.

Theorem 1.1. Let M be an n-dimensional properly noncompact self-shrinker with
compact boundary in R

n+m, and let B denote the second fundamental form of M .
If

(1.1) lim
r→∞

∫
M∩B2r\Br

|B|ndμ = 0,

M is contained in an n-plane through the origin.

2. Preliminary

Let M be an n-dimensional C2-submanifold in Rn+m with the induced metric.
Let ∇ and ∇ be the Levi–Civita connections on M and R

n+m, respectively. We
define the second fundamental form B of M by

B(V,W ) = (∇V W )N = ∇V W −∇V W

for any V,W ∈ Γ(TM), where the mean curvature vector H of M is given by
H = trace(B) =

∑n
i=1 B(ei, ei), where {ei} is a local orthonormal frame field of

M .
In this paper, Mn is said to be a self-shrinker in Rn+m if its mean curvature

vector satisfies

(2.1) H = −XN

2
,

whereX = (x1, . . . , xn+m) ∈ Rn+m is the position vector ofM in Rn+m, and (· · · )N
stands for the orthogonal projection into the normal bundle NM . Let (· · · )T denote
the orthogonal projection into the tangent bundle TM .

We define a second-order differential operator L as in [8] by

Lf = e
|X|2

4 div

(
e−

|X|2
4 ∇f

)
= Δf − 1

2
〈X,∇f〉
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for any f ∈ C2(M). Let Δ be the Laplacian of M , then for self-shrinkers,

(2.2) Δ|X|2 = 2〈X,ΔX〉+ 2|∇X|2 = 2〈X,H〉+ 2n = −|XN |2 + 2n.

In [8], Colding and Minicozzi defined a function FX0,t0 for self-shrinking hy-
persurfaces in Euclidean space. Obviously, hypersurfaces can be generalized to
submanifolds naturally in this definition. Set Φt ∈ C∞(Rn+m) for any t > 0 by

Φt(X) =
1

(4πt)n/2
e−

|X|2
4t .

For an n-complete submanifold M in R
n+m, we define a functional Ft on M by

Ft(M) =

∫
M

Φtdμ =
1

(4πt)n/2

∫
M

e−
|X|2
4t dμ for t > 0,

where dμ is the volume element of M . Sometimes, we write Ft for simplicity if there
is nothing ambiguous in the text. If a self-shrinker is proper, then it is equivalent
to the fact that it has Euclidean volume growth at most by [7] and [11]. We shall
only consider proper self-shrinkers in the following text.

Now we use the backward heat kernel to give a monotonicity formula for self-
shrinkers with arbitrary codimensions, which is essentially the same as the self-
shrinking hypersurfaces established by Colding–Minicozzi in [8].

Lemma 2.1. For any 0 < t1 ≤ t2 ≤ ∞, each complete immersed self-shrinker Mn

with boundary ∂M (may be empty) in Rn+m satisfies

Ft2(M)− Ft1(M) =−
∫ t2

t1

(∫
∂M

〈XT , ν∂M 〉Φs(X)

2s

)
ds

+

∫ t2

t1

1

4s

(
1− 1

s

)(∫
M

|XN |2Φs(X)dμ

)
ds.

(2.3)

Proof. We differentiate Ft(M) with respect to t,

(2.4) F ′
t = (4π)−

n
2 t−(n

2 +1)

∫
M

(
−n

2
+

|X|2
4t

)
e−

|X|2
4t dμ.

A straightforward calculation shows (see also [11])

−e
|X|2
4t div

(
e−

|X|2
4t ∇|X|2

)
=−Δ|X|2 + 1

4t
∇|X|2 · ∇|X|2

=− 2〈H,X〉 − 2n+
1

t
|XT |2

=|XN |2 + |XT |2
t

− 2n

=

(
1− 1

t

)
|XN |2 + |X|2

t
− 2n,

(2.5)
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where the third equality above uses the self-shrinkers’ equation (2.1). Then

F ′
t =(4π)−

n
2 t−(n

2 +1)

∫
M

(
− 1

4
div

(
e−

|X|2
4t ∇|X|2

)
− 1

4

(
1− 1

t

)
|XN |2e−

|X|2
4t

)
dμ

=
1

4
(4π)−

n
2 t−(n

2 +1)

(
−2

∫
∂M

〈XT , ν∂M 〉e−
|X|2
4t −

(
1− 1

t

)∫
M

|XN |2e−
|X|2
4t dμ

)
=− 1

2t

∫
∂M

〈XT , ν∂M 〉Φt(X)− 1

4t

(
1− 1

t

)∫
M

|XN |2Φt(X)dμ,

(2.6)

where ν∂M is the normal vector of ∂M in Γ(TM). Then we complete the proof by
integration from t1 to t2. �

Denote

Gt(M) � F ′
t(M) +

1

2t

∫
∂M

〈XT , ν∂M 〉Φt(X)(2.7)

= − 1

4t

(
1− 1

t

)∫
M

|XN |2Φt(X)dμ.

The above lemma implies Gt(M) ≤ 0 for each self-shrinker and t ≥ 1. If ∂M is
bounded and has finite (n− 1)-dimensional Hausdorff measure, then the limit

lim
t→∞

(∫ t

1

Gs(M)ds

)
always exists and is a finite negative number. Hence, it’s clear that limt→∞ Ft(M)
exists.

3. Uniqueness of tangent cones at infinity for self-shrinkers

For any n-rectifiable varifold V ⊂ R
n+m, we define a functional Ξt by

Ξt(V, f) =
1

(4πt)n/2

∫
sptV

fe−
|X|2
4t dμV

for any t > 0, where μV is a measure on R
n+m associated with the Radon measure

of V in Rn+m ×G(n, n+m).
We suppose that M is a self-shrinker in Rn+m \BR with boundary ∂M ⊂ ∂BR

for some R ≥ 1 and Hn−1(∂M) < ∞. Let φ ∈ C1(Rn+m \ {0}) be a homogeneous
function of degree zero. Namely, for any 0 �= X ∈ R

n+m,

φ(X) = φ(|X|ξ) = φ(ξ)

with ξ = X
|X| . Then

(3.1) ∂xi
φ =

∑
j

(
δij
|X| −

xixj

|X|3

)
∂ξjφ

and

(3.2) |∇φ|2 =
∑
j,k

(
δjk
|X|2 − xjxk

|X|4

)
∂ξjφ∂ξkφ ≤ |X|−2

∑
j

(
∂ξjφ

)2 � |X|−2|φ|21.
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Taking the derivative of Ξt(M,φ) on t obtains

∂tΞt(M,φ) = (4π)−
n
2 t−(n

2 +1)

∫
M

(
−n

2
+

|X|2
4t

)
φe−

|X|2
4t dμ

=(4π)−
n
2 t−(n

2 +1)

∫
M

(
−φ

4
div

(
e−

|X|2
4t ∇|X|2

)
− φ

4

(
1− 1

t

)
|XN |2e−

|X|2
4t

)
dμ.

(3.3)

Combining X · ∇φ = 0, we have

∫
M

−φ

4
div

(
e−

|X|2
4t ∇|X|2

)
dμ

=

∫
M

−1

4
div

(
φe−

|X|2
4t ∇|X|2

)
dμ+

∫
M

1

4
∇φ · ∇|X|2e−

|X|2
4t dμ

=− 1

2

∫
∂M

φ〈XT , ν∂M 〉e−
|X|2
4t +

∫
M

1

2
X · ∇φe−

|X|2
4t dμ

=− 1

2

∫
∂M

φ〈XT , ν∂M 〉e−R2

4t − 1

2

∫
M

XN · ∇φe−
|X|2
4t dμ.

(3.4)

Set cR = 2−1(4π)−
n
2 R · Hn−1(∂M). Substituting (3.2) and (3.4) into (3.3)

obtains

|∂tΞt(M,φ)| ≤ 2−1(4π)−
n
2 t−(n

2 +1)

(∫
M

|XN | · |∇φ|e−
|X|2
4t dμ

+ |φ|0Re−
R2

4t Hn−1(∂M)

)
+ |φ|0|Gt(M)|

≤2−1(4π)−
n
2 t−(n

2 +1)

∫
M

|XN |
|X| |φ|1e−

|X|2
4t dμ+ |φ|0

(
|Gt(M)|+ cRt

−(n
2 +1)

)
≤|φ|0

(
|Gt(M)|+ cRt

−(n
2 +1)

)
+ 2−1(4π)−

n
2 t−(n

2 +1)|φ|1
(∫

M

|XN |2e−
|X|2
4t dμ

)1/2 (∫
M

|X|−2e−
|X|2
4t dμ

)1/2

≤|φ|0
(
|Gt(M)|+ cRt

−(n
2 +1)

)
+ |φ|1 |Gt(M)|1/2

√
t

t− 1

(
(4π)−

n
2 t−(n

2 +2)

∫
M

|X|−2e−
|X|2
4t dμ

)1/2

.

(3.5)

Put Dr = M ∩ Br for every r > 0. There is a constant c0 > 0 depending only on
M such that for all r > 0 ∫

Dr

1dμ < c0r
n.
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Note that M ⊂ Rn+m \BR. Then for n ≥ 2, t ≥ R2, one has

t−
n
2

∫
M

t

|X|2 e
− |X|2

4t dμ ≤t−
n
2

∞∑
k=−1−[ log(tR

−2)
2 log 2 ]

∫
D

2k+1
√

t
\D

2k
√

t

t

|X|2 e
− |X|2

4t dμ

≤t−
n
2

∞∑
k=−1−[

log(tR−2)
2 log 2 ]

1

4k
e−4k−1

∫
D

2k+1
√

t
\D

2k
√

t

1dμ

≤c0

∞∑
k=0

4−ke−4k2(k+1)n + c0

−1∑
k=−1−[ log(tR

−2)
2 log 2 ]

4−k2(k+1)n

≤c0

∞∑
k=0

2k(n−2)+ne−4k−1

+ c0

1+[ log(tR
−2)

2 log 2 ]∑
k=1

2−k(n−2)+n

≤(4π)
n
2 c1 (1 + log t− 2 logR) ,

(3.6)

where c1 is a constant depending only on n, c0. Therefore

|∂tΞt(M,φ)| ≤√
c1

√
1 + log t

t
|φ|1

∣∣∣∣ t

t− 1
Gt(M)

∣∣∣∣1/2 + |φ|0
(
|Gt(M)|+ cRt

−(n
2 +1)

)
≤c1

1 + log t

4t(t− 1)
|φ|1 + cRt

−(n
2 +1)|φ|0 + (|φ|0 + |φ|1) |Gt(M)|.

(3.7)

Theorem 3.1. Let M be an n-dimensional self-shrinker in Rn+m with Euclidean
volume growth and boundary ∂M ⊂ ∂BR. If

(3.8) lim sup
r→∞

(
r1−n

∫
M∩Br

|H|
)

< ∞,

then there is a sequence ti → ∞ such that

Mti � t−1
i M = {X ∈ R

n+m| tiX ∈ M}
converges to a cone C in Rn+m.

Proof. By co-area formula, we can choose R′ > 0 so that Hn−1(∂M) < ∞ with

∂M ⊂ ∂BR′ . Denote R′ by R for convenience. Let Mt � t−1M = {X ∈
Rn+m| tX ∈ M} for any t > 0. Since M has Euclidean volume growth and (3.8)
holds, then by compactness of varifolds, there exists an n-rectifiable varifold T in
R

n+m with integer multiplicity and a sequence of ti such that Mti = t−1
i M ⇀ T in

the sense of Radon measure (see 42.7 Theorem of [34] for example).
Denote φ and Ξt(M,φ) as above. Set μt to be the volume element of Mt. Since

(3.9)

Ξt2(M,φ) =
1

(4πt2)n/2

∫
M

φe−
|X|2

4t2 dμ =
1

(4π)n/2

∫
Mt

φe−
|X|2

4 dμt = Ξ1(Mt, φ),

then for all R > 0,
(3.10)

lim
i→∞

Ξ1(MtiR, φ) = lim
i→∞

ΞR2(Mti , φ) =
1

(4πR2)n/2

∫
T

φ e−
|X|2
4R2 dμT = ΞR2(T, φ).
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Note that Gt(M) does not change sign for t > 1. Fixing 0 < r < R < ∞, from
(3.7) we have

∣∣∣Ξt2i r
2(M,φ)− Ξt2iR

2(M,φ)
∣∣∣ ≤ ∫ t2iR

2

t2i r
2

|∂sΞs(M,φ)|ds

≤
∫ t2iR

2

t2i r
2

(
c1

1 + log s

4s(s− 1)
|φ|1 + cR|φ|0s−(n

2 +1) + (|φ|0 + |φ|1) |Gs(M)|
)
ds

≤c1
4
|φ|1

∫ ∞

t2i r
2

1 + log s

s(s− 1)
ds+

2

n
(tir)

−n−2
cR|φ|0 + (|φ|0 + |φ|1)

∣∣∣∣∣
∫ t2iR

2

t2i r
2

Gs(M)ds

∣∣∣∣∣

(3.11)

for all ti with rti ≥ 2. Since

∣∣∣∣∣
∫ t2iR

2

t2i r
2

Gs(M)ds

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t2iR

2

t2i r
2

F ′
t(M)ds+

∫ t2iR
2

t2i r
2

(
1

2s

∫
∂M

〈XT , ν∂M 〉Φs(X)

)
ds

∣∣∣∣∣
≤
∣∣∣Ft2i r

2(M)− Ft2iR
2(M)

∣∣∣+ ∫ t2iR
2

t2i r
2

(
R

2s
Hn−1(∂M)(4πs)−n/2

)
ds

=
∣∣∣Ft2i r

2(M)− Ft2iR
2(M)

∣∣∣+ R

n
(4π)−n/2Hn−1(∂M)(tir)

−n

(3.12)

and limt→∞ Ft exists, we obtain

(3.13) lim
i→∞

Ξ1(Mtir, φ) = lim
i→∞

Ξ1(MtiR, φ) = ΞR2(T, φ).

Hence

(3.14) Ξt(T, φ) =
1

(4πt)n/2

∫
T

φe−
|X|2
4t dμT

is independent of t ∈ (0,∞).
Clearly,

0 < Hn(T ∩Br) ≤ c2r
n

for some constant c2 > 0 and all r > 0. By the following lemma for V (r) =∫
T∩Br

φ dμT , we conclude that

(3.15) r−n

∫
T∩Br

φ dμT

is a constant independent of r. An analog argument as the proof of 19.3 in [34]
implies that T is a cone. �

Lemma 3.2. Let V (r) be a monotone nondecreasing continuous function on [0,∞)
with V (0) = 0 and V (r) ≤ c3r

n for some constant c3 > 0. If the quantity

(3.16)
1

(4πt)n/2

∫ ∞

0

e−
r2

4t dV (r)

is a constant for any t > 0, then r−nV (r) is a constant.

Proof. There are constants κ0, κ1 > 0 such that for all t > 0,

(3.17)

∫ ∞

0

e−
r2

t dV (r) = κ0t
n/2 = κ1

∫ ∞

0

e−
r2

t drn,
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namely,

(3.18)

∫ ∞

0

e−
r2

t d (V (r)− κ1r
n) = 0.

Integrating by parts implies

(3.19)

∫ ∞

0

(V (r)− κ1r
n) re−

r2

t dr = 0.

Suppose that there is a constant r0 > 0 such that V (r0) − κ1r
n
0 > 0 (or else we

complete the proof by (3.19)). Then there is a 0 < δ < r0
2 and ε > 0 such that

V (r)−κ1r
n ≥ ε for all r ∈ (r0−δ, r0+δ). Set tp = 2

pr
2
0; then in (0,∞) the function

rpe
− r2

tp

attains its maximal value at r = r0.
Now we claim

(3.20) lim
p→∞

p
1
2 e

p
2

rp+1
0

∫ r0+δ

r0−δ

rpe
− r2

tp dr =

∫ ∞

−∞
e−t2dt =

√
π.

In fact,

I(p) �p
1
2 e

p
2

rp+1
0

∫ r0+δ

r0−δ

rpe
− r2

tp dr = p
1
2 e

p
2

∫ δ
r0

− δ
r0

(1 + s)pe−
p
2 (1+s)2ds

=

∫ δ
r0

√
p

− δ
r0

√
p

(
1 +

t
√
p

)p

e
− p

2

(
2t√
p+

t2

p

)
dt

=

∫ δ
r0

√
p

− δ
r0

√
p

e
p log

(
1+ t√

p

)
e−

√
pt− t2

2 dt.

(3.21)

When − 1
2 ≤ s < ∞, a simple calculation implies

min

{
0,

8

3
s3
}

≤ log(1 + s)− s+
s2

2
≤ s3

3
.

Combining the above inequality, we get

lim sup
p→∞

I(p) ≤ lim sup
p→∞

∫ δ
r0

√
p

− δ
r0

√
p

e
−t2+ t3

3
√

p dt

= lim
p→∞

∫ δ
r0

√
p

− δ
r0

√
p

e
−t2(1− t

3
√

p )dt =

∫ ∞

−∞
e−t2dt

(3.22)

and

lim inf
p→∞

I(p) ≥ lim
p→∞

∫ δ
r0

√
p

0

e−t2dt+ lim inf
p→∞

∫ 0

− δ
r0

√
p

e
−t2+ 8t3

3
√

p dt

=

∫ ∞

0

e−t2dt+ lim
p→∞

∫ 0

− δ
r0

√
p

e
−t2

(
1− 8t

3
√

p

)
dt =

∫ ∞

−∞
e−t2dt.

(3.23)

Hence we have shown (3.20).
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For p > 1,

p
1
2 e

p
2

rp+1
0

∫ ∞

r0+δ

rn+pe
− r2

tp dr = rn0

∫ ∞

δ
r0

√
p

e
(n+p) log

(
1+ t√

p

)
e−

√
pt− t2

2 dt

≤rn0

∫ ∞

δ
r0

√
p

e
(n+p) t√

p e−
√
pt− t2

2 dt ≤ rn0

∫ ∞

δ
r0

√
p

e
n√
p t−

t2

2 dt.

(3.24)

Then

lim inf
p→∞

p
1
2 e

p
2

rp+1
0

∫ ∞

0

(V (r)− κ1r
n) rpe

− r2

tp dr

≥ lim inf
p→∞

p
1
2 e

p
2

rp+1
0

(
ε

∫ r0+δ

r0−δ

rpe
− r2

tp dr − κ1

∫ r0−δ

0

rn+pe
− r2

tp dr − κ1

∫ ∞

r0+δ

rn+pe
− r2

tp dr

)

≥ε
√
π − κ1r

n
0 lim sup

p→∞

(
p

1
2 e

p
2

rp+1
0

∫ r0−δ

0

rpe
− pr2

2r20 dr +

∫ ∞

δ
r0

√
p

e
n√
p t−

t2

2 dr

)

=ε
√
π − κ1r

n
0 lim sup

p→∞

(∫ − δ
r0

√
p

−√
p

e
p log

(
1+ t√

p

)
e−

√
pt− t2

2 dt+

∫ ∞

δ
r0

√
p

e
−t2

(
1
2−

n√
pt

)
dr

)

≥ε
√
π − κ1r

n
0 lim sup

p→∞

(∫ − δ
r0

√
p

−√
p

e
√
pte−

√
pt− t2

2 dt

)
= ε

√
π.

(3.25)

Taking the derivative of t in (3.19) yields

(3.26)

∫ ∞

0

(V (r)− κ1r
n) r2k+1e−

r2

t dr = 0

for any t > 0 and k = 0, 1, 2, . . .. If we choose p = 2k + 1, r20 > e, and tp = 2
pr

2
0

in (3.25), then we get the contradiction provided k is sufficiently large. Hence
V (r)− κ1r

n ≡ 0. �

Theorem 3.3. Let M be an n-dimensional smooth self-shrinker with Euclidean
volume growth and boundary ∂M ⊂ ∂BR in Rn+m. If (3.8) holds, then the limit
limr→∞ r−1M exists and is a cone, namely, the tangent cone at infinity of M is a
unique cone.

Proof. We claim

(3.27) lim
r→∞

(
r−n

∫
M∩Br

φdμ

)
exists for every homogeneous function φ ∈ C1(Rn+m \ {0}) with degree zero. Sup-
pose

(3.28) lim sup
r→∞

r−n

∫
M∩Br

φdμ > lim inf
r→∞

r−n

∫
M∩Br

φdμ

for some homogeneous function φ ∈ C1(Rn+m \ {0}) with degree zero. Then there
exist two sequences pi → ∞ and qi → ∞ such that

(3.29) lim
i→∞

p−n
i

∫
M∩Bpi

φdμ > lim
i→∞

q−n
i

∫
M∩Bqi

φdμ.
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By compactness of varifolds and Theorem 3.1, there exist two cones C1, C2 in
Rn+m with integer multiplicities and subsequences pki

of pi and qki
of qi such that

Mpki
⇀ C1 and Mqki

⇀ C2 in the sense of Radon measure. So we have∫
C1∩B1

φdμC1
= lim

i→∞

∫
Mpki

∩B1

φdμpki
= lim

i→∞
p−n
ki

∫
M∩Bpki

φdμ

> lim
i→∞

q−n
ki

∫
M∩Bqki

φdμ = lim
i→∞

∫
Mqki

∩B1

φdμqki

=

∫
C2∩B1

φdμC2
,

(3.30)

which implies

(3.31)

∫
C1

φe−
|X|2

4 dμC1
>

∫
C2

φe−
|X|2

4 dμC2

by co-area formula.
From the previous argument, the limit

(3.32) lim
t→∞

Ξt(M,φ) = lim
t→∞

1

(4πt)n/2

∫
M

φe−
|X|2
4t dμ

exists. It infers that∫
C1

φe−
|X|2

4 dμC1
= lim

i→∞

∫
Mpki

φe−
|X|2

4 = lim
t→∞

1

tn/2

∫
M

φe−
|X|2
4t dμ

= lim
i→∞

∫
Mqki

φe−
|X|2

4 =

∫
C2

φe−
|X|2

4 dμC2
.

(3.33)

However, (3.33) contradicts (3.31). Hence, the claim (3.27) holds.
If limi→∞ r−1

i M ⇀ C+, limi→∞ s−1
i M ⇀ C−, and C+ �= C− are cones, then

from (3.33) one has

(3.34)

∫
C+

φe−
|X|2

4 dμC+ =

∫
C−

φe−
|X|2

4 dμC−

for every homogeneous function φ ∈ C1(Rn+m \ {0}) with degree zero. It’s clear
that

(3.35)

∫
C+∩∂B1

φ =

∫
C−∩∂B1

φ.

Arbitrariness of φ implies C+ = C−. Therefore, the tangent cone at infinity of M
is a unique cone. �

4. A rigidity theorem for self-shrinkers

Let us recall an ε-regularity theorem for mean curvature flow showed by Ecker
(a little different from Theorem 1.8 in [16]).

Theorem 4.1. For p ∈ [n, n+ 2], there exists a constant ε0 > 0 such that for any
smooth properly immersed solution M = (Mt)t∈(−4,0) of mean curvature flow in
Rn+m and every X0 which the solution reaches at time t0 ∈ [−1, 0), the assumption

(4.1) IX0,t0 � sup√
−t0≤ρ<ρ′≤2

1

(ρ′2 − ρ2)
n+2−p

2

∫ −ρ2

−ρ′2

∫
Mt∩B2(X0)

|B|p ≤ ε0
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implies

(4.2) sup
σ∈[0,1]

(
σ2 sup

t∈(t0−(1−σ)2,t0)

sup
Mt∩B1−σ(X0)

|B|2
)

≤
(
ε−1
0 IX0,t0

) 2
p .

For completeness, we give a proof in the Appendix which is based on Ecker’s
proof. Let us consider the mean curvature flow in Theorem 4.1 which starts from a
self-shrinker. LetM be a self shrinker; then the one-parameter familyMt =

√
−tM

is a mean curvature flow for −4 ≤ t < 0. In this case,

IX0,t0 = sup√
−t0≤ρ<ρ′≤2

(
ρ′2 − ρ2

)−n+2−p
2

∫ −ρ2

−ρ′2

(∫
√
−tM∩B2(X0)

|B|p
)
dt

= sup√
−t0≤ρ<ρ′≤2

(
ρ′2 − ρ2

)−n+2−p
2

∫ 1
ρ

1
ρ′

(∫
1
rM∩B2(X0)

|B|p
)

2

r3
dr

= sup√
−t0≤ρ<ρ′≤2

2
(
ρ′2 − ρ2

)−n+2−p
2

∫ 1
ρ

1
ρ′

(
rp−n−3

∫
M∩B2r(rX0)

|B|pdμ
)
dr.

(4.3)

For any − 1
4 < t0 < 0 and X0 ∈

√
−t0M , IX0,t0 ≤ ε0 implies

(4.4)
1

4
sup

t∈(t0− 1
4 ,t0)

sup√
−tM∩B 1

2
(X0)

|B|2 ≤
(
ε−1
0 IX0,t0

) 2
p .

Hence

(4.5) sup
t∈(2,(−t0)−1/2)

⎛⎝ sup
1
tM∩B 1

2
(X0)

|B|2
⎞⎠ ≤ 4

(
ε−1
0 IX0,t0

) 2
p .

Now we have the following curvature estimates for self-shrinkers.

Theorem 4.2. Let M be an n-dimensional proper self-shrinker in Rn+m. If for
some p ∈ [n, n+ 2) there is

(4.6) lim
R→∞

∫
M∩B2R\BR

|B|pdμ = 0,

then there exist constants c, r0 > 0 such that for all r ≥ r0 and t > 4 we have

(4.7) sup
M∩∂B(r+1)t

|B| ≤ c

t

(
sup
s≥r

∫
M∩B2s\Bs

|B|pdμ
) 1

p

.

Proof. For any ε > 0, there exists a constant r0 ≥ 2 such that for any r1 ≥ r0 we
have

sup
r≥r1

∫
M∩B2r\Br

|B|pdμ < ε.

For any vector X0 ∈ Rn+m with |X0| ≥ 2r1 + 2, it is clear that

B2r(rX0) ⊂
(
B(|X0|+2)r \B(|X0|−2)r

)
⊂

(
B2(|X0|−2)r \B(|X0|−2)r

)
.

Let X ∈
√
−tM with |X| ≥ 2r1 + 2 and t < 0; then

(4.8)∫
M∩B2r(rX)

|B|pdμ ≤
∫
M∩(B2(|X|−2)r\B(|X|−2)r)

|B|pdμ ≤ sup
s≥r1

∫
M∩B2s\Bs

|B|pdμ < ε.
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In view of (4.3), one has

IX,t ≤ sup
0≤ρ<ρ′≤2

(
ρ′2 − ρ2

)−n+2−p
2

∫ 1
ρ

1
ρ′

2rp−n−3dr · sup
r≥r1

∫
M∩B2r\Br

|B|pdμ

≤ 2

2 + n− p
sup

0≤ρ<ρ′≤2

(
ρ′2 − ρ2

)−n+2−p
2

(
ρ′2+n−p − ρ2+n−p

)
sup
r≥r1

∫
M∩B2r\Br

|B|pdμ.

(4.9)

Since for each fixed α ∈ (0, 1] and each s ≥ 1,

(4.10)
∂

∂s

(
s2α − 1

(s2 − 1)
α

)
= 2α

s− s2α−1

(s2 − 1)
α ≥ 0,

then

sup
s≥1

s2α − 1

(s2 − 1)
α = lim

s→∞

s2α − 1

(s2 − 1)
α = 1.

So we obtain

(4.11) IX,t ≤
2

2 + n− p
sup
r≥r1

∫
M∩B2r\Br

|B|pdμ <
2ε

2 + n− p
.

Let ε = 2+n−p
2 ε0, let |X| ≥ 2r1 + 2, and let − 1

4 < t < 0. Then combining (4.5) we
have

(4.12) sup
s∈(2,(−t)−1/2)

⎛⎝ sup
1
sM∩B 1

2
(X)

|B|

⎞⎠ ≤ 2

(
ε−1 sup

r≥r1

∫
M∩B2r\Br

|B|pdμ
) 1

p

,

which implies

2

(
ε−1 sup

r≥r1

∫
M∩B2r\Br

|B|pdμ
) 1

p

≥ sup
X∈ 1

t M∩∂B2r1+2

⎛⎝ sup
1
tM∩B 1

2
(X)

|B|

⎞⎠
= sup

|X|=2r1+2,tX∈M

⎛⎝t sup
M∩B t

2
(tX)

|B|

⎞⎠
≥t sup

M∩∂B2t(r1+1)

|B|

(4.13)

for any r ≥ r1 and t > 2. This suffices to complete the proof. �

Lemma 4.3. Let M be an n-dimensional proper noncompact self-shrinker in R
n+m

with

(4.14) lim sup
r→∞

∫
M∩B2r\Br

|H|pdμ < ∞

for some p ≥ 2. Then every end of M has at least Euclidean volume growth.

Proof. For any end E of M , there is a constant r0 > 0 such that ∂E ⊂ Br0 .
Replacing E by E \ Br0 if necessary, we have ∂E ⊂ ∂Br0 . Set Er = E ∩ Br. For
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0 ≤ s < 1 and r ≥ r0, we have

∂

∂r

(
r−n+s

∫
Er

1dμ

)
= −(n− s)r−n+s−1

∫
Er

1dμ+ r−n+s

∫
E∩∂Br

|X|
|XT |

≥ − (n− s)r−n+s−1

∫
Er

1dμ+ r−n+s−1

∫
E∩∂Br

|XT |

=− (n− s)r−n+s−1

∫
Er

1dμ+
1

2
r−n+s−1

∫
Er

Δ|X|2 + r−n+s−1

∫
∂E

|XT |

≥sr−n+s−1

∫
Er

1dμ− 2r−n+s−1

∫
Er

|H|2dμ

≥sr−n+s−1

∫
Er

1dμ− 2r−n+s−1

(∫
Er

|H|pdμ
) 2

p
(∫

Er

1dμ

)1− 2
p

.

(4.15)

Set

Ṽs(r) = r−n+s

∫
Er

1dμ;

then

∂rṼs ≥
s

r
Ṽs − 2r−

2
p (n−s)−1Ṽ

1− 2
p

s

(∫
Er

|H|pdμ
) 2

p

=
Ṽs

r

(
s− 2

(∫
Er

|H|pdμ
) 2

p
(∫

Er

1dμ

)− 2
p

)
.

(4.16)

For any r > 0, let q ∈ N with 2q ≤ r < 2q+1. By (4.14), there is a constant c > 0
such that
(4.17)∫

Er

|H|pdμ ≤
q∑

k=0

∫
E

2k+1\E2k

|H|pdμ+

∫
E1

|H|pdμ ≤ c(q + 2) ≤ c

(
log r

log 2
+ 2

)
.

From [31, 33], every end of any self-shrinker has at least linear growth. For any
δ > 0, there exists a constant rδ > 0 such that for all r ≥ rδ,(∫

Er

|H|pdμ
) 2

p
(∫

Er

1dμ

)− 2
p

≤ δ

4
;

then (4.16) implies

(4.18) ∂rṼδ ≥ δṼδ

2r
.

By the Newton–Leibniz formula,

(4.19) log Ṽδ(r) ≥ log Ṽδ(rδ) +

∫ r

rδ

∂sṼδ(s)

Ṽδ(s)
ds ≥ log Ṽδ(rδ) +

δ

2
log

r

rδ
.

Denote Ṽ (r) = Ṽ0(r). By (4.16),

(4.20) ∂rṼ
2
p ≥ −4

p

(∫
Er

|H|pdμ
) 2

p

r−
2n
p −1.
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There is a constant s0 > e such that for all s ≥ s0 the inequality log s < s
n
p holds.

Hence combining (4.14) and (4.20), for any r2 ≥ r1 ≥ max{s0, r0} we have
(4.21)

Ṽ
2
p (r2)− Ṽ

2
p (r1) ≥ −nc′

p

∫ r2

r1

r−
2n
p −1 log rdr ≥ −nc′

p

∫ r2

r1

r−
n
p −1dr ≥ −c′r

−n
p

1

for some constant c′ > 0. (4.19) infers

lim
r→∞

rδṼ (r) = ∞

for any δ > 0. Combining (4.21), we obtain

(4.22) Ṽ
2
p (r2) ≥

1

2
Ṽ

2
p (r1) > 0

for some fixed sufficiently large r1 ≥ max{s0, r0}. This suffices to complete the
proof. �

Now let us prove the following rigidity theorem.

Theorem 4.4. Let M be an n-dimensional properly noncompact self-shrinker with
compact boundary in Rn+m. If

(4.23) lim
r→∞

∫
M∩B2r\Br

|B|ndμ = 0,

M is contained in an n-plane through the origin.

Proof. From Theorem 4.2, we obtain

(4.24) lim
r→∞

(
r sup

B5r

|B|
)

= 0.

Let Mr = r−1M for any r > 0; then Mt ∩
(
BK \B 1

K

)
for any K > 0 has bounded

sectional curvature. On the one hand, Mr ∩
(
BK \B 1

K

)
converges to a smooth

manifold with a C1,α metric in the Gromov–Hausdorff sense. On the other hand,
Theorem 3.3 implies that Mr converges to a unique cone C in Rn+1 in the current
sense. Hence for any x ∈ C \{0}, there is a neighborhood Ωx of x such that Ωx∩C
can be represented as a graph with a C1,α graphic function. Hence by Fatou’s
lemma, Ωx ∩ C is flat by (4.24). So we conclude that Mr converges to a union of
finite n-planes through the origin as r → ∞. Note that every end of M converges
to a union of finite n-planes through the origin by Lemma 4.3. Therefore, up to
rotation there are a constant R > 0 and a smooth graph graphu ⊂ M over Rn \BR

with the graphic function u = (u1, . . . , um). Moreover, there is a constant cM such
that

(4.25) |Djuα(x)| ≤ cM |x|−j+1

on R
n \ BR for any j = 0, 1, 2 and 1 ≤ α ≤ m. Here, cM is a general constant,

which may change from line to line.
Let gij = δij +

∑
1≤α≤m uα

i u
α
j , and let (gij) be the inverse matrix of (gij). From

the equation of self-shrinkers (see [10] for instance)

(4.26)
∑

1≤i,j≤n

gijuα
ij =

−uα + x ·Duα

2
,
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we have

ΔMuα =
1√

detgij
∂xi

(
gkl

√
detgiju

α
j

)
=

1√
detgij

∂xi

(
gij

√
detgkl

)
uα
j +

1

2
x ·Duα − uα

2
.

(4.27)

Denote gijt (x) = gij(x, t) = gij
(

x√
t

)
; then

(4.28)
∣∣∣δij − gijt

∣∣∣ ≤ c1
∑
β

|∇Rnuβ|,

where c1 is a constant. Let Q(x, t,Duβ, D2uγ) = 1√
t

(
δij − gijt

)
uα
ij

∣∣
x√
t

; then on

(Rn \BR)× R+, from (4.25) one has

(4.29) |Q(x, t,Duβ, D2uγ)| ≤ c2
|x|

∑
β

|∇Rnuβ |,

where c2 is a constant.

Denote aij(x, t) = aij0

(
x√
t

)
and Uα(x, t) =

√
tuα

(
x√
t

)
. Then

∂

∂t
Uα +ΔRnUα =

1

2
√
t
uα

(
x√
t

)
− 1

2
Duα

(
x√
t

)
· x
t
+

1√
t
ΔRnuα

∣∣∣∣
x√
t

=− 1√
t
gijt uα

ij +
1√
t
ΔRnuα

∣∣∣∣
x√
t

= Q(x, t,Duβ, D2uγ).

(4.30)

Hence for any (x, t) ∈ (Rn \BR)× R+, by combining (4.29) we have

(4.31)

∣∣∣∣ ∂∂tUα +ΔRnUα

∣∣∣∣ ≤ c2
|x|

∑
β

|∇RnUβ |.

Due to Theorem 1 (with the version of vector-valued functions) by Escauriaza–
Seregin–Šverák in [18] (see the following content in Theorem 1 of [18]), we obtain

Uα ≡ 0 on R
n \BR,

and then graphu is contained in an n-plane through the origin. Hence M is also
contained in an n-plane through the origin by the rigidity of elliptic equations, and
then we complete the proof. �

5. Appendix

Let us prove Theorem 4.1. There exist σ1 ∈ (0, 1), t1 ∈ [t0 − (1− σ1)
2, t0], and

X1 ∈ Mt1 ∩B1−σ1
(X0) such that

σ2
1 |B|2

∣∣∣
(X1,t1)

= sup
σ∈[0,1]

(
σ2 sup

t∈(t0−(1−σ)2,t0)

sup
Mt∩B1−σ(X0)

|B|2
)
.

Denote λ1 = |B|−1
∣∣∣
(X1,t1)

. Then

sup
t∈(t0−(1−σ1

2 )2,t0)

sup
Mt∩B

1−σ1
2

(X0)

|B|2 ≤ 4

λ2
1

.
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Since

Bσ1
2
(X1)×

(
t1 −

σ2
1

4
, t1

)
⊂ B1− σ1

2
(X0)×

(
t0 −

(
1− σ1

2

)2

, t0

)
,

then

sup

t∈(t1−
σ2
1
4 ,t1)

sup
Mt∩Bσ1

2
(X1)

|B|2 ≤ 4

λ2
1

.

Let IX0,t0 be as in (4.1). It is sufficient to prove

σ1λ
−1
1 ≤

(
ε−1
0 IX0,t0

) 1
p

for a certain uniform constant ε0 > 0 depending only on n provided IX0,t0 ≤ ε0.
By contradiction, we assume

σ1λ
−1
1 >

(
ε−1
0 IX0,t0

) 1
p .

Denote λ � λ1

(
ε−1
0 IX0,t0

) 1
p < σ1.

Define

M̃s = λ−1 (Mλ2s+t1 −X1)

for s ∈
(
− 4+t1

λ2 , t0−t1
λ2

)
, where we have changed variables by setting X = λY +X1

and t = λ2s+ t1. Then M̃s is a smooth solution of mean curvature flow satisfying

0 ∈ M̃0, |B|
∣∣∣
(0,0)

=
(
ε−1
0 IX0,t0

) 1
p ≤ 1

and

sup

s∈(− σ2
1

4λ2 ,0)

sup
M̃s∩Bσ1

2λ

|B|2 ≤ 4
(
ε−1
0 IX0,t0

) 2
p .

Since σ1 > λ, then

sup
s∈(− 1

4 ,0)

sup
M̃s∩B 1

2

|B|2 ≤ 4
(
ε−1
0 IX0,t0

) 2
p .

By scaling, it follows that

(5.1) IX0,t0 = sup√
−t0≤ρ<ρ′≤2

(
λ2

ρ′2 − ρ2

)n+2−p
2

∫ − ρ2+t1
λ2

− ρ′2+t1
λ2

∫
M̃s∩B 2

λ
(X0−X1

λ )
|B|p.

Since −1 < t0 < 0 and t0 − (1 − σ1)
2 ≤ t1 ≤ t0, we choose ρ2 = −t1, ρ

′2 − ρ2 =
ρ′2 + t1 = 2λ2 > 0. Noting that X1 ∈ Mt1 ∩B1−σ1

(X0), we have

(5.2) IX0,t0 ≥ 2−
n+2−p

2

∫ 0

−2

∫
M̃s∩B 1

λ
(0)

|B|p ≥ 2−
n+2−p

2

∫ 0

− 1
4

∫
M̃s∩B 1

2

|B|p.

Now let’s recall the evolution equation for the norm of the second fundamental form
in [41]:

(5.3)

(
d

ds
−Δ

M̃s

)
|B|2 = −2|∇B|2 + 2|RN |+ 2

∑
α,β

S2
αβ ≤ 3|B|4.

Since

sup
s∈(− 1

4 ,0)

sup
M̃s∩B 1

2

|B|2 ≤ 4
(
ε−1
0 IX0,t0

) 2
p ≤ 4,
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then

(5.4)

(
d

ds
−Δ

M̃s

)
|B|p ≤ 3p

2
|B|p+2 ≤ 6p|B|p.

By the mean value inequality for mean curvature flow in [15], [16] (where the case
of submanifolds is similar to the case of hypersurfaces), there exists a constant c(n)
such that

(5.5) |B|p
∣∣∣
(0,0)

≤ c(n)

∫ 0

− 1
4

∫
M̃s∩B 1

2

|B|p,

which implies

(5.6) ε−1
0 IX0,t0 ≤ c(n)2

n+2−p
2 IX0,t0 .

This is impossible for the sufficiently small ε0. Hence we complete the proof of
Theorem 4.1.
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10.1016/j.anihpc.2010.09.002. MR2738327

[30] Nam Q. Le and Natasa Sesum, Blow-up rate of the mean curvature during the mean curvature
flow and a gap theorem for self-shrinkers, Comm. Anal. Geom. 19 (2011), no. 4, 633–659,
DOI 10.4310/CAG.2011.v19.n4.a1. MR2880211

[31] Haizhong Li and Yong Wei, Lower volume growth estimates for self-shrinkers of mean cur-
vature flow, Proc. Amer. Math. Soc. 142 (2014), no. 9, 3237–3248, DOI 10.1090/S0002-9939-
2014-12037-5. MR3223379

[32] Fanghua Lin and Xiaoping Yang, Geometric measure theory—an introduction, Advanced
Mathematics (Beijing/Boston), vol. 1, Science Press Beijing, Beijing; International Press,
Boston, MA, 2002. MR2030862

[33] Ovidiu Munteanu and Jiaping Wang, Analysis of weighted Laplacian and applications to Ricci
solitons, Comm. Anal. Geom. 20 (2012), no. 1, 55–94, DOI 10.4310/CAG.2012.v20.n1.a3.
MR2903101

[34] Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathemat-
ical Analysis, Australian National University, vol. 3, Australian National University, Centre
for Mathematical Analysis, Canberra, 1983. MR756417

[35] Antoine Song, A maximum principle for self-shrinkers and some consequences,
arXiv:1412.4755.

[36] Lu Wang, A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata 151 (2011),
297–303, DOI 10.1007/s10711-010-9535-2. MR2780753

[37] Lu Wang, Uniqueness of self-similar shrinkers with asymptotically conical ends, J. Amer.
Math. Soc. 27 (2014), no. 3, 613–638, DOI 10.1090/S0894-0347-2014-00792-X. MR3194490

[38] Lu Wang, Uniqueness of self-similar shrinkers with asymptotically cylindrical ends, J. Reine
Angew. Math. 715 (2016), 207–230, DOI 10.1515/crelle-2014-0006. MR3507924

https://www.ams.org/mathscinet-getitem?mr=3038128
https://www.ams.org/mathscinet-getitem?mr=1025164
https://www.ams.org/mathscinet-getitem?mr=2005639
https://www.ams.org/mathscinet-getitem?mr=2992516
https://www.ams.org/mathscinet-getitem?mr=1117150
https://www.ams.org/mathscinet-getitem?mr=2005639
https://www.ams.org/mathscinet-getitem?mr=1030675
https://www.ams.org/mathscinet-getitem?mr=1216584
https://www.ams.org/mathscinet-getitem?mr=3721649
https://www.ams.org/mathscinet-getitem?mr=2796234
http://www.math.ethz.ch/ilmanen/papers/pub.html
http://www.math.ethz.ch/ilmanen/papers/pub.html
https://www.ams.org/mathscinet-getitem?mr=2738327
https://www.ams.org/mathscinet-getitem?mr=2880211
https://www.ams.org/mathscinet-getitem?mr=3223379
https://www.ams.org/mathscinet-getitem?mr=2030862
https://www.ams.org/mathscinet-getitem?mr=2903101
https://www.ams.org/mathscinet-getitem?mr=756417
https://www.ams.org/mathscinet-getitem?mr=2780753
https://www.ams.org/mathscinet-getitem?mr=3194490
https://www.ams.org/mathscinet-getitem?mr=3507924


THE SECOND FUNDAMENTAL FORM FOR SELF-SHRINKERS 8329

[39] Mu-Tao Wang, Mean curvature flow of surfaces in Einstein four-manifolds, J. Differential
Geom. 57 (2001), no. 2, 301–338. MR1879229

[40] Brian White, A local regularity theorem for mean curvature flow, Ann. of Math. (2) 161
(2005), no. 3, 1487–1519, DOI 10.4007/annals.2005.161.1487. MR2180405

[41] Yuanlong Xin, Mean curvature flow with convex Gauss image, Chin. Ann. Math. Ser. B 29
(2008), no. 2, 121–134, DOI 10.1007/s11401-007-0212-1. MR2392328

[42] Hongwei Xu and Zhiyuan Xu, New result on Chern conjecture for minimal hypersurfaces

and its application, arXiv:1605.07250.

Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200438,

China

Email address: dingqi@fudan.edu.cn, dingqi09@fudan.edu.cn

https://www.ams.org/mathscinet-getitem?mr=1879229
https://www.ams.org/mathscinet-getitem?mr=2180405
https://www.ams.org/mathscinet-getitem?mr=2392328

	1. Introduction
	2. Preliminary
	3. Uniqueness of tangent cones at infinity for self-shrinkers
	4. A rigidity theorem for self-shrinkers
	5. Appendix
	Acknowledgment
	References

