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EXOTIC ELLIPTIC ALGEBRAS

ALEX CHIRVASITU AND S. PAUL SMITH

Abstract. The 4-dimensional Sklyanin algebras, over C, A(E, τ), are con-
structed from an elliptic curve E and a translation automorphism τ of E. The
Klein vierergruppe Γ acts as graded algebra automorphisms of A(E, τ). There
is also an action of Γ as automorphisms of the matrix algebra M2(C) making
it isomorphic to the regular representation. The main object of study in this

paper is the invariant subalgebra Ã :=
(
A(E, τ)⊗M2(C)

)Γ
. Like A(E, τ), Ã is

noetherian, generated by 4 degree-one elements modulo six quadratic relations,
Koszul, Artin-Schelter regular of global dimension 4, has the same Hilbert se-
ries as the polynomial ring on 4 variables, satisfies the χ condition, and so on.
These results are special cases of general results proved for a triple (A, T,H)
consisting of a Hopf algebra H, an (often graded) H-comodule algebra A, and
an H-torsor T . Those general results involve transferring properties between

A, A ⊗ T , and (A ⊗ T )coH. We then investigate Ã from the point of view
of non-commutative projective geometry. We examine its point modules, line

modules, and a certain quotient B̃ := Ã/(Θ,Θ′) where Θ and Θ′ are homoge-

neous central elements of degree two. In doing this we show that Ã differs from
A in interesting ways. For example, the point modules for A are parametrized

by E and 4 more points, whereas Ã has exactly 20 point modules. Although B̃
is not a twisted homogeneous coordinate ring in the sense of Artin and Van den

Bergh, a certain quotient of the category of graded B̃-modules is equivalent to
the category of quasi-coherent sheaves on the curve E/E[2] where E[2] is the

2-torsion subgroup. We construct line modules for Ã that are parametrized by
the disjoint union (E/〈ξ1〉) � (E/〈ξ2〉) � (E/〈ξ3〉) of the quotients of E by its
three subgroups of order 2.
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1. Introduction

1.1. The 3- and 4-dimensional Sklyanin algebras are among the most interesting
algebras that have appeared in non-commutative algebraic geometry. Such an al-
gebra determines and is determined by an elliptic curve, E, a translation automor-
phism, τ , of E, and an invertible OE-module L of degrees 3 and 4, respectively.
The representation theory of the Sklyanin algebra A(E, τ,L) and, what is almost
the same thing, the geometric aspects of the non-commutative projective space
Projnc

(
A(E, τ,L)

)
, is governed by the geometry of E and τ when E is embedded

as a cubic or quartic curve in P
(
H0(E,L)∗

)
. We refer the reader to [1] and [31] for

overviews of the 3- and 4-dimensional Sklyanin algebras. The n in “n-dimensional”
refers to the Gelfand-Kirillov dimension of A(E, τ ) or its global dimension or the
dimension of A(E, τ,L)1, which is equal to H0(E,L).

Odesskii and Feigin have defined generalizations of the 4-dimensional Sklyanin
algebras in [24], [25], and [11]. Their algebras depend on a pair (E, τ ) and a line
bundle L, of degree ≥ 4, that is used to construct A(E, τ,L). In particular, when
deg(L) = n2, n ≥ 2, Odesskii and Feigin construct an algebra that they denote by
Qn2(E, τ ).

Following an idea of Odesskii in [23], described in §1.5 below, we construct for

every such pair (E, τ ) and integer n ≥ 2 a connected graded algebra Q̃ = Q̃n2(E, τ )
by a kind of Galois descent procedure applied to Qn2(E, τ ). We show that the
algebras obtained in this manner inherit many of the good properties enjoyed by
Qn2(E, τ ). For example, they are Artin-Schelter regular.

1.2. This paper examines the case n = 2 and shows that the algebras Q̃ exhibit a
range of novel features. They are still governed very strongly by the geometry of E
and τ . For this reason we call them “elliptic algebras”, the name Odesskii and Feigin
adopted for their algebras, and we append the adjective “exotic” to indicate that
they are somewhat novel when compared to the familiar 4-dimensional Sklyanin
algebras and other 4-dimensional Artin-Schelter regular algebras.

1.3. The procedure we use to construct the algebras Q̃ is quite general. Let H be a
finite-dimensional Hopf algebra over a field k and let A be an H-comodule algebra.
One might also require A to be a graded algebra and that every homogeneous
component be a subcomodule. Let T be an H-torsor (see §3.1) and define the
algebra A′ := A ⊗ T . If A is graded one places T in degree zero to make A′ a

graded algebra. Let Ã denote the subalgebra of A′ consisting of the H-coinvariant
elements. In §§3 and 4 we show how various properties pass back and forth between

A, A′, and Ã. For example, we consider the noetherian property, that of being finite
as a module over its center, and numerous homological properties that play an
important role in non-commutative algebraic geometry. When H is commutative,

which is the case in the definition of Q̃, A′ is an H-comodule algebra.
In §4 we assume that dimk(H) < ∞, and (usually) A is a connected graded

H-comodule algebra. We show A is Koszul (m-Koszul) if and only if Ã is. We

show A is Artin-Schelter regular of dimension d if and only if Ã is. We show Ã
satisfies the χ condition, introduced in [6], if A does.

1.4. The construction A � Ã, and our results about properties shared by A and Ã,
should be useful in other situations. It would be sensible to examine the effect of
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this construction on 2- and 3-dimensional Artin-Schelter regular algebras now that
J.J. Zhang and his co-authors have determined (many/all?) the finite-dimensional
Hopf algebras for which such algebras can be comodule algebras. Even the case
when A is a polynomial ring, or an enveloping algebra, deserves investigation.

1.5. Let Q = A(E, τ,L) be a 4-dimensional Sklyanin algebra. It was shown in [34]
that Γ = (Z/2)× (Z/2) acts as graded k-algebra automorphisms of Q when k = C.
The action there is induced by the translation action of the 2-torsion subgroup, E[2],
on E. Here, working over an arbitrary algebraically closed field k of characteristic
�= 2, we define an action of Γ as graded k-algebra automorphisms of Q and show
that this “corresponds” to the translation action of E[2] on E.

In the language of §1.3, we take H to be the Hopf algebra of k-valued functions
on Γ and T to beM2(k), the ring of 2×2 matrices, with an appropriate H-comodule

algebra structure. We then have Q̃ = (Q ⊗ T )coH = (Q ⊗ T )Γ. The results in §§3
and 4 show that Q̃ has “all” the good properties Q has. It is a noetherian domain,
has global dimension 4, has the same Hilbert series as the polynomial ring on 4
indeterminates, is Artin-Schelter regular, satisfies the χ condition, etc.

1.6. Among the most important results about Sklyanin algebras are classifications
of their point and line modules; by definition these are the graded cyclic modules
with Hilbert series (1− t)−1 and respectively (1− t)−2.

The point modules of a 3-dimensional Sklyanin algebra are naturally parame-
trized by E or, more informatively, by a natural copy of E embedded as a smooth
cubic curve in P2 = P(Q∗

1). The point modules for a 4-dimensional Sklyanin are
parametrized by a natural copy of E as a smooth quartic curve in P3 = P(Q∗

1) and
4 additional points, the extra points being the vertices of the 4 singular quadrics
that contain the copy of E. The line modules are, in both cases, parametrized by
the secant lines to E, the lines in P(Q∗

1) that meet E with multiplicity ≥ 2.

The results for Q̃ are very different. For example, Q̃ has only 20 point modules.
In a note circulated in 1988 [43], Van den Bergh showed that a generic 4-dimensional
AS-regular algebra (with some other properties) has exactly 20 point modules.
Since then, there have been a number of examples showing that particular algebras,
rather than the ephemeral “generic algebras”, have exactly 20 point modules. We
believe that ours are the first such examples that turn up “in vivo”, so to speak.

1.7. Van den Bergh and Tate [41] showed that the Odesskii-Feigin algebras Qn2 are
noetherian, Koszul, Artin-Schelter regular algebras of dimension n2 with Hilbert

series (1 − t)−n2

. It follows from the relations for Qn2 that Γ = (Z/n) × (Z/n),
realized as the n-torsion subgroup E[n] ⊂ E, acts as graded algebra automorphisms
of Qn2 . It is an easy matter to see that the ring of n × n matrices Mn(C) is an
H-torsor where H is the Hopf algebra of k-valued functions on Γ. In §5 we show

that for all n ≥ 2, Q̃n2 =
(
Qn2 ⊗Mn(k)

)Γ
has “the same” properties as Qn2 .

1.8. In §6 we begin a detailed examination of the algebra Q̃ in §1.5. We give

explicit generators and relations for Q̃. It has 4 generators and 6 quadratic relations
(Proposition 6.1). Since Γ = (Z/2)× (Z/2) acts on Q1 it acts as automorphisms of
P(Q1)

∗ = P3. This P3 contains a natural copy of E embedded as a quartic curve,
and Γ restricts to an action as automorphisms of E.

In §7 we show that this action is the same as the translation action of the 2-
torsion subgroup E[2]. Each γ ∈ Γ acts as an auto-equivalence M � γ∗M of the
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graded-module category Gr(Q). Because Γ acts as E[2] does, if Mp, p ∈ E, is the
point module corresponding to p ∈ E, then γ∗Mp

∼= Mp+ω for a suitable ω ∈ E[2].
There is a similar result for line modules: γ∗Mp,q

∼= Mp+ω,q+ω.

1.9. By [33], there is a regular sequence in Q consisting of two homogeneous central
elements of degree 2, Ω and Ω′ say, such that Q/(Ω,Ω′) is a twisted homogeneous
coordinate ring, B(E, τ,L), in the sense of Artin and Van den Bergh [5]. The main
result in [5] tells us that the quotient category QGr(B(E, τ,L)) is equivalent to
Qcoh(E), the category of quasi-coherent sheaves on E.

The algebra Q̃ also has a regular sequence consisting of two homogeneous central

elements of degree 2, Θ and Θ′ say. Although B̃ := Q̃/(Θ,Θ′) is not a twisted

homogeneous coordinate ring, Theorem 8.1 proves that QGr(B̃) is equivalent to

Qcoh(E/E[2]).1 Nevertheless, B̃ has no point modules. The points on E/E[2]

correspond to fat point modules of multiplicity 2 over B̃. Another new feature is

that B̃ is not a domain although B is. Still, B̃ is a prime ring.

1.10. In §9 we prove that Q̃ has exactly 20 point modules. These modules corre-

spond to 20 points in P3 = P(Q̃∗
1) that we determine explicitly. The “meaning”

of these 20 points eludes us. Let P denote that set of 20 points. The degree shift
functor M � M(1) induces a permutation θ : P → P of order 2. Shelton and

Vancliff [29] have shown that the data (P, θ) determines Q̃ in the sense that the
subspace R ⊆ Q1⊗Q1 of bihomogeneous forms vanishing on the graph of θ has the

property that Q̃ is isomorphic to T (Q1)/(R), the tensor algebra on Q1 modulo the
ideal generated by R.

In §11, we exhibit three families of line modules for Q̃ parametrized by
(
E/〈ξ〉

)
(

E/〈ξ′〉
)

(
E/〈ξ′′〉

)
where {ξ, ξ′, ξ′′} is the set of 2-torsion points on E. These are

not all the line modules for Q̃.

1.11. In §§8 and 11 we examine Γ-equivariant objects in Gr(Q) and other categories
of interest. So as not to interrupt the flow of the paper we collect some basic facts
about group actions on categories and equivariant objects in an appendix. The
material there is known in one form or another in various degrees of generality, but
we have not found a suitable reference. The reader might find the appendix useful
in filling in the details of some of the proofs in §10.
1.12. In late January 2015, after proving most of the results in this paper, we found
an announcement on the web of a seminar talk by Andrew Davies at the University
of Manchester in January 2014 that appeared to contain some of the results we
prove here. On 1/20/2015, we found a copy of his Ph.D. thesis ([8–10]), which has
substantial overlap with this paper. Davies also proves several things we don’t.

For example, he describes B̃ (when τ has infinite order) in the manner of Artin
and Stafford [2]. Nevertheless, most of what we do is more general, and most of
our arguments differ from his. For example, when we deal with the 4-dimensional
Sklyanin algebras we make no assumption on the order of τ , we do not restrict our
base field to the complex numbers, and we describe some of the line modules for

Q̃. Also, the results in §§3 and 4 for arbitrary H and T are proved by Davies only
in the case H is the ring of k-valued functions on a finite abelian group.

1Although E/E[2] is isomorphic to E, it is “better” to think of QGr(B̃) as equivalent to
Qcoh(E/E[2]).
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2. Preliminaries

In §§2 to 4, we work over an arbitrary field k. Once we begin discussing the
4-dimensional Sklyanin algebras, k will be an algebraically closed field of charac-
teristic �= 2.

2.1. We will use what is now standard terminology and notation for graded rings
and non-commutative projective algebraic geometry. There are several sources
for unexplained terminology: the Artin-Tate-Van den Bergh papers ([3], [4]),
which started the subject of non-commutative projective algebraic geometry;
Stafford and Van den Bergh’s survey [37]; papers by Stafford and Smith [33] and
Levasseur and Smith [17] on 4-dimensional Sklyanin algebras; the survey [31] on 4-
dimensional Sklyanin algebras; Artin and Van den Bergh’s paper on twisted homo-
geneous coordinate rings [5]; and Artin and Zhang’s on non-commutative projective
schemes [6].

Suppose A is an N-graded k-algebra such that dimk(Ai) < ∞ for all i. The cate-
gory of Z-graded left A-modules with degree-preserving A-module homomorphisms
is denoted by Gr(A). The full subcategory of Gr(A) consisting of modules that are
the sum of their finite-dimensional submodules is denoted by Fdim(A). This is a
Serre subcategory, so we can form the quotient category

QGr(A) :=
Gr(A)

Fdim(A)
.

In fact, Fdim(A) is a localizing subcategory, so the quotient functor π∗ : Gr(A) →
QGr(A) has a right adjoint π∗. The functor π∗ is exact. By definition, QGr(A) has
the same objects as Gr(A). Since π∗π∗ is isomorphic to the identity functor we may
view objects in QGr(A) as objects in Gr(A).

2.2. We write Vect for the category of vector spaces over k.

2.3. Throughout this paper, H is a Hopf algebra over k with bijective antipode.
We write HM for the category of left H-comodules and MH for the category of
right H-comodules. Furthermore A denotes a right H-comodule-algebra, i.e., an
algebra object in MH .

Let Υ be an abelian group. We call A an Υ-graded H-comodule algebra or an
Υ-graded algebra in MH if it is an H-comodule algebra such that each homogeneous
component, Ai, is an H-subcomodule. For example, if V is a right H-comodule and
R ⊆ V ⊗ V is an H-subcomodule, then the tensor algebra, TV , and its quotient
TV/(R) are Z-graded algebras in MH .

We write Mod(R) for the category of left modules over a ring R. We write AMH

for the category of A-modules internal to the category of H-comodules, i.e., vector
spaces V equipped with an A-module structure and an H-comodule structure such
that A ⊗ V → V is an H-comodule map. If A is an Υ-graded algebra in MH we
write Gr(A)MH for the category of Υ-graded A-modules internal to MH ; i.e., each
homogeneous component Mi is an H-comodule. Similar conventions apply to right
A-modules, with the algebra subscripts appearing on the right in that case.

3. Torsors, twisting, and descent

In this section we prove some general results on the inheritance of various prop-
erties for certain rings of (co)invariants, relating various good properties of A to
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those of the algebra Ã defined in (3-5) below. In §§3.1-3.3, the only assumption on
H is that it is a Hopf algebra with bijective antipode. In §3.4 we add the hypothesis
that H is commutative.

3.1. Torsors. A left H-torsor (or just torsor for short) is a left H-comodule-algebra
T such that

(1) T ∼= H in HM,
(2) the ring of coinvariants, coHT , is k, and
(3) the linear map

(3-1) T ⊗ T H ⊗ T ⊗ T H ⊗ T
ρ⊗ id id⊗m

is bijective where ρ : T → H⊗T is the comodule structure and m : T⊗T →
T is multiplication.

Throughout §3, T denotes a left H-torsor.

3.1.1. A comodule algebra for which the composition in (3-1) is an isomorphism is
sometimes called a left H-Galois object (see e.g. [7, Defn. 1.1]); [7] and the refer-
ences therein are good sources for background on torsors. Left H-torsors classify
exact monoidal functors MH → Vect, the functor corresponding to T being

(3-2) M �→ M�HT := {x ∈ M ⊗ T | (ρM ⊗ id)(x) = (id⊗ ρ)(x)},

where ρM : M → M ⊗ H and ρ : T → H ⊗ T are the comodule structure maps.
The vector space M�HT is called the cotensor product of M and T .

3.1.2. Left versus right comodules. Since the antipode, s : H → H, is an algebra
anti-isomorphism, the categories HM and MH are equivalent: if ρ : X → H ⊗X
is a left H-comodule, then X becomes a right H-comodule with respect to the
structure map

(3-3) X
ρ �� H ⊗X

s⊗id �� H ⊗X
τ �� X ⊗H

where the right-most map is τ (h ⊗ x) = x ⊗ h. Explicitly, if x �→ x−1 ⊗ x0 is the
left-comodule structure, then the right comodule structure is x �→ x0 ⊗ s(x−1).

3.1.3. Left versus right comodule algebras. The operation (3-3) does not turn a left
H-comodule algebra into a right H-comodule algebra. However, if X is a left H-
comodule algebra and Xop denotes X with the opposite multiplication, then Xop

becomes a right H-comodule algebra with respect to the structure map (3-3). To
see this, first denote the composition in (3-3) by ρ◦ and, when x ∈ X, write x◦ for
x viewed as an element in Xop. Thus, if x, y ∈ X, then x◦y◦ = (yx)◦. Therefore if
x, y ∈ X and ρ(x) = x−1 ⊗ x0, then ρ◦(x◦) = x◦

0 ⊗ s(x−1), so

ρ◦(x◦y◦) = ρ◦
(
(yx)◦

)
= τ (s⊗ id)ρ(yx) = τ (s⊗ id)(y−1x−1 ⊗ y0x0)

= y0x0 ⊗ s(x−1)s(y−1),

which is equal to
(
x◦
0 ⊗ s(x−1)

)(
y◦0 ⊗ s(y−1)

)
= ρ◦(x◦)ρ◦(y◦).

Since T is a left H-torsor, T op with the structure map ρ◦ : T op → T op ⊗H is a
right H-torsor.
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3.1.4. The monoidal functor •̃ : M �→ M̃ . By [42, Lem. 1.4], the functor M �→
M�HT in §3.1.1 is a monoidal functor. We denote it by •̃ : M �→ M̃ . By the next
result it is naturally equivalent to M �→ (M ⊗ T )coH.

In the expression M�HT we treat T as a left H-comodule. In the expression
(M ⊗ T )coH we treat T as a right H-comodule using the new structure map in
(3-3). The algebra structure on T in not used in constructing either M�HT or
(M ⊗ T )coH.

Proposition 3.1. Let M�HT = (M ⊗ T )coH.

Proof. We will abuse notation by using simple tensors m ⊗ t instead of arbitrary
elements of M ⊗ T .

Let m⊗ t ∈ M�HT . Then m0 ⊗m1 ⊗ t = m⊗ t−1 ⊗ t0.
Since H is a Hopf algebra there is an internal tensor product on MH . It is

“dual” to the internal tensor product on the category of right H∗-modules. If N
and N ′ are right H∗-modules the latter is defined to be the left-most vertical arrow
in the following commutative diagram:

N ⊗N ′ ⊗H∗ ��

��

N ⊗N ′ ⊗H∗ ⊗H∗

��
N ⊗N ′ N ⊗H∗ ⊗N ′ ⊗H∗��

The right H-comodule structure on M ⊗ T is defined to be the left-most vertical
arrow in the following commutative diagram:

M ⊗ T ⊗H M ⊗ T ⊗H ⊗H��

M ⊗ T

��

�� M ⊗H ⊗ T ⊗H

��

The right comodule structure on M ⊗ T is therefore

m⊗ t �→ (m⊗ t)0 ⊗ (m⊗ t)1 = (m0 ⊗ t0)⊗m1s(t−1)

= m⊗ t0 ⊗ t−2s(t−1)

= m⊗ t0 ⊗ ε(t−1)1

= m⊗ t⊗ 1.

This shows that m⊗ t ∈ (M ⊗ T )coH.
Conversely, suppose m⊗ t ∈ (M ⊗ T )coH. Thus

(3-4) m0 ⊗ t0 ⊗m1s(t−1) = m⊗ t⊗ 1.

Now apply to both sides of this equation the endomorphism of M ⊗ T ⊗H defined
by

m⊗ t⊗ h �→ m⊗ t0 ⊗ ht−1.

The left-hand side of (3-4) is sent to

m0 ⊗ t0 ⊗m1s(t−2)t−1 = m0 ⊗ t0 ⊗m1ε(t−1) = m0 ⊗ t⊗m1,

and the right-hand side is sent to m ⊗ t0 ⊗ t−1. Since the two must be equal,
m⊗ t ∈ M�HT . �
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3.1.5. Since •̃ is a monoidal functor, it sends algebras in MH to algebra objects in
Vect, and hence for A ∈ MH as in §2.3, the H-coinvariant subspace

(3-5) Ã := (A⊗ T )coH

has a natural algebra structure. We treat T as a right H-comodule in the expression
(A⊗ T )coH.

Although T has two algebra structures, its original one and the opposite one,
neither makes A⊗ T into an H-comodule algebra unless additional hypotheses are

made (see §3.4). Nevertheless, Ã is a subalgebra of A⊗T (T having its initial algebra
structure, not the opposite one). In §3.4 below we specialize to commutative H, in
which case A⊗ T is a comodule algebra.

•̃ lifts to a functor AMH → Mod(Ã), and similarly when everything in sight is
Υ-graded for some abelian group Υ. We denote all of these functors by the same
symbol, relying on context to differentiate between them.

3.1.6. In the definition of a torsor, the condition that T ∼= H in HM makes the
Galois object T cleft ; this condition follows automatically from (3-1) when H is
finite dimensional, which is the case we are really interested in here. This is (part
of) [7, Thm. 1.9], which cites [16] for a proof.

Cleft objects have an alternative characterization by means of Hopf cocycles.
Recall (e.g. [7, Ex. 1.3]) that the latter are linear maps σ : H ⊗H → k satisfying
certain conditions which we will not spell out here and which are reminiscent of
those from group cohomology.

By [7, Thm. 1.8], every left torsor in the sense of §3.1 can be obtained from such
a gadget σ by twisting H: T can be identified with H as a vector space but has a
new multiplication defined by

g ◦ h = g1h1σ(g2 ⊗ h2) for all g, h ∈ H.

Here, g �→ g1 ⊗ g2 is the comultiplication in H and juxtaposition on the right-hand

side means multiplication in H. Similarly, the algebra Ã can be identified with the
vector space A endowed with the modified multiplication

a ◦ b = a0b0σ(a1 ⊗ b1) for all a, b ∈ A,

where a �→ a0 ⊗ a1 is the H-comodule structure (Ã is then a cocycle twist of A).

We note in passing that in this case the new algebra Ã has a right comodule
algebra structure with respect to a twisted version Hσ of H, consisting of the same
coalgebra underlying H, with the modified multiplication

h ◦ k = σ−1(h1 ⊗ k1)h2k2σ(h3 ⊗ k3),

where σ−1 : H ⊗H → k is the convolution-inverse of σ. There is then a twisting
functor implementing an equivalence between H and Hσ-comodules (see e.g. [7,

Defn. 3.14] and surrounding discussion), sending A to Ã and implementing an
equivalence between MH

A and MHσ

˜A
. Moreover, H and Hσ play symmetric roles,

with A obtainable as a cocycle twist of the Hσ-comodule algebra Ã.
WhenH is the function algebra of an abelian group Γ whose order is not divisible

by the characteristic of k this construction specializes in the following way.

H can be identified with the group algebra kΓ̂ of the character group of Γ; i.e., A

is Γ̂-graded. Every Hopf cocycle H⊗H → k is the linear extension of a normalized

group 2-cocycle μ : Γ̂ × Γ̂ → k× in the usual sense. Now, denoting by Aα the
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α-homogeneous component of A with respect to the Γ̂-grading, the twisted algebra

Ã can be identified with the vector space A together with the new multiplication

a ◦ b = μ(α, β)ab for all α, β ∈ Γ̂, a ∈ Aα, b ∈ Aβ.

3.2. Generalities. We prove some auxiliary general results of use below.

Lemma 3.2. The categories MH
T op and Vect are equivalent via the mutually quasi-

inverse functors

(3-6)
Vect MH

T op

• ⊗ T op

•coH

Proof. By [27, Thm. I] applied to the comodule algebra T op ∈ MH the assertion
follows from the torsor condition (3-1) if T op is injective as an H-comodule. It is
because T ∼= H as a left comodule and every coalgebra is self-injective in the same
way that every algebra is self-projective. �

Throughout the rest of this subsection, unadorned Hom denotes hom spaces over
the ground field k.

In the following result, T op is regarded as a right comodule-algebra by twisting its
original left comodule algebra structure using the antipode, as explained in §3.1.3.
When the algebra structure of T op is not relevant, we will on occasion drop the op
superscript in order to streamline our notation.

Proposition 3.3. There is an isomorphism

(3-7) HomH(M,N ⊗ T ) ∼= Hom(M̃, Ñ),

functorial in M,N ∈ MH . Moreover, it restricts to a functorial isomorphism

(3-8) HomH
A (M,N ⊗ T ) ∼= Hom

˜A(M̃, Ñ)

for M,N ∈ AMH .

Proof. By the adjunction between scalar extension • ⊗ T op : MH → MH
T op and

scalar restriction (i.e., simply forgetting the T op-action) the left-hand side of (3-7)

is naturally isomorphic to the space HomH
T op(M ⊗ T op, N ⊗ T op), where T op acts

on just the T op tensorands. In turn, this is naturally isomorphic to the right-hand
side of (3-7) by Lemma 3.2.

To verify the second assertion note that the left-hand side of (3-8) can be realized
as an equalizer,
(3-9)

HomH
A (M,N⊗T ) HomH(M,N⊗T ) HomH(A⊗M,N⊗T )

f �→f◦�

f �→�◦(idA⊗f)

where the upper and lower � symbols denote the action A⊗M → M and A⊗N → N
respectively.
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Applying the natural isomorphism from the first part of the proposition to the
two parallel arrows in (3-9) and keeping in mind the fact that •̃ is a monoidal
functor, we get the arrows

Hom(M̃, Ñ) Hom(Ã⊗ M̃, Ñ).

f �→f◦�

f �→�◦(idA⊗f)

Their equalizer is precisely the right hand side of (3-8). �

3.2.1. There is a graded version of Proposition 3.3 with virtually the same proof
(M and N are graded comodules, etc.).

The following simple observation turns out to be rather important.

Lemma 3.4. Suppose H is finite-dimensional. The functors •̃ : AMH → Mod(Ã)

and •̃ : Gr(A)MH → Gr(Ã) send projective objects to projective objects.

Proof. Let A�H∗ denote the smash product. The category AMH can be identified
with Mod(A�H∗). Under this identification, projectives are direct summands of
direct sums of copies of A�H∗. It therefore suffices to show that the image of A�H∗

under •̃ is projective over Ã.
As an A-module A�H∗ is simply A⊗H∗ with the A-action on the left tensorand.

As an H-comodule A�H∗ is the tensor product A ⊗ H∗, with H coacting on H∗

regularly. Since •̃ is a monoidal functor, it sends A�H∗ ∈ AMH to Ã ⊗ H̃∗ with

the obvious action of Ã. This is a direct sum of copies of Ã in Mod(Ã) and hence
projective. �

3.3. The noetherian property and GK-dimension.

Proposition 3.5. Let Υ be an abelian group and let A be an Υ-graded H-comodule

algebra. Then dimk(Ai) = dimk(Ãi) for all i ∈ Υ.

Proof. We are assuming T ∼= H in MH so W⊗T ∼= W⊗H in MH for all W ∈ MH .
As in the proof of Proposition 3.10, the map W ⊗H → W ⊗H, w⊗h �→ w0⊗w1h,
is an isomorphism from W ⊗H with the diagonal H-coaction to W ⊗H with the
regularH-coaction on the right-hand tensorand. As a consequence, there is a vector
space isomorphism W ∼= (W ⊗ T )coH. Now apply this fact with W equal to each
homogeneous component of A. �

Below, we will be referring to the Gelfand-Kirillov dimension of a moduleM over
a k-algebra A, denoted (when the module structure is implicit) by GKdim(M). It
is defined as

sup
V,M0

lim sup
n→∞

logn(dimV nM0),

where V and M0 range over the finite-dimensional subspaces of A and respectively
M (see e.g. [35] and the references cited therein, or §4 of the original source for the
concept, [12]).

Lemma 3.6 ([15, Lem. 6.1]). Let A be an N-graded k-algebra such that dimk(Ai) <
∞ for all i, and let M be a finitely generated graded A-module. Then

GKdim(M) = 1 + lim sup logn(dimk(Mn)).



EXOTIC ELLIPTIC ALGEBRAS 289

Proposition 3.7. If A is a Z-graded comodule algebra such that dimk(Ai) < ∞
for all i, then A and Ã have the same Gelfand-Kirillov dimension.

Lemma 3.8. The functor forget : Gr(A)MH → Gr(A) preserves projectivity, as
does the analogous functor for ungraded modules.

Proof. This follows from the fact that forget is left adjoint to an exact functor,
namely •⊗H : Gr(A) → Gr(A)MH . The same proof works in the ungraded case. �

Proposition 3.9. Suppose H is finite-dimensional. If A is left or right noetherian,

then so is Ã.

Proof. Suppose A is left noetherian. (The right noetherian case has a similar proof
using the right-handed version of Proposition 3.3.)

Let S be an arbitrary set. The goal is to show that for any Ã-module map

f : Ã⊕S → Ã the images of the restrictions fS′ : Ã⊕S′ → Ã stabilize as S′ ⊆ S
ranges over ever larger finite subsets.

By Proposition 3.3, f can be identified with some A-module H-comodule map
ϕ : A⊕S → A ⊗ T . By naturality, this identification is compatible with taking
restrictions ϕS′ to A⊕S′

for finite subsets S′ ⊆ S (in the sense that fS′ gets identified
with ϕS′).

From the proof of Proposition 3.3 we see that the image of fS′ consists of the H-
coinvariants of the T op-submodule of A⊗T generated by the image of ϕS′ . Hence,
it suffices to show that the images of ϕS′ stabilize as S′ increases. This, however, is
a consequence of the noetherianness of A and the fact that T is finite-dimensional
(so that the A-module A⊗ T is finitely generated). �

3.4. The case when H is commutative, and the algebra A′. In this section
we assume that H is commutative, i.e., the ring of regular functions on an affine
group scheme (not necessarily reductive or reduced).

BecauseH is commutative, if V andW are rightH-comodules, the map V⊗W →
W ⊗ V , v ⊗ w �→ w ⊗ v, is an isomorphism of right H-comodules. It follows from
this that if T is made into a right H-comodule via the procedure in §3.1.2, then
(3-10) A′ := A⊗ T

becomes a right H-comodule algebra with its usual tensor product algebra struc-
ture. We emphasize that the T factor in A⊗T has its original multiplication and is
made into a right H-comodule algebra by the procedure in §3.1.2 and not by giving
T the opposite multiplication.

As mentioned in §3.1.5, Ã is a subalgebra of A′. The following result therefore
makes sense.

Proposition 3.10. Suppose H is commutative. Then, the categories A′MH and

Mod(Ã) are equivalent via the mutually quasi-inverse functors

(3-11) Mod(Ã) A′MH

A′⊗
˜A•

•coH

Furthermore, the extension Ã → A′ is faithfully flat on the right and on the left.
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Proof. It will be convenient to phrase the proof in terms of left comodules. Note
that since H is commutative its antipode is an automorphism, and therefore the
equivalence between MH and HM described in §3.1.2 is a monoidal equivalence.
In this manner, we think of A and A′ as left comodule algebras for the duration of
the proof and show that the two functors above implement an equivalence between

Mod(Ã) and H
A′M. We will also freely interchange the order of tensorands, as

permitted by the commutativity of H.
By [27, Thm. I], both assertions follow if A′ is injective as an H-comodule and

the map

(3-12) A′ ⊗A′ H ⊗A′ ⊗A′ H ⊗A′
ρ⊗ id id⊗m

analogous to (3-1) is onto, where ρ : A′ → H ⊗ A′ is the left comodule structure
mentioned at the beginning of the proof and m is multiplication.

The H-comodule T ∼= H is injective in HM (every coalgebra is self-injective in
the same way that every algebra is self-projective). Now, for any left H-comodule
M , the map

H ⊗M → H ⊗M, h⊗m �→ hm−1 ⊗m0

is an isomorphism fromM⊗H ∼= H⊗M with the tensor product comodule structure
to M ⊗ H with the comodule structure coming from the right-hand tensorand
alone. In other words M ⊗ H is isomorphic in HM to a direct sum of dimk(M)
copies of H and in particular is injective. Applying this to M = A, it follows that
A′ = A⊗ T ∼= A⊗H is injective in HM.

To check the surjectivity of (3-12) note that since (3-1) is an isomorphism so is
the composition

T ⊗A′ = T ⊗ T ⊗ A → H ⊗ T ⊗A′ = H ⊗ T ⊗ T ⊗A → H ⊗ T ⊗A = H ⊗A′;

i.e., the restriction of (3-12) to T ⊗A′ ⊆ A′ ⊗A′ already surjects onto H ⊗A′. �
Lemma 3.11. Keeping the notation and conventions of Proposition 3.10, if N ∈
A′MH is finitely generated over A′, then NcoH is finitely generated over Ã.

Proof. Finite generation can be characterized in category-theoretic terms as follows.
Let I be a filtered small category in the sense of [18, Sec. IX.1]: Every two objects
i, i′ fit inside a diagram

i

i′
k

and every solid left-hand wedge as in the picture below can be completed to a
commutative diagram by a dotted right-hand wedge

j

i

i′
k

For any functor F : I → Mod(A′) we have a canonical map

(3-13) lim−→
i∈I

HomA′(N,F (i)) → HomA′(N, lim−→
i

F (i)).

We leave it to the reader to check that N is finitely generated if and only if for every
filtered I and every functor F such that every arrow F (i → i′) is an embedding the
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map (3-13) is an isomorphism. Also, the hom spaces on the two sides of the arrow
are H-comodules, and the isomorphism respects these comodule structures.

Let F : I → A′MH be a functor from a filtered small category such that all
F (i → i′) are monomorphisms. Since by Proposition 3.10 the equivalence A′MH ≡
Mod(Ã) is affected by the functor (•)coH which preserves filtered colimits, the ana-
logue of (3-13) over AcoH is obtained by applying this functor to (3-13). Since
(3-13) is an isomorphism, so is its image under (•)coH. �

There are analogous graded versions of Lemma 3.11 and Proposition 3.10.

4. Homological properties under twisting

We keep the notation and conventions from the previous section, under the
assumption that H is finite-dimensional. We do not assume H is commutative
until Theorem 4.12.

4.1. Let A be a (usually connected) graded k-algebra. For M,N ∈ Gr(A) we define
the graded vector space

Hom(M,N) :=
⊕
d∈Z

Hom(M,N(d)),

where N(d) is the degree shift of N by d and Hom here is understood from context
to be the space of degree-preserving A-module maps. Just like ordinary Hom, Hom
has derived functors Exti taking values in the category of graded vector spaces. We
denote the degree-j component of Exti(M,N) by Exti(M,N)j , as usual.

If A is noetherian and M is finitely generated, then Ext(M,−) and Ext(M,−)
agree or, more precisely, Ext(M,−) is the vector space obtained by forgetting the
grading on Ext(M,−). This is not the case in general though.

4.2. Let A be a graded k-algebra in MH . If we make the smash product A�H∗

into a Z-graded k-algebra by placing H∗ in degree 0, then Gr(A)MH is equivalent to

Gr(A�H∗). Therefore every M ∈ Gr(A)MH has a resolution by projective objects in

Gr(A)MH . Let (P∗, d) be such a projective resolution; it is also a projective resolu-

tion in Gr(A) by Lemma 3.8. If N ∈ Gr(A)MH , then the homology of HomA(P∗, N)

is in MH . Thus, if M,N ∈ Gr(A)MH , then every ExtiA(M,N)j is in MH :

Lemma 4.1. Let A be a graded H-comodule algebra and let M,N ∈ Gr(A)MH .

Then the components ExtiA(M,N)j acquire H-comodule structures natural in M,N
∈ Gr(A)MH .

Similarly, if M,N ∈ AMH , then ExtiA(M,N) ∈ MH , naturally in M and N .
The following result will be used repeatedly.

Theorem 4.2. Let A be a graded H-comodule algebra and let M,N ∈ Gr(A)MH .
There is a natural isomorphism of bigraded vector spaces

(4-1) Ext∗A(M,N) � ∼= Ext∗
˜A

(
M̃, Ñ

)
�
.

Proof. Let (P∗, d) be a projective resolution of AM in Gr(A)MH (and hence also

in Gr(A) by Lemma 3.8). Then (P̃∗, d̃) is a projective resolution of M̃ in Gr( ˜A)M
by Lemma 3.4, and Ext∗

˜A
(M̃, Ñ) � is the cohomology of the complex Hom

˜A(P̃∗, Ñ).
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By Proposition 3.3 (or rather its graded version; see §3.2.1), this is the same as the
cohomology of the complex

(4-2) HomH
A (P∗, N ⊗ T ) ∼= HomA(P∗, N ⊗ T )coH ∼= (HomA(P∗, N)⊗ T )coH,

where the second isomorphism uses the finite-dimensionality of T .
The right-most complex is the image of HomA(P∗, N) (regarded as a complex

of Z-graded H-comodules) under the functor •̃ to graded vector spaces. Since this
functor is exact, it turns the cohomology of HomA(P∗, N), i.e., Ext∗A(M,N) �, into
that of (4-2). In other words, •̃ turns the left-hand side of (4-1) into its right-hand
side.

Finally, •̃ is isomorphic to the forgetful functor MH → Vect as a linear functor
(though not as a monoidal functor) because T ∼= H is a comodule; the conclusion
follows. �

There is a version of Theorem 4.2 for ungraded modules M,N ∈ AMH ; the
same proof, with obvious modifications, works.

For the next result we specialize to the case when the graded algebra A is con-
nected.

Corollary 4.3. Let A be a connected graded H-comodule algebra. If A ∼= TV/(R),

then A ∼= TV/(R̃) where R̃ and R are isomorphic as graded vector spaces.

Proof. This follows by applying Theorem 4.2 to M = N = k from the fact that
there are isomorphisms Ext1A(k, k)

∼= V ∗ and Ext2A(k, k)
∼= R∗ of bigraded vector

spaces. �
4.3. The Koszul property.

Definition 4.4. Let m be an integer ≥ 2. A connected graded algebra A is m-
Koszul if A ∼= TV/(R) with deg(V ) = 1, R ⊆ V ⊗m, and ExtiA(k, k) is concentrated
in just one degree for all i.

Corollary 4.5. Let m be an integer ≥ 2. A connected graded H-comodule algebra

A is m-Koszul if and only if Ã is.

Proof. This follows immediately from Corollary 4.3 and Theorem 4.2 applied to
M = N = k. �
4.4. Artin-Schelter regularity. We begin by recalling the relevant notions.

Definition 4.6. A connected graded k-algebra A is Artin-Schelter Gorenstein (AS-
Gorenstein for short) of dimension d if the left and right injective dimensions of A
as a graded A-module equal d and

(4-3) ExtiA(k,A) = ExtiA◦(k,A) ∼= δid k(�),

for some integer �.
If A is AS-Gorenstein we say it is Artin-Schelter regular (AS-regular for short)

of dimension d if in addition gldim(A) = d < ∞.

Artin and Schelter’s original definition of regularity included a restriction on the
growth of dimk(Ai), but in some situations it is sensible to avoid that restriction.

We will show that if A is AS-regular of dimension d, then so is Ã. Since dimk(Ai) =

dimk(Ãi) for all i (Proposition 3.7), if A is AS-regular with the growth restriction

so is Ã.



EXOTIC ELLIPTIC ALGEBRAS 293

Proposition 4.7. For all noetherian connected graded algebras A ∈ MH , gldim(Ã)
= gldim(A).

Proof. This follows immediately from Proposition 3.9, Theorem 4.2, and the fact
that for noetherian connected graded algebras the homological dimension can be
computed as the supremum of those i for which Exti(k, k) is non-zero. �
Theorem 4.8. If a noetherian connected graded algebra A ∈ MH is AS-regular of

dimension d so is Ã.

Proof. By Proposition 4.7, gldim(Ã) = d. Theorem 4.2 and its right-handed version
applied to M = k and N = A show that (4-3) holds (or does not hold) simultane-

ously for A and Ã. �

Corollary 4.9. If A is a noetherian twisted Calabi-Yau algebra, so is Ã.

Proof. By [26, Lem. 1.2], an algebra is twisted Calabi-Yau if and only if it is AS-
regular. �
4.5. Condition χ. In this subsection we prove that the finiteness condition χ
introduced in [6] is preserved under twisting. Throughout, A will be an N-graded
algebra.

Definition 4.10 ([6, Defn. 3.7]). We say that A has property χ if for all non-
negative integers i, d and all finitely generated graded A-modules N there is an
integer n0 such that ExtiA(A/A≥n, N)≥d is finitely generated over A for all n ≥ n0.
(The left A-module structure on Ext comes from the right A-action on A/A≥n.)

The χ condition is crucial in proving Serre-type results on finiteness of cohomol-
ogy for non-commutative projective schemes (see e.g. [6, Thm. 7.4]).

Theorem 4.11. If the noetherian connected graded algebra A ∈ MH of finite global

dimension has property χ, then so does Ã.

Proof. If the finite generation condition from Definition 4.10 holds for all N for a
fixed choice of i and d we say that condition χi

d holds.

By Propositions 3.5, 3.9, and 4.7, Ã is also noetherian connected graded and of
finite global dimension. This latter condition means that all sufficiently high Exti

vanish, so that we can prove that all χi
d hold by descending induction on i. We

now do this.
Fix i and suppose we have proved that χj

d holds for all d and all j > i. Fix

N ∈ Gr(Ã) and d as in Definition 4.10. Because Ã is noetherian, N is the cokernel
in a short exact sequence

0 → K → Ã⊕S → N → 0

of finitely generated graded modules. Applying the resulting long exact Ext se-
quence and the induction hypothesis we conclude that it suffices to prove that the

graded Ã-module Exti
˜A
(Ã/Ã≥n, Ã

⊕S)≥d is finitely generated for sufficiently large
n.

Just as in the proof of Theorem 4.2, Exti
˜A
(Ã/Ã≥n, Ã

⊕S)≥d is the image of

Un = ExtiA(A/A≥n, A
⊕S)≥d ∈ Gr(A)MH

under the functor •̃. By hypothesis, Un is finitely generated over A for sufficiently
large n. Since Un is also an H-comodule, it is finitely generated over A�H∗ and
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hence is a quotient of some finite direct sum of copies of A�H∗ in Gr(A)MH . Ap-
plying •̃ we obtain

Ũn = Exti
˜A
(Ã/Ã≥n, Ã

⊕S)≥d

as a quotient of a finite direct sum of copies of Ã�H∗ ∼= Ã⊗ H̃∗ ∈ Gr(Ã). �

When H is commutative the noetherian and global dimension hypotheses are
not needed.

Theorem 4.12. If H is commutative and the graded algebra A ∈ MH satisfies

condition χ, then so does Ã.

Proof. Let N be a finitely generated graded Ã-module and let i, d be fixed integers.
Because A has property χ, there is some n0 for which the finiteness condition
in Definition 4.10 holds for the graded A-module N ′ = A′ ⊗

˜A N (the A-module
structure is obtained by restricting scalars from A′ = A⊗ T op to A). We will show
that n0 satisfies the requirements of Definition 4.10 for N .

Apply the graded analogue of Proposition 3.10 to identify Gr(Ã) with Gr(A′)MH .

Arguing as in the proof of Theorem 4.2 we see that the Ã-module Exti
˜A
(Ã/Ã≥n, N)≥d

that we are interested in is precisely the space of H-coinvariants in

(4-4) ExtiA′(A′/A′
≥n, N

′)≥d
∼= ExtiA(A/A≥n, N

′)≥d.

To conclude, apply Lemma 3.11 (substituting (4-4) for N in that result). �

5. “Exotic” elliptic algebras

We now apply the above results to Sklyanin algebras.

5.1. Fix an integer n ≥ 3. Let k = C. Fix a primitive (n2)th root of unity ε ∈ k.
Let Q = Qn2,1(E, τ ) be the Sklyanin algebra defined in [24].
By [24, §1, Remark 2], the finite Heisenberg group of order n6, Hn2 , acts as

automorphisms of Q. There is a basis xi, 1 ≤ i ≤ n2, for the degree-one component
of Q on which the generators of the Heisenberg group act as xi �→ xi+1 and xi �→
εixi where the indices are labelled modulo n2. The nth powers of the two generators
generate a subgroup Γ ⊆ Hn2 that is isomorphic to (Z/n)2. The generators of Γ
act by xi �→ xi+n and xi �→ ζixi where ζ = εn.

Let H = k(Γ) denote the algebra of k-valued functions on Γ and let Mn(k)
denote the n×n matrix algebra. We make Γ act on Mn(k) by having its generators
act as conjugation by⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . 1

1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ and

⎛⎜⎜⎜⎝
1 0 · · · 0
0 ζ · · · 0
...

...
. . .

...
0 0 · · · ζn−1

⎞⎟⎟⎟⎠ .

By duality, the action of Γ as automorphisms of Mn(k) gives Mn(k) the structure
of an H-comodule algebra.

Lemma 5.1. The above action makes Mn(k) into a left H-torsor in the sense
of §3.1.
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Proof. Every character of Γ appears with multiplicity one in Mn(k). In particular,
Mn(k)

coH = Mn(k)
Γ = k.

A k-algebra on which Γ acts as automorphisms is the same thing as a k-algebra
with a grading by the character group of Γ. Every homogeneous component of
T = Mn(k) is the k-span of an invertible matrix. Hence, if χ and χ′ are characters
of Γ, then TχTχ′ = Tχχ′ . In other words, T is a strongly graded algebra. A
result of Ulbrich shows that for every group Υ the Υ-graded algebras that are
Galois as comodules over the group algebra kΥ are exactly the strongly graded
ones [21, Thm. 8.1.7]. Let Υ be the character group of Γ. Using the natural
isomorphism, Pontryagin duality, kΥ ∼= k(Γ) = H, so T is a left H-torsor. �

Let Q̃ = (Q⊗Mn(k))
coH.

Proposition 5.2. The algebra Q̃ is AS-regular of dimension n2, Koszul, and noe-

therian, and has Hilbert series (1− t)−n2

.

Proof. By [41, Thm. 1.1, Cor. 1.3], all the hypotheses of Propositions 3.5 and 3.9,
Corollary 4.5, and Theorem 4.8 are satisfied. �

Lemma 5.1 and Proposition 5.2 hold when n = 2 and k is any algebraically
closed field of characteristic �= 2. See §6.

6. Generators and relations for Q̃4

Let k be an algebraically closed field whose characteristic is not 2.
We now specialize the discussion from §5 to n = 2, considering the action of the

group Γ = Z/2× Z/2 on Q = Qn2 = Q4.

6.1. Let α1, α2, α3 ∈ k be such that α1 + α2 + α3 + α1α2α3 = 0 and {α1, α2, α3} ∩
{0,±1} = ∅. Often we write α = α1, β = α2, and γ = α3.

We fix a, b, c, i ∈ k such that a2 = α, b2 = β, c2 = γ, and i2 = −1.
When k = C and E = C/Λ, α, β, and γ are the values at τ of certain elliptic

functions with period lattice Λ [30, §2], [33, §2.10]. Thus, when k = C we can take

a =
θ11(τ )θ00(τ )

θ01(τ )θ10(τ )
, b = i

θ11(τ )θ01(τ )

θ10(τ )θ11(τ )
, c = i

θ11(τ )θ10(τ )

θ11(τ )θ01(τ )
,

where θ11, θ00, θ01, θ10 are Jacobi’s four theta functions as defined in [46, p. 71].

6.2. Let Q = k[x0, x1, x2, x3] be the quotient of the free algebra k〈x0, x1, x2, x3〉 by
the six relations

(6-1) x0xi − xix0 = αi(xjxk + xkxj), x0xi + xix0 = xjxk − xkxj ,

where (i, j, k) runs over the cyclic permutations of (1, 2, 3).

6.3. The earlier results will be applied to the Hopf algebra H of k-valued functions
on

Γ = {1, γ1, γ2, γ3 = γ1γ2} ∼= Z2 × Z2

and its action as k-algebra automorphisms of Q given by Table 1.
The irreducible characters of Γ are labelled χ0, χ1, χ2, χ3 in such a way that

γ(xj) = χj(γ)xj for all γ ∈ Γ and j = 0, 1, 2, 3.
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Table 1. The action of Γ as automorphisms of Q

x0 x1 x2 x3

γ1 x0 x1 −x2 −x3

γ2 x0 −x1 x2 −x3

γ3 x0 −x1 −x2 x3

6.4. A quaternionic basis for M2(k) and the conjugation action of Γ on
M2(k). Define

(6-2) q0 =

(
1 0
0 1

)
, q1 =

(
i 0
0 −i

)
, q2 =

(
0 i
i 0

)
, q3 =

(
0 −1
1 0

)
.

Then q21 = q22 = q23 = −1, and if (i, j, k) is a cyclic permutation of (1, 2, 3), qiqj = qk
and qiqj + qjqi = 0.

Define an action of Γ as automorphisms of M2(k) by γj(a) := qjaq
−1
j , i.e.,

g(qj) = χj(g)qj .

As before, Q̃ = (Q⊗M2(k))
Γ. If γ ∈ Γ, then γ(xiqj) = χi(γ)χj(γ)xiqj so

y0 := x0, y1 := x1q1, y2 := x2q2, y3 := x3q3

are Γ-invariant elements of Q⊗M2(k).

Proposition 6.1. The algebra Q̃ is generated by y0, y1, y2, y3 modulo the relations

(6-3) y0yi − yiy0 = αi(yjyk − ykyj) and y0yi + yiy0 = yjyk + ykyj ,

where (i, j, k) is a cyclic permutation of (1, 2, 3).

Proof. Because Q̃ is Koszul with Hilbert series (1 − t)−4, it is generated by 4
degree-one elements subject to 6 degree-two relations. Since y0, y1, y2, y3 are Γ-

invariant elements of degree one, they generate Q̃. It follows from the quadratic
relations for Q4 that (x0xi − xix0)qi = αi(xjxk + xkxj)qjqk and (x0xi + xix0)qi =
(xjxk − xkxj)qjqk. Rewriting these relations in terms of y0, y1, y2, y3 gives the
relations in (6-3). �

Remark 6.2. It follows from the presentation given by the relations (6-3) that

the identity and the sign-change maps Q̃1 → Q̃1 both extend to algebra anti-

automorphisms of Q̃.

Since Q̃ is an Artin-Schelter regular noetherian algebra of global dimension and
GK-dimension 4, it is a domain by [4, Thm. 3.9].

Proposition 6.3. There is an action of Γ as graded k-algebra automorphisms of

Q̃ given by Table 2.

Table 2. The action of Γ as automorphisms of Q̃

y0 y1 y2 y3
γ1 y0 y1 −y2 −y3
γ2 y0 −y1 y2 −y3
γ3 y0 −y1 −y2 y3
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Using the conjugation action of Γ as automorphisms of M2(k), this gives an action

of Γ as automorphisms of Q̃ ⊗ M2(k). The invariant subalgebra (Q̃ ⊗ M2(k))
Γ is

generated by

z0 := y0, z1 := y1q1, z2 := y2q2, z3 := y3q3

and is isomorphic to Q via zj �→ xj.

Proof. A calculation shows that the action of Γ respects the relations (6-3). Because

(Q̃ ⊗M2(k))
Γ is Koszul with Hilbert series (1 − t)−4, it is generated by 4 degree-

one elements subject to 6 degree-two relations. The elements z0, z1, z2, z3 are Γ-

invariant so generate (Q̃ ⊗M2(k))
Γ. It follows from the quadratic relations for Q̃

that (y0yi − yiy0)qi = αi(yjyk − ykyj)qjqk and (y0yi + yiy0)qi = (yjyk + ykyj)qjqk.
Rewriting these relations in terms of z0, z1, z2, z3 gives the relations z0zi − ziz0 =
αi(zjzk + zkzj) and z0zi + ziz0 = zjzk − zkzj . �

6.5. Central elements in Q̃. In [30, Thm. 2], Sklyanin proved that

(6-4) Ω := −x2
0+x2

1+x2
2+x2

3 and Ω′ := x2
1+

(
1 + α1

1− α2

)
x2
2+

(
1− α1

1 + α3

)
x2
3

belong to the center of Q when k = C. By the Principle of Permanence of Algebraic
Identities, Ω and Ω′ are central for all k.

The elements x2
0, x

2
1, x

2
2, x

2
3 are fixed by the action of Γ. Since y2j = −x2

j for
j = 1, 2, 3, the elements

Θ := y20 + y21 + y22 + y23 and Θ′ := y21 +

(
1 + α1

1− α2

)
y22 +

(
1− α1

1 + α3

)
y23

belong to the center of Q̃. We note that Θ = −Ω ⊗ I2 and Θ′ = −Ω′ ⊗ I2. For
simplicity, we will often conflate them with −Ω and −Ω′ respectively.

7. Γ acts on E as translation by the 2-torsion subgroup

7.1. If we use x0, x1, x2, x3 as an ordered set of coordinate functions on Q∗
1, then

the action of Γ on Q∗
1 induced by its action on Q1 is given by the formulas

(7-1)

⎧⎪⎨⎪⎩
γ1(δ0, δ1, δ2, δ3) = (δ0, δ1,−δ2,−δ3),

γ2(δ0, δ1, δ2, δ3) = (δ0,−δ1, δ2,−δ3),

γ3(δ0, δ1, δ2, δ3) = (δ0,−δ1,−δ2, δ3).

We will write P3 for P(Q∗
1), the projective space of lines in Q∗

1. The action of Γ
on Q∗

1 induces an action of Γ as automorphisms of P3 given by the formulas in (7-1).
The relations for Q, which are elements of Q1 ⊗ Q1, are bi-homogeneous forms

on P3 × P3. We write R = ker(Q1 ⊗Q1
mult−→ Q2) and define the subscheme

V := {(u,v) | r(u,v) = 0 for all r ∈ R} ⊆ P3 × P3.

Let pri : P3 × P3 → P3, i = 1, 2, be the projections of V onto the left and right
copies of P3.

Proposition 7.1 ([33, Props. 2.4, 2.5]). With the above notation,

pr1(V ) = pr2(V ) = E ∪
{
(1, 0, 0, 0), (1, 0, 0, 0), (1, 0, 0, 0), (1, 0, 0, 0)

}
,
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where E is the intersection of the quadrics

x2
0 + x2

1 + x2
2 + x2

3 = 0,

(1− γ)x2
1 + (1 + αγ)x2

2 + (1 + α)x2
3 = 0.

Furthermore, E is an elliptic curve.

The reader will notice that we use the same notation for elements in Q as for
elements in the symmetric algebra S(Q1). Thus, in Proposition 7.1, x2

0 + x2
1 +

x2
2 + x2

3 is an element in S(Q1), i.e., a degree-two form on P3, whereas in (6-4),
−x2

0 + x2
1 + x2

2 + x2
3 denotes an element in Q.

It is clear that Γ fixes the points in {(1, 0, 0, 0), (1, 0, 0, 0), (1, 0, 0, 0), (1, 0, 0, 0)}.
It is also clear that E is stable under the action of Γ (indeed, that must be so
because R is Γ-stable). The map Γ → Aut(E) is injective, so we will identify Γ
with a subgroup of Aut(E). Once we have fixed a group law + on E we will identify
E with the subgroup of Aut(E) consisting of the translation automorphisms; i.e.,
E → Aut(E) sends a point v ∈ E to the automorphism u �→ u+ v.

Once we have defined the group (E,+) we will write o for its identity element
and

E[2] := {v ∈ E | v + v = o}.
The next main result, Theorem 7.6, shows we can define + such that Γ = E[2] as
subgroups of Aut(E). We will then identify Γ with E[2]. In anticipation of that
result we define an involution − : E → E and a distinguished point o ∈ E by

(7-2) −(w, x, y, z) := (−w, x, y, z)

and

o :=
(
0,
√
ν − 1,

√
1− μ,

√
μ− ν

)
,

where

μ :=
1− γ

1 + α
and ν :=

1 + γ

1− β

and
√
ν − 1,

√
1− μ, and

√
μ− ν are some fixed square roots.2 The restrictions on

the values of α, β, γ imply that |{1, μ, ν}| = 3. We use this fact in the proof of
Lemma 7.5.

Lemma 7.2.

E ∩ {x0 = 0} =
{
p ∈ E

∣∣∣ p = −p
}

=
{(

0,±
√
ν − 1,±

√
1− μ,±

√
μ− ν

)}
.

Proof. It follows from the definition of − that E ∩ {x0 = 0} = {p ∈ E | p = −p}.
Computing E ∩ {x0 = 0} reduces to computing the intersection of the plane conics
x2
1 + x2

2 + x2
3 = 0 and μx2

1 + νx2
2 + x2

3 = 0. The conics meet at four points, namely(
±
√
ν − 1, ±

√
1− μ, ±√

μ− ν
)
∈ P2. The result follows. �

2The choice of square root doesn’t matter—as one takes the different square roots one obtains
4 different candidates for o. But, as we will see, with the choice of + we eventually make, those 4
points are the points in E[2]. The situation is analogous to that of a smooth plane cubic: there are
nine inflection points, and if one chooses the group law so that one of those points is the identity,
then the inflection points are the points in E[3], the 3-torsion subgroup.
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Lemma 7.3. There is a degree-two morphism π : E → P1 such that π(p) = π(−p)
for all p ∈ E; i.e., the fibers of π are the sets {p,−p}, p ∈ E. In particular, the
ramification locus of π is {p ∈ E | p = −p} = {o, ξ1, ξ2, ξ3} where

o :=
(
0,
√
ν − 1,

√
1− μ,

√
μ− ν

)
,

ξ1 := γ1(o) =
(
0,

√
ν − 1, −

√
1− μ,

√
μ− ν

)
,

ξ2 := γ2(o) =
(
0, −

√
ν − 1,

√
1− μ,

√
μ− ν

)
,

ξ3 := γ3(o) =
(
0, −

√
ν − 1, −

√
1− μ,

√
μ− ν

)
.

Proof. The conic C, given by μx2
1 + νx2

2 + x2
3 = 0, is smooth so isomorphic to P1.

Define π : E → C by π(w, x, y, z) = (x, y, z). The result is now obvious. �

Proposition 7.4. Let E′ ⊆ P2 be the curve y2z = x(x− z)(x− λz) where

λ :=
ν − μν

ν − μ
=

1

γ

(
1 + γ

1 + α

)(
α+ γ

1− β

)
,

and consider the group (E′,+) in which (0, 1, 0) is the identity and three points of
E′ sum to zero if and only if they are collinear.

(1) There is an isomorphism of varieties g : E → E′ such that

g(o) = ∞ = (0, 1, 0), g(ξ1) = (0, 0, 1), g(ξ2) = (1, 0, 1), g(ξ3) = (λ, 0, 1).

(2) If (E,+) is the unique group law such that g : (E,+) → (E′,+) is an
isomorphism of groups, then E[2] = {p | p = −p} = {o, ξ1, ξ2, ξ3}, and

(3) p+ (−p) = o for all p ∈ E, and
(4) 4 points on E are coplanar if and only if their sum is zero.

Proof. (1) Let π : E → C = {μx2
1+νx2

2+x2
3 = 0} be the morphism π(x0, x1, x2, x3)

= (x1, x2, x3) in Lemma 7.3 and let f : C → P1 be the isomorphism

f(x1, x2, x3) = (
√
−νx2 +

√
μx1, x3) = (x3,

√
−νx2 −

√
μx1)

with inverse

f−1(s, t) =
(

1√
μ(s

2 − t2), 1√
−ν

(s2 + t2), 2st
)
.

Let h = f ◦ π : E → P1. The ramification locus of π, and hence of h, is obviously
{p ∈ E | p = −p}. Let E′ be the plane cubic y2z = x(x − z)(x − λz) and let
h′ : E′ → P1 be the morphism h′(x, y, z) = (x, z).

Consider the following diagram:

(7-3) E

E′

C

P1

g

π

h′

f

The following result is implicit in [14, Ch. 4, §4]: If E and E′ are elliptic curves and
h : E → P1 and h′ : E′ → P1 are degree-two morphisms having the same branch
points, then there is an isomorphism of varieties g : E → E′ such that h′g = h.

The four branch points for h are(
±
√
μν − ν ±

√
μν − μ,

√
μ− ν

)
=
(√

μ− ν, ±
√
μν − ν ∓

√
μν − μ

)
.
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The cross-ratios of these four points are
{
λ, 1

λ , 1− λ, 1
1−λ ,

λ
λ−1 ,

λ−1
λ

}
where

λ :=
ν − μν

ν − μ
=

1

γ

(
1 + γ

1 + α

)(
α+ γ

1− β

)
.

The four branch points for h′ : E′ → P1 have the same cross-ratios so E ∼= E′.
In particular, there is an isomorphism of varieties g : E → E′ such that

g(o) = ∞ = (0, 1, 0), g(ξ1) = (0, 0, 1), g(ξ2) = (1, 0, 1), g(ξ3) = (λ, 0, 1).

(2) Let + be the unique group law on E such that g(p + p′) = g(p) + g(p′)
for all p, p′ ∈ E. Then g is an isomorphism of algebraic groups. Since E′[2] =
{(0, 1, 0), (0, 0, 1), (1, 0, 1), (λ, 0, 1)}, E[2] = {o, ξ1, ξ2, ξ3} = {p ∈ E | p = −p}.

(3) Since g : E → E′ is a group isomorphism it suffices to show that g(p) +
g(−p) = o. The fibers of h consist of points that sum to zero, so it suffices to show
that h(g(p)) = h(g(−p)). However, hg = fπ and π(p) = π(−p) so hg(p) = hg(−p).

(4) Let Φ : Div(E) → E be the map

Φ
(
(q1) + · · ·+ (qm)− (r1)− · · · − (rn)

)
:= q1 + · · ·+ qm − r1 − · · · − rn.

It is easy to show that if D and D′ are divisors of the same degree, then D ∼ D′

if and only if Φ(D) = Φ(D′). The points {o, ξ1, ξ2, ξ3} are coplanar. Four points
q0, . . . , q3 ∈ E are coplanar if and only if (o) + (ξ1) + (ξ2) + (ξ3) ∼ (q0) + (q1) +
(q2) + (q3). Since o + ξ1 + ξ2 + ξ3 = o, q0, . . . , q3 ∈ E are coplanar if and only if
q0 + q1 + q2 + q3 = o. �

Lemma 7.5. There are exactly four singular quadrics that contain E, namely:

Q0 = {μx2
1 + νx2

2 + x2
3 = 0},

Q1 = {μx2
0 + (μ− ν)x2

2 + (μ− 1)x2
3 = 0},

Q2 = {νx2
0 + (ν − μ)x2

1 + (ν − 1)x2
3 = 0},

Q3 = {x2
0 + (1− μ)x2

1 + (1− ν)x2
2 = 0}.

Let p ∈ E. For each i, the line through −p and γi(p) (understood as the tangent to
E at −p when −p = γi(p)) lies on Qi.

Proof. Since the equation defining each Qi is a linear combination of the equations
in Proposition 7.1, Qi contains E. Each Qi has a unique singular point, namely ei,
where

e0 := (1, 0, 0, 0), e1 := (0, 1, 0, 0), e2 := (0, 0, 1, 0), e3 := (0, 0, 0, 1).

Thus Qi is a union of lines, and every line on Qi passes through ei.
Let f1, f2 be quadratic forms such that E = {f1 = f2 = 0}. A quadric contains

E if and only if it is the zero locus of λ1f1+λ2f2 for some (λ1, λ2) ∈ P1. Conversely,
for all (λ1, λ2) ∈ P1 the zero locus of λ1f1+λ2f2 is a quadric that contains E. Since
|{1, μ, ν}| = 3, there are exactly 4 singular quadrics in the pencil of quadrics that
contain E; these are the quadrics Qi (see [17, Prop. 3.4]).

Let p = (w, x, y, z) ∈ E. Let L be a line through −p and e0. Thus L =
{(t− sw, sx, sy, sz) | (s, t) ∈ P1}. The line L lies on Q0 and meets E when

(t− sw)2 + (sx)2 + (sy)2 + (sz)2 = μ(sx)2 + ν(sy)2 + (sz)2 = 0.

The second expression is zero for all s. The first expression is zero if and only
if t2 − 2stw = 0. One solution to this is t = 0, and it corresponds to the point
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−p ∈ L ∩ E. The other solution occurs when t − 2sw = 0 and corresponds to the
point (w, x, y, z) = p. In other words, the line through e0 and p intersects E again
at γ0(p).

The line through −p and e1 is {(−sw, sx+ t, sy, sz) | (s, t) ∈ P1}. It lies on Q1

and meets E when

(−sw)2 + (sx+ t)2 + (sy)2 + (sz)2 = μ(−sw)2 + ν(sy)2 + (sz)2 = 0.

The second expression is zero for all s and the first is zero if and only if t2+2stx = 0.
The solution t = 0 to this equation corresponds to the point −p ∈ L∩E. The other
solution occurs when t+ 2sx = 0 and gives the point (−w,−x, y, z) = γ1(p).

Similar calculations show that the line through ei and −p (which is contained in
Qi) intersects E again at γi(p) for i = 2, 3. This is a rephrasing of the last claim in
the statement and hence finishes the proof. �

Theorem 7.6. There is a group law + on E such that each element in Γ acts as
translation by a point in E[2].

Proof. Let γi be the automorphism in Table 1 and let ξi be the point in Lemma 7.3.
We will show that γi is translation by ξi, i.e., ξi = γi(o).

Let p and q be arbitrary points of E. The line through −p and γi(p) lies on Qi.
So does the line through −q and γi(q). Because these lines are on Qi they meet
at ei. The lines therefore span a plane; i.e., −p, γi(p), −q, and γi(q) are coplanar.
Therefore (−p) + γi(p) + (−q) + γi(q) = o. Taking q = o and rearranging the
equation gives p = γi(p) + γi(o) or γi(p) = p− γi(o) = p+ γi(o). �

7.2. Twisting a Q-module by γi. Let γ ∈ Γ and let M be a graded left Q-
module. We define γ∗M to be the graded Q-module which is equal to M as a
graded vector space and has the new Q-action

r �γm := γ−1(r)m

for r ∈ Q and m ∈ γ∗M = M . We make γ∗ into an auto-equivalence of Gr(Q) in
the obvious way and we note that these auto-equivalences have the property that
γ∗δ∗ = (γδ)∗.

In preparation for the next result, recall the discussion of point and line modules
for Q from §1.6.

Proposition 7.7. Let p, q ∈ E and let Mp and Mp,q be the associated point and
line modules. Then γ∗

i Mp
∼= Mp+ξi and γ∗

i Mp,q
∼= Mp+ξi,q+ξi .

Proof. Let r ∈ Q1 and p ∈ P3 = P(Q∗
1). The action of γi on Q1 and Q∗

1 is such
that γi(r)(p) = r(γ−1

i (p)) = r(γi(p)). Thus, r(p) = 0 if and only if γi(r) vanishes
at γi(p). Since Mp = Q/Qp⊥ where p⊥ is the subspace of Q1 vanishing at p,
γ∗
i Mp = Q/Q(p+ ξi)

⊥. A similar argument works for line modules. �

8. Properties of B̃

The group law on E is such that the degree-four line bundle L := OP3(1)|E is
isomorphic to OE(D) where D is the divisor E[2]. Because Γ acts on E as does
translation by E[2], E[2] is stable under Γ and there is therefore a Γ-equivariant
structure on L. Hence, since the action of Γ also commutes with translation p �→
p+ τ , Γ acts on the data (E, τ,L). It follows that Γ acts as automorphisms of the
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twisted homogeneous coordinate ring B(E, τ,L). Accordingly, using the general •̃
construction described in the first paragraph of §3.1.5, we define

B̃ := (B(E, τ,L)⊗M2(k))
Γ.

8.1. Let R := Q/(Ω,Ω′). Since Ω and Ω′ are fixed by Γ, there is an induced action
of Γ on R. It follows that there is an exact sequence

(QΩ⊕QΩ′)⊗M2(k) → Q⊗M2(k) → R⊗M2(k) → 0

in which the maps are Γ-equivariant. Since Θ = −Ω ⊗ 1 and Θ′ = −Ω′ ⊗ 1 are

Γ-invariant, (QΩ⊗M2(k))
Γ = Q̃Θ and (QΩ′ ⊗M2(k))

Γ = Q̃Θ′. Since Q⊗M2(k)
is a semisimple Γ-module, we obtain an exact sequence

Q̃Θ⊕ Q̃Θ′ → Q̃ → R̃ := (R⊗M2(k))
Γ → 0

when we take Γ-invariants in the previous exact sequence. Thus R̃ = Q̃/(Θ,Θ′).

By Proposition 3.5, the Hilbert series of R̃ is the same as that of R, namely (1 −
t2)2(1− t)−4. It follows that Θ,Θ′ is a regular sequence on Q̃.

By [33, §3.9], R is isomorphic to B(E, τ,L). Let ϕ denote that isomorphism.
Since ϕ is a Γ-module homomorphism in degree one, it is Γ-equivariant in all

degrees. It follows that ϕ induces an algebra isomorphism ϕ̃ : R̃ → B̃. Thus,

B̃ ∼= Q̃/(Θ,Θ′).

8.2. The category QGr(B̃). Let B = B(E, τ,L), B′ = B ⊗ M2(k), and B =
M2(OE). The main result in this subsection is

Theorem 8.1. There is an equivalence of categories QGr(B̃) ≡ Qcoh(E/E[2]).

Corollary 8.2. The set of isomorphism classes of simple QGr(B̃)-objects is in
natural bijection with E/E[2].

The plan is to work our way through the chain of equivalences

(8-1) QGr(B̃) ≡ QGr(B′)Γ ≡ Qcoh(B)Γ ≡ Qcoh(BΓ) ≡ Qcoh(E/E[2]).

The notation needs some unpacking.
First, Γ acts on the category QGr(B′) (via the diagonal action on the tensor

product B′ = B ⊗ M2(k)) as well as on Qcoh(B). Such an action comprises an
auto-equivalence γ∗ of the respective category for each γ ∈ Γ together with natural
isomorphisms tγ,δ : γ∗ ◦ δ∗ ∼= (γδ)∗ for γ, δ ∈ Γ such that

(8-2) γ∗ ◦ δ∗ ◦ ε∗ ��

��

(γδ)∗ ◦ ε∗

��
γ∗ ◦ (δε)∗ �� (γδε)∗

commutes for all γ, δ, ε ∈ Γ.
The action of Γ as automorphisms of B′ induces an action of Γ on Gr(B′) as

described in §7.2. Since the subcategory Fdim(B′) is stable under each γ∗, the
Γ-action passes to the quotient category QGr(B′). The action on Qcoh(B) comes
from translation on E by E[2] together with twisting via the Γ-action on the M2(k)
tensorand in B = OE ⊗M2(k).
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If Γ acts on a category C we can then form the category of Γ-equivariant objects
CΓ. The objects of CΓ are objects c ∈ C equipped with isomorphisms ϕγ : c → γ∗c
for γ ∈ Γ such that

(8-3)
c

γ∗c γ∗(δ∗c)

(γδ)∗c

ϕγ

γ∗(ϕδ)

ϕγδ

tγ,δ

commutes and the morphisms are those in C that preserve all the structure. Ex-
plicitly, if (ϕγ)γ∈Γ and (ϕ′

γ)γ∈Γ are equivariant structures on objects c and c′,
respectively, a morphism f : (ϕγ)γ∈Γ → (ϕ′

γ)γ∈Γ is a morphism f : c → c′ in C
such that α∗(f)ϕγ = ϕ′

γf for all γ ∈ Γ. This elucidates the notation CΓ in (8-1)
for C = QGr(B′) or Qcoh(B).

Finally, BΓ denotes the sheaf of algebras on E/E[2] obtained by descent from
B. To make sense of this, let ρ : E → E/E[2] be the étale quotient morphism and
recall the following result.

Proposition 8.3 ([22, Prop. 2, p. 70]). The functors

G � ρ∗G and F � (ρ∗F)Γ

are mutually inverse equivalences between Qcoh(E/E[2]) and Qcoh(E)Γ.

The equivalences in Proposition 8.3 are monoidal because ρ∗ is. Thus, under
these equivalences, Γ-equivariant sheaves of algebras on E (i.e., algebra objects in
Qcoh(E)Γ) correspond to sheaves of algebras on E/E[2]. Keeping this in mind, we
define BΓ to be the sheaf of OE/E[2]-algebras that corresponds to B ∈ Qcoh(E)Γ,

i.e., BΓ := (ρ∗B)Γ.

Proof of Theorem 8.1. We go through the equivalences in (8-1) one by one, moving
rightward.

First equivalence. The graded version of Proposition 3.10 (applied to B′

coacted upon by the function algebra of Γ) provides the equivalence Gr(B̃) and

Gr(B)Γ. The equivalence restricts to the subcategories Fdim(B̃) and Fdim(B′)Γ so
descends to the quotient categories QGr.

Second equivalence. By [5, Thm. 3.12], QGr(B) ≡ Qcoh(OE). Since B =
OE ⊗M2(k), Morita equivalence lifts this to

(8-4) QGr(B′) ≡ Qcoh(B).
Note that Γ acts in the same way on the M2(k) tensorands in B′ = B⊗M2(k) and
B = OE ⊗ M2(k). This observation together with the precise description of the
equivalence QGr(B) ≡ Qcoh(E) from [5, Thm. 3.12] shows that (8-4) intertwines
the Γ-actions on the two categories. This implies the desired result that it lifts to
an equivalence between the respective categories of Γ-equivariant objects.

Third equivalence. Under the equivalences in Proposition 8.3, B ∈ Qcoh(E)Γ

corresponds to BΓ ∈ Qcoh(E/E[2]). Because those equivalences are monoidal they
implement an equivalence between the category of B-modules in Qcoh(E)Γ and the
category of BΓ-modules in Qcoh(E/E[2]).

Fourth equivalence. Because ρ : E → E/E[2] is étale and ρ∗(BΓ) ∼= M2(OE),
BΓ is a sheaf of Azumaya algebras on E/E[2]. The fourth equivalence now follows
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from Morita equivalence and the fact that BΓ is Azumaya and hence (because we
are working over an algebraically closed field) of the form End(V) for some vector
bundle V on E/E[2]. �

Remark 8.4. The proof of Theorem 8.1 also shows that the degree-shift functor

on the left-hand side of the equivalence QGr(B̃) ≡ Qcoh(E/E[2]) is identified with
(twisting by) translation by the image of τ in E/E[2] on the right-hand side.

We can actually find an explicit vector bundle V on E/E[2] such that BΓ ∼=
End(V).

Proposition 8.5. Let V be the unique non-split extension 0 −→ OE/E[2] −→ V −→
OE/E[2] −→ 0. There is an isomorphism of OE/E[2]-algebras BΓ ∼= End(V).

Proof. We already know that BΓ is trivial Azumaya; hence BΓ ∼= End(U) for some
rank 2 vector bundle U . By Atiyah’s classification of vector bundles on elliptic
curves, U is either decomposable or isomorphic to V ⊗L for some L ∈ Pic(E/E[2]).
If U is decomposable, then the OE/E[2]-module BΓ contains two copies of OE/E[2] as

direct summands, whence dimH0(BΓ) � 2. Since dimH0(BΓ) = dimH0(B)Γ = 1,
we must have BΓ ∼= End(V ⊗ L) ∼= End(V). �

8.3. E/E[2] is a closed subvariety of Projnc(Q̃). The title of this subsection
is made precise in the following way. In [44, §3.4], a subcategory B of an abelian
category D is said to be closed if it is closed under subquotients and the inclusion
functor i∗ : B → D is fully faithful and has a left adjoint i∗ and a right adjoint i!.
In [32, Thm. 1.2], which corrects an error in [36], it is shown that if J is a two-sided
ideal in an N-graded k-algebra A, then the inclusion functor Gr(A/J) → Gr(A)
induces a fully faithful functor i∗ : QGr(A/J) → QGr(A) whose essential image is

closed in the sense of [44, §3.4]. In particular, since B̃ is a quotient of Q̃, this result
in conjunction with Theorem 8.1 shows that the essential image of the composition

Qcoh(E/E[2]) → QGr(B̃) → QGr(Q̃) is closed in the sense of [44, §3.4].

8.4. Fat point modules for B̃. Let p ∈ E. Let p⊥ ⊂ Q1 be the subspace of Q1

vanishing at p. We call Mp := Q/Qp⊥ the point module associated to p. We view k2

as a left M2(k)-module in the natural way. Then Mp⊗k2 is a left Q⊗M2(k)-module

and hence a left Q̃-module.

Since (Ω,Ω′) annihilates Mp, Mp ⊗ k2 is a B̃-module.

Lemma 8.6. If p ∈ E, then at most one of {x0, x1, x2, x3} vanishes at p.

Proof. Suppose xr(p) = xs(p) = 0 and r �= s. Let t ∈ {0, 1, 2, 3}−{r, s}. There are
non-zero scalars λ, μ, ν such that λx2

r + μx2
s + νx2

t vanishes on E so xt(p) = 0 also.
But x2

0 + x2
1 + x2

2 + x2
3 vanishes on E, so it would follow that xj(p) = 0 for all j.

That is absurd. �

Proposition 8.7. Let p ∈ E. If m⊗ v is a non-zero element in (Mp ⊗ k2)n, then

we have Q̃(m⊗ v) ⊇ (Mp ⊗ k2)≥n+1. In particular, every quotient of Mp ⊗ k2 by a

non-zero graded Q̃-submodule has finite dimension.

Proof. Let N be a non-zero graded Q̃-submodule of Mp ⊗ k2. Let en ⊗ v be a
non-zero element in N where {en} is a basis for the degree-n component of Mp and
v ∈ k2 − {0}.
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If p+nτ = (λ0, λ1, λ2, λ3) with respect to the coordinates x0, . . . , x3, then there
is a basis {en+1} for the degree-(n+ 1) component of Mp such that xjen = λjen+1

for j = 0, . . . , 3.
By Lemma 8.6, at least three elements xj , j = 0, . . . , 3, are non-vanishing at

p+ nτ .
Suppose, for the sake of argument, that this is the case for j ≥ 1. Then

λ−1
1 x1en = λ−1

2 x2en = λ−1
3 en = en+1 or, more precisely,

(kx1 ⊗ q1 + kx2 ⊗ q2 + kx3 ⊗ q3)(en ⊗ v) = en+1 ⊗ (kq1 + kq2 + kq3)v.

The set {(λ, μ, ν) ∈ P2 | rank(λq1 + μq2 + νq3) ≤ 1} is the non-degenerate conic
λ2 + μ2 + ν2 = 0. Since it doesn’t contain a line, every 2-dimensional subspace
of kq1 + kq2 + kq3 contains an invertible matrix; hence kq1 + kq2 + kq3 does not
contain the subspace of M2(k) that annihilates v; hence (kq1 + kq2 + kq3)v = k2.

Thus, in this case Q̃1(en ⊗ v) = en+1 ⊗ k2. The other cases are similar: the points
(λ, μ, ν) ∈ P2 where rank(λq0 + μq1 + νq2) ≤ 1 form a non-degenerate conic, etc.

Thus, Q̃1(en ⊗ v) = en+1 ⊗ k2 in all cases. It follows by induction on n that

Q̃(en ⊗ v) ⊇ (Mp)≥n+1 ⊗ k2. This concludes the proof. �
Remark 8.8. Over the complex numbers, the fact that

(8-5) (kx1 ⊗ q1 + kx2 ⊗ q2 + kx3 ⊗ q3)(en ⊗ v)

is 2-dimensional can be proved as a consequence of the celebrated Borsuk-Ulam
theorem (see e.g. [19, Theorem 2.1.1]).

To see this, let us preserve the notation in the proof and assume as before that
xj , j ≥ 1, do not annihilate en. Now, if (8-5) were 1-dimensional, then as (r1, r2, r3)
ranges over the 2-sphere S2 the map

S2 � (r1, r2, r3) �→
∑
j≥1

rjλ
−1
j (xj ⊗ qj)(en ⊗ v)

has its image contained in C ∼= R2. Since this image does not contain 0 ∈ R2,
we have a nowhere-vanishing continuous odd map S2 → R2, in contradiction to
[19, Thm. 2.1.1, BU1b].

Corollary 8.9. Every simple object in QGr(B̃) is isomorphic to π∗(Mp ⊗ k2) for
some p ∈ E. Under the equivalence in Theorem 8.1, π∗(Mp ⊗ k2) corresponds to
Op+E[2] ∈ Qcoh(E/E[2]).

Proof. We first define a set function r : E → E/E[2]. Let p ∈ E. Because Mp ⊗ k2

is a 1-critical B̃-module, π∗(Mp⊗k2) is a simple object in QGr(B̃). The equivalence
in Theorem 8.1 sends π∗(Mp ⊗ k2) to a simple object in Qcoh(E/E[2]); i.e., to a
skyscraper sheaf Or(p) for a unique point r(p) ∈ E/E[2].

We will show that r is surjective by showing that it agrees with the quotient map
ρ : E → E/E[2] (notation as in the proof of Theorem 8.1) by tracing through the
equivalences in (8-1). To do that we must prove that r(p) = p+E[2] or, equivalently,
that the support of Or(p)) is p + E[2]. Equivalently, this entails showing that the
support of ρ∗Or(p) ∈ Qcoh(E) is the E[2]-orbit of p. Certainly the support of
ρ∗Or(p) is some E[2]-orbit, so it suffices to prove that

(8-6) p ∈ supp(ρ∗Or(p)).

Using the fact that the third equivalence in (8-1) is implemented by ρ∗, note
that by the definition of r(p) the object of QGr(B′)Γ corresponding to ρ∗Or(p) is
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the image of B′ ⊗
˜B (Mp ⊗ k2) in QGr(B′). The latter surjects onto the image of

Mp ⊗ k2 in QGr(B′), and hence, identifying

QGr(B′) ≡ Qcoh(E) and QGr(B′)Γ ≡ Qcoh(E)Γ,

the Γ-equivariant OE-module ρ∗Or(p) surjects onto the skyscraper sheaf Op, mean-
ing that we indeed have (8-6). This finishes the proof. �

The previous result is the reason that Mp ⊗ k2 is called a fat point module for

Q̃: “point” because in algebraic geometry simple objects in Qcoh(X) correspond

to closed points, “fat” because HomQGr( ˜Q)(Q̃, π∗(Mp ⊗ k2)) = 2, not 1.

Note moreover that in the course of the proof of Corollary 8.9 we have identified
the map E → E/E[2] defined by

E � p �→ Mp ⊗ k2

as being precisely the surjection modulo 2-torsion. Consequently, the classes in

QGr(B̃) (or Q̃) forMp⊗k2 only depend on the class of pmodulo E[2]. In Proposition

8.10 we lift this observation to Gr(Q̃).

Proposition 8.10. If ω ∈ E[2] and p ∈ E, then there is an isomorphism of Q̃-
modules

Mp ⊗ k2 ∼= Mp+ω ⊗ k2.

Proof. Write E[2] = {o, ξ1, ξ2, ξ3}. If ω = o the identity map is an isomorphism.
Fix i ∈ {1, 2, 3}.

Let {en | n ≥ 0} be a homogeneous basis for Mp with deg(en) = n. For each n,
let ξnj ∈ k, j = 0, 1, 2, 3, be the unique scalars such that

xjen = ξnjen+1.

Thus, (ξn0, ξn1, ξn2, ξn3) = p+ nτ . Let ξ′n0 = ξn0, ξ
′
ni = ξni, and ξ′nj = −ξnj when

j ∈ {1, 2, 3}−{i}. Therefore p+nτ+ξi = (ξ′n0, ξ
′
n1, ξ

′
n2, ξ

′
n3). Let {fn | n ≥ 0} be the

unique homogeneous basis for Mp+ξi with deg(fn) = n such that xjfn = ξ′njfn+1

for j = 0, 1, 2, 3.
Define ϕi : Mp ⊗ k2 −→ Mp+ξi ⊗ k2 by ϕi(en ⊗ v) := fn ⊗ qiv. It follows that

ϕi

(
yj · (en ⊗ v)

)
= ϕi(xjen ⊗ qjv) = ϕi(ξjen+1 ⊗ qjv) = ξjfn+1 ⊗ qiqjv

and

yj · ϕi(en ⊗ v) = yj · (fn ⊗ qiv) = xjfn+1 ⊗ qjqiv) = ξ′jfn+1 ⊗ qjqiv.

For all j, ξjfn+1 ⊗ qiqjv = ξ′jfn+1 ⊗ qjqiv because

• if j ∈ {0, i}, then ξj = ξ′j and qiqj = qjqi;
• if j ∈ {1, 2, 3} − {i}, then ξj = −ξ′j and qiqj = −qjqi.
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Therefore ϕi

(
yj · (en ⊗ v)

)
= yj · ϕi(en ⊗ v) for j = 0, 1, 2, 3. This proves that ϕi

is a homomorphism of graded Q̃-modules. It is obviously bijective, so the proof is
complete. �

8.5. B̃ is a prime ring. Davies [9, Cor. 5.3.21] proved that B̃ is a prime ring
when τ has infinite order [9, Hyp. 5.0.2]. We use a different method to prove the
result without any restriction on τ .

Proposition 8.11. Let I1 and I2 be graded ideals in an N-graded left and right
noetherian k-algebra A. Suppose there is a projective scheme X and an equivalence
of categories Φ : QGr(A) → Qcoh(X). By [32], there are functors α1∗ and α2∗
and closed subschemes Z1, Z2 ⊆ X such that the essential image of Φαi∗ is equal
to Qcoh(Zi), and there is a commutative diagram

(8-7) Gr(A/I1)
f1∗ ��

π∗
1

��

Gr(A)

π∗

��

Gr(A/I2)
f2∗��

π∗
2

��
QGr(A/I1) α1∗

�� QGr(A)

Φ

��

QGr(A/I2)a2∗
��

Qcoh(X)

in which fi∗ : Gr(A/Ii) → Gr(A), i = 1, 2, are the natural inclusion functors, and
π∗
1 , π

∗
2 , and π∗ denote the quotient functors. If I1 ∩ I2 = 0 and X is reduced, then

Z1 ∪ Z2 = X.

Proof. Let Ox be the skyscraper sheaf at a closed point x ∈ X and let M be an
A-module such that Φπ∗M ∼= Ox and π∗(M/N) = 0 for all non-zero N ⊆ M . If
I2M = 0, then Ox

∼= Φi2∗π
∗
2M so x ∈ Z2. On the other hand, suppose I2M �=

0. Then π∗(M/I2M) = 0 so π∗(I2M) ∼= Ox. Since I1I2M = 0, π∗(I2M) =
π∗f1∗(I2M) = i1∗π

∗
1M , which implies that i1∗π

∗
1M

∼= Ox. Hence x ∈ Z1.
Thus, every closed point of X belongs to Z1 ∪ Z2. The proposition now follows

from the fact that X is reduced. �

Theorem 8.12. Let A be a connected, N-graded, left and right noetherian k-
algebra. Suppose there is a projective scheme X and an equivalence of categories
Φ : QGr(A) → Qcoh(X). If A is semiprime and X is reduced and irreducible, then
A is a prime ring.

Proof. Suppose the result is false. Then there are non-zero elements x and y such
that xAy = 0. If xm and yn are the top-degree components of x and y, then
xmAyn = 0. Let I1 = AxmA and I2 = AynA. Then I1 and I2 are graded ideals
such that I1I2 = 0. Since (I1 ∩ I2)

2 ⊆ I1I2, the fact that A is semiprime implies
that I1 ∩ I2 = 0. Hence Z1 ∪ Z2 = X. But X is irreducible, so either Z1 = X or
Z2 = X.
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Without loss of generality suppose that Z1 = X. Then the functor i1∗ :
QGr(A/I1) → QGr(A) is an equivalence. In particular, there is a module M ∈
Gr(A/I1) such that πA ∼= i1∗π1M = πf1∗M . Hence, if ω is the right adjoint to π
constructed by Gabriel, ωπA ∼= ωπf1∗M . By Step 2 in the proof of [32, Thm. 1.2],
ωπf1∗M ∼= f1∗ω

′π′M where ω′ is right adjoint to π′. It follows that I1 annihilates
ωπA.

There is an exact sequence 0 → T → A → ωπA where T is the largest finite
dimensional submodule of A. Since A0 = k, T ⊆ A≥1. It follows that Tn = 0
for n � 0. But A is semiprime, so T = 0. Therefore I1 annihilates A. Hence
I1 = 0. �

Corollary 8.13. B̃ is a prime ring.

Proof. As observed in [8, Cor. 5.1.8], because B is a domain, B⊗M2(k) is a prime

ring, so [20, Cor. 1.5(1)] shows that (B⊗M2(k))
Γ, which is B̃, is a semiprime ring.

Therefore Theorems 8.1 and 8.12 imply that B̃ is a prime ring. �

8.5.1. Remark. The hypothesis in Theorem 8.12 that the algebra A is connected
was needed to show that A does not contain a non-zero left ideal of finite dimension.
For B̃, one can prove that without appealing to the fact that B̃ is connected. Since

B̃ = Q̃/(Θ,Θ′) where Θ,Θ′ is a regular sequence on Q̃ of length 2, the projective

dimension of B̃ as a left Q̃-module is 2. Hence, by [17, Prop. 2.1(e)], B̃ does not
contain a non-zero left ideal of finite dimension.

8.5.2. The twisted homogeneous coordinate ring of a reduced and irreducible vari-
ety, in particular B(E, τ,L), is a domain.

Proposition 8.14. B̃ is not a domain. In particular, in B̃, 0 = y20+y21+y22+y23 =

(y0−y1−y2−y3)
2 = (y0−y1+y2+y3)

2 = (y0+y1−y2+y3)
2 = (y0+y1+y2−y3)

2.

Proof. This is a straightforward calculation: (y0 − y1 − y2 − y3)
2 equals

y20 + y21 + y22 + y23 −
3∑

i=1

(y0yi + yiy0 − yjyk − ykyj),

where (i, j, k) is a cyclic permutation of 1, 2, 3. But y0yi + yiy0 = yjyk + ykyj when
(i, j, k) is a cyclic permutation of 1, 2, 3, and y20 + y21 + y22 + y23 = −Ω, which is zero

in B̃. Similar calculations show that the squares of the other 3 elements are zero

in B̃. Alternatively, one can use the fact that Γ acts as automorphisms of B̃ and

these four elements in B̃1 form a Γ-orbit. �
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9. Point modules for Q̃

A point module for a connected graded algebra A is a graded left A-module M
such that M = AM0 and dimk(Mi) = 1 for all i ≥ 0. The importance of point
modules is that they are simple objects in QGr(A).

9.1. Suppose M is a point module for Q̃. Its degree-zero component, M0, is annihi-

lated by a 3-dimensional subspace of Q̃1. That 3-dimensional subspace determines
and is determined by a point in P3, its vanishing locus. We will show that the only
points in P3 that arise in this way are those in Table 3, where the coordinates are
written with respect to the coordinate system (y0, y1, y2, y3). We write P for this
set of points.

Recall that a, b, c, i are fixed square roots of α, β, γ,−1.

Table 3. The points in P

P∞ P0 P1 P2 P3 Γ

(1, 0, 0, 0) (1, 1, 1, 1) (bc,−i,−ib,−c) (ac,−a,−i,−ic) (ab,−ia,−b,−i)

(0, 1, 0, 0) (1, 1,−1,−1) (bc,−i, ib, c) (ac,−a, i, ic) (ab,−ia, b, i) γ1
(0, 0, 1, 0) (1,−1, 1,−1) (bc, i,−ib, c) (ac, a,−i, ic) (ab, ia,−b, i) γ2
(0, 0, 0, 1) (1,−1,−1, 1) (bc, i, ib,−c) (ac, a, i,−ic) (ab, ia, b,−i) γ3

The points in P∞ are fixed by Γ, and every other Pi is a Γ-orbit. If u is the
topmost point in one of the columns Pi, i = 0, 1, 2, 3, the other points in that
column are γ1(u), γ2(u), and γ3(u), in that order.

We define a permutation θ of P with the property θ2 = idP by

(9-1) θ(u) :=

{
u if u ∈ P∞ ∪P0,

γi(u) if u ∈ Pi, i = 1, 2, 3.

9.2. The point scheme, P. Let V denote the linear span of y0, y1, y2, y3. The

defining relations for Q̃ belong to V ⊗2. Non-zero elements in V ⊗2 are forms of
bi-degree (1, 1) on P(V ∗)× P(V ∗) = P3 × P3. Let

P : = the subscheme of P3 × P3 where the quadratic relations for Q̃ vanish.

We will show that P is a reduced scheme consisting of 20 points.

Lemma 9.1. If (u,v) ∈ P, then (v,u) ∈ P.

Proof. As noted in Remark 6.2, there is an anti-automorphism of Q̃ given by yi �→
−yi for i = 0, 1, 2, 3. Thus, if r =

∑
μijyi ⊗ yj is a quadratic relation for Q̃, so

is r′ =
∑

μijyj ⊗ yi. Obviously, r vanishes at (u,v) ∈ P3 × P3 if and only if r′

vanishes at (v,u). The lemma now follows from the fact that P is the zero locus

of the set of quadratic relations for Q̃. �

9.2.1. From point modules to points in P. Suppose M is a point module for Q̃. Let
e0, e1, . . . be a homogeneous basis for M with deg(en) = n. Define λnj ∈ k by the
requirement that yjen = λnjen+1. Because M is a point module, for each n, some
λnj is non-zero. The point pn := (λn0, λn1, λn2, λn3) ∈ P3 does not depend on the
basis {en}n≥0. Since yj(pn) = λnj , the pn’s belong to P(V ∗).
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Because M is a Q̃-module, each quadratic relation r ∈ V ⊗2 has the property
that r · en = 0 for all n. Thus, r viewed as a (1,1) form on P3 × P3 vanishes at
(pn+1, pn). Hence (pn+1, pn) ∈ P.

9.3. The point modules Mu, u ∈ P.

Proposition 9.2. Let u ∈ P. Let θ be the function defined at (9-1), and for each
n ≥ 0 write θn(u) = (λn0, λn1, λn2, λn3), where the coordinates are written with
respect to (y0, y1, y2, y3). There is a point module, Mu, with homogeneous basis
e0, e1, . . ., deg(en) = n, and action

(9-2) yjen := λnjen+1.

These 20 point modules are pairwise non-isomorphic.

Proof. It is clear that Mu is generated by e0, so it suffices to show that (9-2)

really does define a left Q̃-module. To do this we must show that every relation

for Q̃ annihilates every en. In other words, we must show that every quadratic

relation for Q̃, when viewed as a form of bi-degree (1, 1) on P3 × P3, vanishes at(
(λn+1,0, λn+1,1, λn+1,2, λn+1,3), (λn0, λn1, λn2, λn3)

)
∈ P3 ×P3 for all n ≥ 0; i.e., it

suffices to show that these forms vanish at (θ(v),v) for all v ∈ P. Since θ2 = 1,
this is equivalent to showing they vanish at (v, θ(v)) for all v ∈ P.

The relations for Q̃ are the entries in the matrix M1y where

M1 =

⎛⎜⎜⎜⎜⎜⎜⎝
−y1 y0 αy3 −αy2
−y2 −βy3 y0 βy1
−y3 γy2 −γy1 y0
y1 y0 −y3 −y2
y2 −y3 y0 −y1
y3 −y2 −y1 y0

⎞⎟⎟⎟⎟⎟⎟⎠ and y =

⎛⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎠ .

We must therefore show that M1(v)θ(v)
T = 0 for all v ∈ P. This is a routine

calculation. We give one example to illustrate the process.
Let v = (δ0, δ1, δ2, δ3) ∈ P1. Then θ(v) = γ1(v) = (δ0, δ1,−δ2,−δ3), so

M1(v)θ(v)
T =

⎛⎜⎜⎜⎜⎜⎜⎝
−δ1 δ0 αδ3 −αδ2
−δ2 −βδ3 δ0 βδ1
−δ3 γδ2 −γδ1 δ0
δ1 δ0 −δ3 −δ2
δ2 −δ3 δ0 −δ1
δ3 −δ2 −δ1 δ0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

δ0
δ1
−δ2
−δ3

⎞⎟⎟⎠ = 2

⎛⎜⎜⎜⎜⎜⎜⎝
0

−δ0δ2 − βδ3δ1
−δ0δ3 + γδ1δ2
δ0δ1 + δ2δ3

0
0

⎞⎟⎟⎟⎟⎟⎟⎠ .

It is easy to check that this 6× 1 matrix is 0 for all v ∈ P1.

The annihilator of e0 in Q̃1 is the subspace that vanishes at u. Hence if u and
v are different points of P, Mu �∼= Mv. �

Theorem 9.3. The 20 point modules Mu, u ∈ P, in Proposition 9.2 are all the

Q̃-point modules.

Proof. Let M be a point module for Q̃. Let {en | n ≥ 0} be a homogeneous
basis for M with deg(en) = n. Let pn, n ≥ 0, be the points in P3 determined
by the procedure described in §9.2.1. Then (pn+1, pn) ∈ P for all n ≥ 0. By
Lemma 9.1, (pn, pn+1) ∈ P. Thus, to prove the theorem it suffices to show that
P =

{(
u, θ(u)

) ∣∣ u ∈ P
}
. This is what we do in Theorem 9.4 below. �
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Theorem 9.4. Let P ⊆ P3 × P3 be the subscheme defined in §9.2. Then

P = {(u,v) ∈ P3 × P3 | M1(u)v = 0} =
{(

u, θ(u)
) ∣∣ u ∈ P

}
.

In particular, P is the graph of the automorphism θ of P.

Proof. Let pr1, pr2 : P → P3 denote the projections onto the first and second
factors of P3 × P3. We will show that pr1(P) = P. Let u ∈ pr1(P). There is a
point v ∈ P3 such that (u,v) ∈ P, i.e., such that M1(u)v = 0. This implies that
rank(M1(u)) ≤ 3. Thus the 4 × 4 minors of M1 vanish at u. We used SAGE [38]
to compute these minors. After removing a common factor of 2, they are:

− bγy0y
3
1 − αγy0y1y

2
2 + βγy21y2y3 + aγy32y3 − αβy0y1y

2
3 + αβy2y

3
3 − y30y1 + y20y2y3

= (y2y3 − y0y1)(y
2
0 + βγy21 + αγy22 + αβy23),

− βγy0y
2
1y2 − αγy0y

3
2 + βγy31y3 + αγy1y

2
2y3 − αβy0y2y

2
3 + αβy1y

3
3 − y30y2 + y20y1y3

= (y1y3 − y0y2)(y
2
0 + βγy21 + αγy22 + αβy23),

βγy31y2 + αγy1y
3
2 − βγy0y

2
1y3 − αγy0y

2
2y3 + αβy1y2y

2
3 − αβy0y

3
3 + y20y1y2 − y30y3

= (y1y2 − y0y3)(y
2
0 + βγy21 + αγy22 + αβy23),

− αβy21y
2
3 + αβy22y

2
3 − βy20y

2
1 − αy20y

2
2 + βy21y

2
3 + αy22y

2
3 − y20y

2
1 + y20y

2
2 ,

− αβy21y2y3 + αβy2y
3
3 + βy0y

3
1 − αy20y2y3 + αy32y3 − βy0y1y

2
3 + y30y1 − y0y1y

2
2

= (y0y1 − αy2y3)(y
2
0 + βy21 − y22 − βy23),

− αβy1y
2
2y3 + αβy1y

3
3 − αy0y

3
2 + βy20y1y3 − βy31y3 + αy0y2y

2
3 + y30y2 − y0y

2
1y2

= (y0y2 + βy1y3)(y
2
0 − y21 − αy22 + αy23),

αγy21y2y3 − αγy32y3 + γy0y
3
1 − γy0y1y

2
2 − αy20y2y3 + αy2y

3
3 − y30y1 + y0y1y

2
3 ,

= (y0y1 + αy2y3)(−y20 + γy21 − γy22 + y23),

αγy21y
2
2 − αγy22y

2
3 − γy20y

2
1 + γy21y

2
2 − αy20y

2
3 + αy22y

2
3 + y20y

2
1 − y20y

2
3 ,

αγy1y
3
2 − αγy1y2y

2
3 − γy20y1y2 + γy31y2 − αy0y

2
2y3 + αy0y

3
3 + y30y3 − y0y

2
1y3

= (y0y3 − γy1y2)(y
2
0 − y21 − αy22 + αy23),

αy0y1y
2
2 + αy32y3 − αy0y1y

2
3 − αy2y

3
3 − y30y1 + y0y

3
1 − y20y2y3 + y21y2y3

= (y0y1 + y2y3)(−y20 + y21 + αy22 − αy23),

− βγy31y3 + βγy1y
2
2y3 + γy0y

2
1y2 − γy0y

3
2 + βy20y1y3 − βy1y

3
3 − y30y2 + y0y2y

2
3

= (y0y2 − βy1y3)(−y20 + γy21 − γy22 + y23),

− βγy31y2 + βγy1y2y
2
3 − γy20y1y2 + γy1y

3
2 − βy0y

2
1y3 + βy0y

3
3 − y30y3 + y0y

2
2y3

= (y0y3 + γy1y2)(−y20 − βy21 + y22 + βy23),

− βγy21y
2
2 + βγy21y

2
3 − γy20y

2
2 + γy21y

2
2 − βy20y

2
3 + βy21y

2
3 − y20y

2
2 + y20y

2
3 ,

− βy0y
2
1y−βy

3
1y3 + βy0y2y

2
3 + βy1y

3
3 − y30y2 + y0y

3
2 − y20y1y3 + y1y

2
2y3

= (y0y2 + y1y3)(−y20 − βy21 + y22 + βy23),

γy31y2 − γy1y
3
2 + γy0y

2
1y3 − γy0y

2
2y3 − y20y1y2 − y30y3 + y1y2y

2
3 + y0y

3
3

= (y0y3 + y1y2)(−x2
0 + γy21 − γy22 + y23).
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Some reorganization and changes of sign show that the linear span of the above 15
polynomials is the same as the linear span of the following 15 polynomials:

(y2y3 − y0y1)(y
2
0 + βγy21 + αγy22 + αβy23),

(y1y3 − y0y2)(y
2
0 + βγy21 + αγy22 + αβy23),

(y1y2 − y0y3)(y
2
0 + βγy21 + αγy22 + αβy23),

(y0y1 + y2y3)(y
2
0 − y21 − αy22 + αy23),

(y0y2 + βy1y3)(y
2
0 − y21 − αy22 + αy23),

(y0y3 − γy1y2)(y
2
0 − y21 − αy22 + αy23),

(y0y1 − αy2y3)(y
2
0 + βy21 − y22 − βy23),

(y0y2 + y1y3)(y
2
0 + βy21 − y22 − βy23),

(y0y3 + γy1y2)(y
2
0 + βy21 − y22 − βy23),

(y0y1 + αy2y3)(y
2
0 − γy21 + γy22 − y23),

(y0y2 − βy1y3)(y
2
0 − γy21 + γy22 − y23),

(y0y3 + y1y2)(y
2
0 − γy21 + γy22 − y23),

αβy21y
2
3 − αβy22y

2
3 + βy20y

2
1 − βy21y

2
3 + αy20y

2
2 − αy22y

2
3 + y20y

2
1 − y20y

2
2 ,

βγy21y
2
2 − βγy21y

2
3 + γy20y

2
2 − γy21y

2
2 + βy20y

2
3 − βy21y

2
3 + y20y

2
2 − y20y

2
3 ,

αγy21y
2
2 − αγy22y

2
3 + αy22y

2
3 − γy20y

2
1 + γy21y

2
2 − αy20y

2
3 + y20y

2
1 − y20y

2
3 .

The proof of Proposition 9.2 showed that M1(u)θ(u)
T = 0 for all u ∈ P, so

these 15 polynomials vanish at the points in P. One can also check this directly by
evaluating these quartic polynomials at u ∈ P. For example, it is obvious that yiyj
vanishes on P∞ if i �= j, from which it immediately follows that all 15 polynomials
vanish on P∞. As another example, y2y3 − y0y1, y1y3 − y0y2, and y1y2 − y0y3
vanish on P0, whence the first 3 of the 15 polynomials vanish on P0; the other
twelve polynomials belong to the ideal (y20 −y21 , y

2
0 −y22 , y

2
0 −y23), so they too vanish

on P0. As a final example, consider P2. The first three quartics vanish on P2

because y20 + βγy21 + αγy22 + αβy23 does. The second three quartics vanish on P2

because y20 − y21 − αy22 + αy23 does. The third three quartics vanish on P2 because
the ideal (y0y1 − αy2y3, y0y2 + y1y3, y0y3 + γy1y2) does. The fourth three quartics
vanish on P2 because y20 − γy21 + γy22 − y23 does. A calculation shows the last three
quartics vanish on P2.

Suppose these 15 quartics vanish at a point u ∈ P3. To complete the proof we
will show that u ∈ P.

The determinant

det

⎛⎜⎜⎝
1 βγ αγ αβ
1 −1 −α α
1 β −1 −β
1 −γ γ −1

⎞⎟⎟⎠ = −(1 + αβ + βγ + γα)2

is non-zero: the hypothesis that α + β + γ + αβγ = 0 implies that 1 + αβ +
βγ + γα = (1 + α)(1 + β)(1 + γ), which is non-zero because we are assuming that
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{α, β, γ} ∩ {0,±1} = ∅. Because the determinant is non-zero the polynomials

(9-3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y20 + βγy21 + αγy22 + αβy23 ,

y20 − y21 − αy22 + αy23 ,

y20 + βy21 − y22 − βy23 ,

y20 − γy21 + γy22 − y23

are linearly independent. Their linear span is therefore the same as that of {y20 , y21 ,
y22 , y

2
3}. Hence the common zero locus of the polynomials in (9-3) is empty, and at

most three of them vanish at u.
We now do some case-by-case analysis to show that u belongs to some Pi.
P∞ ∪P0. Suppose u is not in the zero locus of y20 + βγy21 +αγy22 +αβy23 . Then

(9-4) y0y1 − y2y3 = y0y2 − y1y3 = y0y3 − y1y2 = 0

at u. If one of the coordinate functions y0, y1, y2, y3 vanishes at u, then three do,
so

(9-5) u ∈ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} = P∞.

If none of y0, y1, y2, y3 vanish at u, then it follows from (9-4) that

u ∈ {(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)} = P0.

P1. Suppose u is not in the zero locus of y20−y21−αy22+αy23 and not in P∞∪P0.
Then

(9-6) y0y1 + y2y3 = y0y2 + βy1y3 = y0y3 − γy1y2 = 0

at u. If one of y0, y1, y2, y3 vanishes at u, then three of them do, so u ∈ P∞. This is
not the case, so none of y0, y1, y2, y3 vanish at u. Without loss of generality we can,
and do, assume that u = (bc, y1, y2, y3). It follows from (9-6) that y30(y1y2y3) =
βγ(y1y2y3)

2. Therefore bc = y1y2y3. It also follows from (9-6) that βγy21 = γy22 =
−βy23 . Some case-by-case analysis shows that

u ∈ {(bc,−i, ib, c), (bc,−i,−ib,−c), (bc, i, ib,−c), (bc, i,−ib, c)} = P1.

P2. Suppose u is not in the zero locus of y20+βy21−y22−βy23 and not in P∞∪P0.
Then

(9-7) y0y1 − αy2y3 = y0y2 + y1y3 = y0y3 + γy1y2 = 0

at u. As in the previous paragraph, y0y1y2y3 does not vanish at u. Without loss
of generality we can, and do, assume that u = (ac, y1, y2, y3). The same sort of
analysis as that in the previous paragraph shows that

u ∈ {(ac, a,−i, ic), (ac, a, i,−ic), (ac,−a,−i,−ic), (ac,−a, i, ic) = P2.

P3. Suppose u is not in the zero locus of y20−γy21+γy22−y23 and not in P∞∪P0.
Then

(9-8) y0y1 + αy2y3 = y0y2 − βy1y3 = y0y3 + y1y2 = 0

at u. Proceeding as before, we eventually see that

u ∈ {(ab, ia, b,−i), (ab, ia,−b, i), (ab,−ia, b, i), (ab,−ia,−b,−i)} = P3.

This completes the proof that pr1(P) ⊂ P. Thus pr2(P) = P.
By Lemma 9.1, pr2(P) = P also. Since pr2(P) does not contain a line, the rank

of M1(u) is 3 for all u ∈ pr1(P). Let u ∈ P. Since M1(u)θ(u)
T = 0, θ(u)T is the
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only v ∈ P3 such that M1(u)v
T = 0. Hence (u, θ(u)) is the only point in pr−1

1 (u).
It follows that P = {(u, θ(u)) | u ∈ P}. �

Proposition 9.5. The central element Θ = y20 + y21 + y22 + y23 does not annihilate

any point modules for Q̃. Consequently, B̃ has no point modules.

Proof. Let u ∈ P.
To describe the action of Θ on Mu we must fix a basis for Mu. We pick a basis

for Mu that is compatible with the entries in Table 3. To do this it is helpful,
for a moment, to think of the entries in Table 3 as points in k4. Suppose u =
(δ0, δ1, δ2, δ3). Let e0 be any non-zero element in (Mu)0. Let e1 be the unique
element in (Mu)1 such that yie0 = δie1 for i = 0, 1, 2, 3. Likewise, if (δ′0, δ

′
1, δ

′
2, δ

′
3)

is the entry in Table 3 for θ(u), there is a unique element e2 ∈ (Mu)2 such that
yie1 = δ′ie2 for i = 0, 1, 2, 3.

If u ∈ P∞, then Θe0 = e2. If u ∈ P0, then Θe0 = 4e2.
Let u = (bc,−i,−ib,−c) ∈ P1. Then θ(u) = (bc,−i, ib, c). Therefore

Θe0 = (y20 + y21 + y22 + y23)e0

= (bcy0 − iy1 − iby2 − cy3)e1

=
(
(bc)2 − 1 + b2 − c2

)
e2

= (β − 1)(γ + 1)e2.

Likewise, if u = (bc, i,−ib, c) ∈ P1, then θ(u) = (bc, i, ib,−c), and a similar calcu-
lation shows that Θe0 = (β − 1)(γ + 1)e2. Thus, Θe0 = (β − 1)(γ + 1)e2 for all
u ∈ P1.

Similar calculations show that Θe0 = (α+ 1)(γ − 1)e2 for all u ∈ P2. Finally, if
u ∈ P3, then Θe0 = (α− 1)(β + 1)e2. �

9.4. Not only do the relations for Q̃ determine P, but P determines the defining

relations for Q̃: the quadratic relations for Q̃ are precisely the elements of V ⊗2 that
vanish at P. This is a consequence of the following remarkable result.

Theorem 9.6 (Shelton-Vancliff [29]). Let V be a 4-dimensional vector space and
let R ⊆ V ⊗2 be a 6-dimensional subspace. Let TV denote the tensor algebra on V
and let P ⊂ P(V ∗)×P(V ∗) be the scheme-theoretic zero locus of R. If dim(P) = 0,
then

R = {f ∈ V ⊗2 | f |P = 0}.

9.5. There has been some interest in Artin-Schelter regular algebras with Hilbert
series (1− t)−4 that have only finitely many point modules [45], [28], [39], [40]. The
interest arises because this phenomenon does not occur for Artin-Schelter regular
algebras with Hilbert series (1− t)−3; the point modules for the latter algebras are
parametrized either by a cubic divisor in P2 or by P2. In 1988, M. Van den Bergh
circulated a short note showing that a generic 4-dimensional Artin-Schelter regular
algebra with Hilbert series (1 − t)−4 has exactly 20 point modules [43]. Van den
Bergh’s example is a generic Clifford algebra. In particular, it is a finite module
over its center.

Davies [8, §5.1] shows, when the translation automorphism has infinite order,

that Q̃ is not isomorphic to any of the previously found examples of 4-dimensional
regular algebras having 20 point modules.
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Proposition 9.7. The point modules Mu for u ∈ P∞ ∪P0 are quotient rings of

Q̃. If u = (λ0, λ1, λ2, λ3) ∈ P∞ ∪P0, then

Mu
∼=

Q̃

(λjyi − λiyj | 0 ≤ i, j ≤ 3)
∼= k[t].

Proof. The identification of points p = (λ0, λ1, λ2, λ3) with point modules Mp is

such that the latter is the quotient of Q̃ by the left ideal generated by all elements
yij = λjyi−λiyj for 0 ≤ i, j ≤ 3. We will show that in the cases under consideration
the left ideal in question is a two-sided ideal.

The two-sided ideal generated by yij contains the left ideal generated by the
same elements, so in order to check that they are the same it suffices to show that
the quotient by the two-sided ideal has Hilbert series (1 − t)−1. It is enough to

exhibit a surjective ring homomorphism Q̃ → k[t] that vanishes on all yij .
For points inP∞, the relations (6-3) make it clear that annihilating three yjs and

sending the fourth one to t is such a homomorphism. For the point (1, 1, 1, 1) ∈ P0

there is a similar homomorphism Q̃ → k[t] sending all generators yj to t. The same
conclusion for the other points in P0 is obtained from the previous sentence by

applying the Γ-action on Q̃. �

Proposition 9.8. The scheme-theoretic zero locus in P3 × P3 of the relations for

Q̃ is a reduced scheme with 20 points.

Proof (Van den Bergh [43]). We have already seen that the relations for Q̃ vanish
at 20 points in P3×P3. Let X denote the image of the Segre embedding P3×P3 →
P15. If we view P15 as the space of 4 × 4 matrices, then X is the space of rank-
one matrices. By [13, §18.15], for example, the degree of X is

(
6
3

)
= 20. The 6

defining relations for Q̃ are linear combinations of terms xixj which, under the Segre
embedding, become linear combinations of the coordinate functions xij . Hence the
vanishing locus of the relations in P15 is the vanishing locus of 6 linear forms,
hence a linear subspace, L say, of dimension 9. Hence, by Bézout’s Theorem, if the
scheme-theoretic intersection L ∩X is finite it has degree 20. But, L ∩X consists
of 20 different points, so it is reduced. �

10. Secant lines to E and line modules for Q

The relevance of this section will become apparent in §11 when we construct

some line modules for Q̃ that are parametrized by certain lines in P(Q∗
1). To make

the word “parametrized” precise we will show that the parametrizing space is a
closed subvariety of the Grassmannian of lines in P(Q∗

1).

10.1. Secant lines. The second symmetric power of E is the quotient variety
S2E := (E × E)/Z2 where Z2 acts by (p, q) �→ (q, p). We think of the points
in S2E as effective divisors of degree 2 on E and write (p) + (q) for the image of
(p, q) ∈ E × E.

Because the quartic curve E ⊂ P(Q∗
1) = P3 has no trisecants, there is a well-

defined morphism E × E → G(1, 3) that sends (p, q) ∈ E × E to pq, the line
in P(Q∗

1) = P3 whose scheme-theoretic intersection with E is (p) + (q). By the
universal property of the quotient (E × E)/Z2 this morphism factors through a
morphism γ : S2E → G(1, 3). The image of γ is a closed subscheme of G(1, 3)
called the variety of secant lines to E. See [13, Ex. 8.3], for example.
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Proposition 10.1. The map γ : S2E → G(1, 3) defined by γ
(
(p) + (q)

)
:= pq is a

closed immersion.

Proof. The morphism γ is injective because E has no trisecants, so it suffices to
argue that the image of the morphism is smooth. This follows from the standard
description of the singular points of a secant variety: a line in the image of γ is
singular if and only if it is a trisecant (see e.g. the discussion on page 312 of [13]
regarding Exercise 16.11 in that book). �

10.2. The line modules Mp,q. A line module for Q, or Q̃, is a cyclic graded
module whose Hilbert series is (1− t)−2.

Theorem 10.2 ([17, Thm. 4.5]). The function that sends (p) + (q) ∈ S2E to
Q/Qx + Qx′ where pq = {x = x′ = 0} is a bijection from S2E to the set of
isomorphism classes of line modules for Q.

If (p) + (q) ∈ S2E and pq = {x = x′ = 0} we write Mp,q := Q/Qx+Qx′.

10.3. In §11 we will show that if y = y′ = 0 is a line in P(Q̃∗
1) = P(Q̃∗

1) that meets

E at (p) + (p + ξ) for some p ∈ E and ξ ∈ E[2] − {o}, then Q̃/Q̃y + Q̃y′ is a line

module for Q̃. Such lines will be parametrized by the subscheme of G(1, 3) that is
the image of the composition E/〈ξ〉 → S2E → G(1, 3).

Lemma 10.3. The morphism β : E/〈ξ〉 → S2E defined by β(p+〈ξ〉) = (p)+(p+ξ)
is a closed immersion.

Proof. It is clear that β is injective as a set map on the closed points of E/〈ξ〉,
so it suffices to prove that its derivative is one-to-one on each tangent space or
equivalently that the composition of β with the étale map π : E → E/〈ξ〉 has this
same property.

The composition βπ is

E → E × E → S2E,

where the left-hand arrow sends p to (p, p + ξ) and the right-hand arrow is the
quotient morphism. Since the latter is étale off the diagonal Δ ⊂ E × E and the
former is a closed immersion into E × E \Δ the conclusion follows. �

11. Line modules for Q̃

11.1. In this section we exhibit three families of line modules for Q̃ parametrized
by the disjoint union of the three elliptic curves E/〈ξ〉 as ξ ranges over the three
2-torsion points of E. The isomorphism classes of the line modules parametrized
by E/〈ξ〉 are in natural bijection with the lines p, p+ ξ, p ∈ E; the union of these

lines is an elliptic scroll in P(Q̃∗
1).

These are not all the line modules for Q̃.

11.2. By Proposition 7.7, the elements in Γ={γ0, γ1, γ2, γ3} and E[2]={ξ0, ξ1, ξ2, ξ3}
may be labelled in such a way that γ∗

i Mp,q
∼= Mp+ξi,q+ξi . Thus, γ

∗(Mp,q ⊕Mr,s

) ∼=
Mp,q ⊕Mr,s for all γ ∈ Γ if and only if {p, q, r, s} is an E[2]-coset.
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11.3. Recall that Q′ = Q⊗M2(k). The next result follows from Proposition 3.10.

Proposition 11.1. The function M �→ MΓ is a bijection from isomorphism classes
of Γ-equivariant Q′-modules with Hilbert series 4(1 − t)−2 to isomorphism classes

of Q̃-line modules.

By Morita equivalence, a Γ-equivariant Q′-module M with Hilbert series
4(1−t)−2 is isomorphic toN⊗k2 for some Q-module N with Hilbert series 2(1−t)−2

(a “fat line” of multiplicity two over Q). Moreover, by the remark in §11.2, the
equivariance ensures/requires that the isomorphism class of M is invariant under
translation by the 2-torsion subgroup.

The main ingredient in constructing Q̃-lines will be Q-modules with Hilbert
series 2(1 − t)−2. The obvious such modules are those of the form Mp,q ⊕ Mr,s

where the invariance condition requires {p, q, r, s} to be an E[2]-coset. Theorem
11.6 will provide the examples announced in §11.1.

Lemma 11.2. Let E[2] = {o, ξ, ξ′, ξ′′}, let x, y ∈ E/E[2], and let ω be a 2-torsion
point. Define

(11-1) Mx,ξ :=
(
Mp,p+ξ ⊕Mp+ξ′,p+ξ′′

)
⊗ k2,

where p is any point in E such that x = p+ E[2].

(1) The Q′-module Mx,ξ does not depend on the choice of p.
(2) Mx,ξ

∼= My,ω if and only if (x, ξ) = (y, ω).
(3) The map Φ : k× × k× → AutQ′

(
Mx,ξ

)
, Φ(λ, λ′)(m,m′) := (λm, λ′m′), is

an isomorphism.

Proof. (1) Suppose x is also the image of q ∈ E. Since ξ′ + ξ′′ = ξ,{
{q, q + ξ}, {q + ξ′, q + ξ′′}

}
=
{
{p, p+ ξ}, {p+ ξ′, p+ ξ′′}

}
.

ThereforeMp,p+ξ⊕Mp+ξ′,p+ξ′′ = Mq,q+ξ⊕Mq+ξ′,q+ξ′′ . HenceMx,ξ does not depend
on the choice of p. In particular, if (x, ξ) = (y, ω), then Mx,ξ = My,ω .

(2) Suppose that the Q′-modules Mx,ξ and My,ω are isomorphic. Let q ∈ E
be such that y = q + E[2]. By Morita equivalence, there is an isomorphism of
Q-modules

Mp,p+ξ ⊕Mp+ξ′,p+ξ′′
∼= Mq,q+ω ⊕Mq+ω′,q+ω′′

where E[2] = {o, ω, ω′, ω′′}. Since isomorphism classes of line modules for Q are in
natural bijection with effective divisors of degree 2 on E,{

{q, q + ω}, {q + ω′, q + ω′′}
}

=
{
{p, p+ ξ}, {p+ ξ′, p+ ξ′′}

}
.

It follows immediately from this equality that q + E[2] = p + E[2], i.e., x = y.
Since ω can be recovered from

{
{q, q + ω}, {q + ω′, q + ω′′}

}
as the difference

between the elements in {q, q + ω} and also as the difference between the elements
in {q + ω′, q + ω′′}, it follows that ω = ξ.

(3) Every line module for Q is cyclic, so its graded automorphism group is
isomorphic to k×, each λ ∈ k× acting on the line module by scalar multiplication.

By Morita equivalence, AutQ′(Mx,ξ) = AutQ(Mp,p+ξ ⊕ Mp+ξ′,p+ξ′′) ∼= k× ×
k× where the isomorphism is because Mp,p+ξ �∼= Mp+ξ′,p+ξ′′ . An automorphism
(λ, λ′) ∈ (k×)2 acts on Mx,ξ = (Mp,p+ξ ⊗ k2)⊕ (Mp+ξ′,p+ξ′′ ⊗ k2) as multiplication
by λ on the first summand and multiplication by λ′ on the second summand. �
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Lemma 11.3. Let E[2] = {o, ξ, ξ′, ξ′′}. Let x ∈ E/E[2] and write M = Mx,ξ.

(1) If γ ∈ Γ, then γ∗M ∼= M as Q′-modules.
(2) If γ ∈ Γ and a ∈ AutQ′(M), then there is a unique element γ � a ∈

AutQ′(M) such that

M γ∗M

M γ∗M

ϕγ

ϕγ

γ�a γ∗(a)

commutes for all isomorphisms ϕγ : M → γ∗M .
(3) The map (γ, a) �→ γ � a defines a left action of Γ on AutQ′(M).
(4) If we identify k××k× with AutQ′

(
Mx,ξ

)
via the isomorphism Φ in Lemma

11.2, then the Γ-action on AutQ′(M) is

ξ � (λ, λ′) = (λ, λ′) and ξ′ � (λ, λ′) = ξ′′ � (λ, λ′) = (λ′, λ)

for all (λ, λ′) ∈ k× × k×.

Proof. Let p ∈ E be such that x = p+E[2]. Thus M =
(
Mp,p+ξ⊕Mp+ξ′,p+ξ′′

)
⊗k2.

(1) This follows from the remark in §11.2.
(2) Choose an isomorphism ϕγ : M → γ∗M . Define γ � a := ϕ−1

γ γ∗(a)ϕγ .
Certainly the diagram commutes. If ψγ : M → γ∗M is another isomorphism, then
ψγ is a multiple of ϕγ by an element in AutQ′(γ∗M). But AutQ′(γ∗M) is abelian,
so ψ−1

γ γ∗(a)ψγ = ϕ−1
γ γ∗(a)ϕγ .

(3) This is standard. See, for example, Lemma A.1.
(4) By Proposition 7.7, ξ∗Mp,p+ξ

∼= Mp,p+ξ and ξ∗Mp+ξ′,p+ξ′′
∼= Mp+ξ′,p+ξ′′ so

ϕξ preserves the summands Mp,p+ξ ⊗ k2 and Mp+ξ′,p+ξ′′ ⊗ k2. Therefore ξ acts on
(k×)2 trivially. On the other hand, (ξ′)∗Mp,p+ξ

∼= (ξ′′)∗Mp,p+ξ
∼= Mp+ξ′,p+ξ′′ so ξ′

and ξ′′ act on (k×)2 by switching the two components. �

A Γ-equivariant structure on a Q′-module M is the same thing as a left Q′-
module M endowed with a left action Γ × M → M , (γ,m) �→ mγ , such that
(xm)γ = γ(x)mγ for all x ∈ Q′, m ∈ M , and γ ∈ Γ. We adopt this point of view
several times in the rest of this section.

Recall that the action of Γ as automorphisms of Q′ is defined in terms of the
actions of Γ as automorphisms of Q and M2(k) (see §6.4).

Lemma 11.4. Let N be a graded left Q-module that is generated by N0. The
function that sends a Γ-equivariant structure {ϕγ : N ⊗ k2 −→ γ∗(N ⊗ k2) | γ ∈ Γ}
on the Q′-module N ⊗ k2 to the Γ-equivariant structure {ϕγ

∣∣
N0⊗k2 : N0 ⊗ k2 −→

γ∗(N0 ⊗ k2) | γ ∈ Γ} on the M2(k)-module N0 ⊗ k2 is injective.

Proof. Certainly, if the maps {ϕγ : N ⊗k2 −→ γ∗(N ⊗k2) | γ ∈ Γ} give N ⊗k2 the
structure of a Γ-equivariant Q′-module, then their restrictions to the degree-zero
components give N0 ⊗ k2 the structure of a Γ-equivariant M2(k)-module.

Since Q′ is generated as an algebra by Q′
0 and Q′

1, the formula (xm)γ = γ(x)mγ

implies that the action of γ on Nn+1 ⊗ k2 is completely determined by the action
of γ on Nn⊗ k2. Thus, if two Γ-equivariant structures on N ⊗ k2 agree on N0⊗ k2,
then they agree on N . �
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11.3.1. Warning. The result in Lemma 11.4 does not extend to a result saying that
two equivariant structures on N are isomorphic if and only if their restrictions to
N0 ⊗ k2 are isomorphic. Proposition 11.5 says that all Γ-equivariant structures on
N0 ⊗ k2 are isomorphic to each other.

The group Γ acts as k-algebra automorphisms of M2(k). We fixed a basis for k2

such that ω ∈ Γ acts on M2(k) as conjugation by the quaternionic basis element qω
defined in §6.4. We use that basis in the next result.

Proposition 11.5. Fix ζ, η, ξ ∈ Γ such that qζ , qη, qξ is a cyclic permutation of
q1, q2, q3.

(1) Let φω : M2(k) → M2(k), ω ∈ Γ, be the linear isomorphisms that take the
following values on the basis 1, qζ , qη, qξ for M2(k):

Table 4. Action of Γ on M2(k)

q 1 qζ qη qξ

φ0(q) 1 qζ qη qξ
φζ(q) 1 qζ −qη −qξ
φη(q) 1 −qζ qη −qξ
φξ(q) 1 −qζ −qη qξ

The action of Γ on M2(k) given by the maps φω, together with the action
of M2(k) on M2(k) by left multiplication, gives M2(k) the structure of a
Γ-equivariant left M2(k)-module.

(2) Every Γ-equivariant M2(k)-module is isomorphic to a direct sum of copies
of the Γ-equivariant M2(k)-module in (2).

(3) Let V be a finite-dimensional Γ-equivariant M2(k)-module. As a Γ-module,
V is isomorphic to a direct sum of copies of the regular representation. If
ω ∈ {ζ, η, ξ}, then the (+1)- and (−1)-eigenspaces for the action of ω on
V have dimension 1

2 dimk(V ).

Proof. (1) Whenever a group Γ acts as automorphisms of a ring R, R viewed as a
left R-module via multiplication is a Γ-equivariant R-module with respect to the
action of Γ as automorphisms of R. The value of φω(qω′) in the table is qωqω′q−1

ω ,
so, by the previous sentence, this action of Γ makes M2(k) a Γ-equivariant M2(k)-
module.

(2) By Lemma 3.2, there is an equivalence from the category of Γ-equivariant
M2(k)-modules to the category of vector spaces, the functor implementing the
equivalence being M � MΓ. Since M2(k)

Γ ∼= k, the result follows.
Alternatively, a Γ-equivariant left M2(k)-module is the same thing as a left

module over the 16-dimensional skew group ring M2(k) � Γ; the Γ-equivariant
M2(k)-module in (1) is irreducible of dimension 4, so we conclude that M2(k)�Γ ∼=
M4(k). The result follows.

(3) follows from (2) because M2(k) is isomorphic as a Γ-module to the regular
representation. �

Theorem 11.6. Let E[2] = {o, ξ, ξ′, ξ′′}. Let M be the Q′-module (Mp,p+ξ ⊕
Mp+ξ′,p+ξ′+ξ)⊗ k2.

(1) There are exactly two Γ-equivariant structures on M up to isomorphism.
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(2) The group H1(Γ,AutQ′(M)) acts simply transitively on this two-element
set.

(3) Up to isomorphism one equivariant structure is obtained from the other by
interchanging the (+1)- and (−1)-eigenspaces for the action of ξ on M and
simultaneously interchanging the (+1)- and (−1)-eigenspaces for the action
of ξ + ξ′ on M and leaving the (+1)- and (−1)-eigenspaces for the action
of ξ′ unchanged.

Proof. If x = p+ E[2], then M is the module Mx,ξ in Lemmas 11.2 and 11.3.

Step 1. Existence of an equivariant structure. Let ϕγ : M → γ∗M , γ ∈ Γ, be
arbitrary Q′-module isomorphisms. An arbitrary choice of such isomorphisms need
not give an equivariant structure on M ; i.e., there is no reason the diagrams (8-3)
should commute. The failure of (8-3) to commute is measured by the elements

(11-2) aγ,δ := ϕ−1
γδ ◦ tγ,δ ◦ γ∗(ϕδ) ◦ ϕγ , γ, δ ∈ Γ,

in AutQ′(M) where tγ,δ is as in (8-3) and the right-hand side of (11-2) is the
clockwise composition of the automorphisms in (8-3).

A tedious calculation (see Lemma A.2) shows that the function (γ, δ) �→ aγ,δ is a
2-cocycle for Γ valued in the Γ-module AutQ′(M) ∼= (k×)2 defined in Lemma 11.3.
Let ξ′ ∈ Γ− 〈ξ〉. Since Γ = 〈ξ〉 × 〈ξ′〉 it follows from the Hochschild-Serre spectral
sequence that

(11-3) Ea,b
2 = Ha(〈ξ〉, Hb(〈ξ′〉, (k×)2)) ⇒ Ha+b(Γ, (k×)2)

and from the cohomology of Z/2 that H2(Γ, (k×)2) is trivial. Hence the obstruction
cocycle (aγ,δ) is cohomologous to zero. Thus (aγ,δ) is the coboundary of some
function Γ → AutQ′(M), γ �→ aγ ; the isomorphisms ϕγa

−1
γ now form an equivariant

structure on M .

Step 2. Classification of equivariant structures. By Step 1, there is at least one
Γ-equivariant structure on M . Suppose the maps ϕγ : M → γ∗M , γ ∈ Γ, provide
such an equivariant structure.

Let (ψγ)γ∈Γ be another equivariant structure on M . Running through the com-
patibility conditions comprising equivariance, the maps aγ = (ϕγ)

−1ψγ can be seen
to form a 1-cocycle of Γ valued in the Γ-module AutQ′(M) ∼= (k×)2. We similarly
leave it to the reader to check that cocycles (aγ) and (a′γ) give rise to isomorphic
equivariant structures

ψγ = ϕγaγ and ψ′
γ = ϕγa

′
γ

if and only if they are cohomologous. In other words, the set of isomorphism
classes of equivariant structures on M is acted upon simply and transitively by
H1(Γ, (k×)2). Using the Hochschild-Serre spectral sequence once more we get
H1(Γ, (k×)2) ∼= Z/2 (see the proof of (3) below).

This completes the proof of (1) and (2).
(3) The Hochschild-Serre spectral sequence yields an isomorphism

(11-4) H1(Γ,Aut(M)) ∼= H1
(
〈ξ〉, H0(〈ξ′〉, (k×)2)

)
⊕ H0

(
〈ξ〉, H1(〈ξ′〉, (k×)2)

)
.

Since ξ′ interchanges the two copies of k×, the H1 term in the second summand
vanishes, so we are left with a natural isomorphism

H1(Γ,Aut(M)) ∼= H1(〈ξ〉, k×) ∼= HomZ(〈ξ〉, k×),
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where this time k× is the diagonal subgroup of AutQ′(M).
The function f : Γ → AutQ′(M) defined by f(ξ) = f(ξ′ + ξ) = (−1,−1) and

f(o) = f(ξ′) = (1, 1) is a 1-cocycle whose class [f ] in H1(Γ,Aut(M)) is non-
trivial. If the Q′-module isomorphisms {φγ : M → γ∗M | γ ∈ Γ} give M a
Γ-equivariant structure, then the Γ-equivariant structure on M associated to the
result of [f ] acting on the given equivariant structure is given by the isomorphisms
{φγ ◦ f(γ) : M → γ∗M | γ ∈ Γ}. Recall that γ∗M is M as a graded vector space.
The (+1)-eigenspace for the action of ξ on M with equivariant structure {φγ}γ∈Γ

is {m ∈ M | φξ(m) = m}, which is the (−1)-eigenspace for φξ ◦ f(ξ). Likewise, the
(−1)-eigenspace for the action of φξ+ξ′ ◦ f(ξ + ξ′) is the (+1)-eigenspaces for the
action of φξ+ξ′ . On the other hand, the eigenspaces for ξ′ are the same for both
equivariant structures on Mx,ξ. �

11.3.2. There is a lack of symmetry in part (3) of Theorem 11.6: the eigenspaces for
ξ+ξ′ are switched, but those for ξ′ are not. The explanation is that the equivariant
structure obtained by interchanging the eigenspaces for ξ′ but not ξ + ξ′ (but still
exchanging the eigenspaces for ξ) is isomorphic to that obtained by switching the
eigenspaces for ξ + ξ′ but not those for ξ′.

11.3.3. The proof of Theorem 11.6 illustrates a familiar pattern in obstruction the-
ory. The class of structures we are interested in, isomorphism classes of equivariant
structures in this case, is a pseudotorsor over a cohomology group. Whether or not
it is empty is controlled by an obstruction living in a cohomology group, H2 for
us, as in Step 1 of the proof, and when this obstruction vanishes the cohomology
group of one degree lower, H1 in our case, acts on the class of structures simply
transitively.

11.4. An explicit equivariant structure on Mx,ξ. Let {ξ1, ξ2, ξ3} denote both
the 2-torsion points on E and the corresponding elements in Γ, labelled so that the
action of Γ as automorphisms of M2(k) is such that each ξj acts as conjugation by
the element qj in (6-2).

Let p ∈ E and let x = p + 〈ξ1〉 ∈ E/〈ξ1〉. Let M = Mx,ξ1 = (Mp,p+ξ1 ⊕
Mp+ξ2,p+ξ3) ⊗ k2. Fix a basis e for the degree-zero component of Mp,p+ξ1 and a
basis e′ for the degree-zero component of Mp+ξ2,p+ξ3 .

If u =
(
0
1

)
and v =

(
1
0

)
, then

q1u = −iu, q2u = iv, q3u = −v,

q1v = iv, q2v = iu, q3v = u.

Lemma 11.7. Let β0x0 + β1x1 + β2x2 + β3x3 be a linear form that vanishes at p
and p+ ξ1. Then

(1) the line through p and p+ ξ1 is β0x0 + β1x1 = β2x2 + β3x3 = 0,
(2) the line through p+ ξ2 and p+ ξ3 is β0x0 − β1x1 = β2x2 − β3x3 = 0,
(3) β0y0 + iβ1y1 and iβ2y2 + β3y3 annihilate e ⊗ u + e′ ⊗ v and are linearly

independent, and
(4) β0y0 − iβ1y1 and iβ2y2 − β3y3 annihilate e ⊗ v + e′ ⊗ u and are linearly

independent.

Proof. By Lemma 8.6, at least three of the coordinate functions x0, x1, x2, x3 are
non-zero at p. Thus (β0, β1) �= (0, 0) and (β2, β3) �= (0, 0). Therefore the equations
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in (1) and (2) really do define lines in P(Q∗
1). It also follows that β0y0 + iβ1y1 and

iβ2y2 + β3y3 are linearly independent.
(1) Translation by ξ1 leaves the set {p, p+ ξ1} stable so ξ1(β0x0+β1x1+β2x2+

β3x3) also vanishes at p and p + ξ1. Since ξ1(β0x0 + β1x1 + β2x2 + β3x3) =
β0x0 + β1x1 − β2x2 − β3x3, (1) follows.

(2) Since translation by ξ2 sends {p, p+ ξ1} to {p+ ξ2, p+ ξ3}, ξ2(β0x0 + β1x1)
and ξ2(β2x2 + β3x3) vanish at p+ ξ2 and p+ ξ3. Thus (2) is true.

(3) Since

y0 · (e⊗ u+ e′ ⊗ v) = (x0 ⊗ q0) · (e⊗ u+ e′ ⊗ v) = x0e⊗ u+ x0e
′ ⊗ v,

y1 · (e⊗ u+ e′ ⊗ v) = (x1 ⊗ q1) · (e⊗ u+ e′ ⊗ v) = −ix1e⊗ u+ ix1e
′ ⊗ v,

y2 · (e⊗ u+ e′ ⊗ v) = (x2 ⊗ q2) · (e⊗ u+ e′ ⊗ v) = ix2e⊗ v + ix2e
′ ⊗ u, and

y3 · (e⊗ u+ e′ ⊗ v) = (x3 ⊗ q3) · (e⊗ u+ e′ ⊗ v) = −x3e⊗ v + x3e
′ ⊗ u,

(β0y0 + iβ1y1 − iβ2y2 − β3y3) · (e⊗ u+ e′ ⊗ v) equals

(β0x0+β1x1)e⊗u + (β2x2+β3x3)e⊗v + (β2x2−β3x3)e
′⊗u + (β0x0−β1x1)e

′⊗v.

Since e ∈ (Mp,p+ξ1)0 it follows from (1) that (β0x0 + β1x1)e = (β2x2 + β3x3)e = 0.
Since e′ ∈ (Mp+ξ2,p+ξ3)0 it follows from (2) that (β0x0−β1x1)e

′ = (β2x2−β3x3)e
′ =

0. Therefore (3) is true. The proof of (4) is similar. �

Let φ0 be the identity map on M0 and let φ1, φ2 ∈ GL(M0) be the linear au-
tomorphisms which act on the basis {e ⊗ u, e ⊗ v, e′ ⊗ u, e′ ⊗ v} as in Table 5.

Table 5. Equivariant structure on M0

e⊗ u e⊗ v e′ ⊗ u e′ ⊗ v

φ1 e⊗ u −e⊗ v −e′ ⊗ u e′ ⊗ v
φ2 e′ ⊗ v e′ ⊗ u e⊗ v e⊗ u

Let φ3 = φ1φ2.
The following observation is elementary.

Lemma 11.8. Let a be an element in a ring R such that a2 = 1. There is a
group homomorphism Z/2 → Aut(R) given by sending the non-identity element
to the automorphism b �→ aba−1. Let M be a left R-module and define the group
homomorphism Z/2 → AutZ(M) by sending the non-identity element to the auto-
morphism m �→ am. This action of Z/2 makes M a Z/2-equivariant R-module.

Theorem 11.9. Let each ξi act on M0 as the linear map φi in Table 5.

(1) This action of Γ on M0 extends to an action of Γ on M that makes M a
Γ-equivariant Q′-module.

(2) The Q̃-line module MΓ is generated by e⊗ u+ e′ ⊗ v.
(3) If β0x0 + β1x1 = β2x2 + β3x3 = 0 is the line in P(Q∗

1) that passes through

p and p+ ξ1, then the line in P(Q̃∗
1) corresponding to MΓ is β0y0+ iβ1y1 =

iβ2y2 + β3y3 = 0.

Proof. (1) We will use Lemma 11.8 to show that M0 is a Γ-equivariant M2(k)-
module.
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First, consider the action of ξ1 by φ1 on e ⊗ k2. With respect to the ordered
basis {e⊗ u, e⊗ v}, ξ1 acts on e⊗ k2 as multiplication by 1⊗

(
1 0
0 −1

)
. The action of

ξ1 on M2(k) is b �→ q1bq
−1
1 . Since conjugation by q1 is the same as conjugation by(

1 0
0 −1

)
, Lemma 11.8 tells us that e⊗ k2 is a 〈ξ1〉-equivariant M2(k)-module.

Now consider the action of ξ1 by φ1 on e′⊗k2. With respect to the ordered basis
{e⊗ u, e⊗ v}, ξ1 acts on e′ ⊗ k2 as multiplication by 1⊗

(−1 0
0 1

)
. Since conjugation

by q1 is the same as conjugation by
(−1 0

0 1

)
, Lemma 11.8 tells us that e′ ⊗ k2 is a

〈ξ1〉-equivariant M2(k)-module.
Thus, M0 is a 〈ξ1〉-equivariant M2(k)-module. A similar argument shows that

M0 is a 〈ξj〉-equivariant M2(k)-module for the other j’s. Since {φ0, φ1, φ2, φ3} is a
subgroup of GL(M0) isomorphic to Γ, these Z/2-equivariant structures fit together
to make M0 = (e⊗ k2)⊕ (e′ ⊗ k2) a Γ-equivariant M2(k)-module.

To extend the equivariant structure to all of M , simply define automorphisms
φi of M by

φi(am) = ξi(a)φi(m), ∀a ∈ Q′, m ∈ M0.

That this action is well-defined boils down to checking that whenever a ∈ Q′ anni-
hilates m ∈ M0, ξi(a) annihilates φi(m). For this it suffices to assume that m is an
eigenvector of φi (since M0 breaks up as a direct sum of Γ-eigenspaces) and hence
to prove that

am = 0 ⇒ ξi(a)m = 0, ∀a ∈ Q′, m ∈ M0.

The conclusion follows from the fact that all twists ξ∗i M are isomorphic to M as
Q′-modules (because we already know there are equivariant structures on M).

(2) By Proposition 11.1, MΓ is a line module for Q̃. One sees from Table 1 that

e⊗ u+ e′ ⊗ v is in MΓ
0 so it generates the Q̃-line module MΓ.

(3) The correspondence between line modules for Q̃ and lines in P(Q̃∗
1) is given

by sending a line module Q̃/Q̃y + Q̃y′ to the line y = y′ = 0. Thus, (3) follows
from Lemma 11.7(3). �

11.5. 3 elliptic curves parametrizing some line modules. Let G(1, 3) be the

Grassmannian of lines in P(Q̃∗
1). There is a bijection

G(1, 3)

←→{isomorphism classes of cyclic graded Q̃-modules with Hilbert series 1+2t}

given by the function sending a line y = y′ = 0 to the module Q̃/Q̃y + Q̃y′ + Q̃≥2

and its inverse which sends a cyclic graded Q̃-module N with Hilbert series 1 + 2t

to the vanishing locus of the subspace of Q̃1 that annihilates N0.

Let L be a line module for Q̃. The Hilbert series for L/L≥2 is 1 + 2t, so L

determines a point in G(1, 3). Since L ∼= Q̃/Q̃y+Q̃y′ for some linearly independent

elements y, y′ ∈ Q̃1, the isomorphism class of L is determined by the isomorphism
class of L/L≥2. Thus, there is a well-defined map

{isomorphism classes of line modules for Q̃} −→ G(1, 3).

Proposition 11.10. Let g : P(Q∗
1) → P(Q̃∗

1) be the isomorphism induced by the

linear isomorphism Q̃1 → Q1,

y0 �→ x0, y1 �→ −ix1, y2 �→ −ix2, y3 �→ x3.



324 ALEX CHIRVASITU AND S. PAUL SMITH

The function f : E/〈ξ1〉 → G(1, 3) defined by

f
(
p+ 〈ξ1〉

)
:= g(the line in P(Q∗

1) that passes through p and p+ ξ1)

is a closed immersion, and f
(
E/〈ξ1〉

)
parametrizes the isomorphism classes of Γ-

equivariant Q′-modules of the form Mx,ξ1 , x ∈ E/E[2]. If x = p + E[2], then
the lines f

(
p + 〈ξ1〉

)
and f

(
p + ξ2 + 〈ξ1〉

)
correspond to the two non-isomorphic

equivariant structures on Mx,ξ1 .

Proof. The map that sends a point p ∈ E to the line through p and p + ξ1 is a
morphism from E to the Grassmanian of lines in P(Q∗

1). Composing that map
with g gives a morphism h : E → G(1, 3). Since h(p) = h(p + ξ1), h factors as a
composition

(11-5) E −→ E/〈ξ1〉 −→ G(1, 3),

where the first map is the quotient map and the second is f . By the universal
property of the quotient map, f is a morphism. In fact, f is the composition γβ
of the two maps from Proposition 10.1 and Lemma 10.3 and hence is a closed
immersion.

The line in P(Q∗
1) through p and p + ξ1 is of the form β0x0 + β1x1 = β2x2 +

β3x3 = 0. Therefore f
(
p+ 〈ξ1〉

)
is the line g(β0x0 + β1x1) = g(β2x2 + β3x3) = 0,

i.e., the line iβ0y0 − β1y1 = β2y2 − iβ3y3 = 0. Thus, f(p + 〈ξ1〉) is the line in

P(Q̃∗
1) that corresponds to the Q̃-line module, MΓ, that corresponds to the Γ-

equivariant structure on M = Mx,ξ1 with the equivariant structure described in
Theorem 11.9. �

There are versions of all the results in §11.4 with ξ2 and ξ3 in place of ξ1. In
particular, by Proposition 11.10 there are closed immersions E/〈ξ1〉 → G(1, 3),
E/〈ξ2〉 → G(1, 3), and E/〈ξ3〉 → G(1, 3). It is clear that the images of these
morphisms are disjoint from one another.

Theorem 11.11. The set of Γ-equivariant Q′-modules in Theorem 11.6 is parame-
trized by (

E/〈ξ〉
)

(
E/〈ξ′〉

)

(
E/〈ξ′′〉

)
where {ξ, ξ′, ξ′′} is the set of 2-torsion points on E.

In fact, we can say more about these three components of the scheme of line
modules. We will say that a closed subscheme of a projective space PN is spatial if
its inclusion factors through some linear P3 ⊂ PN but not through a linear P2 ⊂ PN .

Proposition 11.12. For each 2-torsion point ξ the elliptic curve E/〈ξ〉 ⊂ G(1, 3) ⊂
P5 is a degree-four curve spanning a linear subspace P3 ⊆ P5.

Proof. That E/〈ξ〉 is contained in a P3 ⊆ P5 follows from its construction in Propo-
sition 11.10. Indeed, suppose in order to fix notation that ξ = ξ1 and denote
E = E/〈ξ〉. If the Plücker coordinates of the line

3∑
j=0

λjyj =
3∑

j=0

λ′
jyj = 0

are the minors Mij , 0 ≤ i < j ≤ 3 of the matrix

M =

(
λ0 λ1 λ2 λ3

λ′
0 λ′

1 λ′
2 λ′

3

)
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supported on columns i and j, then the two coordinates M01 and M23 vanish on E
by part (3) of Theorem 11.9.

The fact that E is not contained in a P2 will follow once we prove that the degree
of the embedding into P5 is four, as claimed in the statement.

To check the degree assertion we will intersect E with a hyperplane section of
G(1, 3) ⊂ P5, judiciously chosen so that it is not tangent to E and the number of
intersection points is clearly four.

For every line � in P3 the collection of all lines in G(1, 3) intersecting � is a
hyperplane section H� of G(1, 3) ⊂ P5. Let � = pq be a secant line of E. The
points in E ∩H� are the classes modulo 〈ξ〉 of those u ∈ E for which the secant line

u(u+ ξ) intersects �.
If

(11-6) q �= p+ ξ and 3p+ q + ξ �= 0, p+ 3q + ξ �= 0,

then there are exactly four such classes modulo 〈ξ〉, namely those of p, q, u, and
u+ ξ′, where u+ (u+ ξ) + p+ q = 0 and E[2]− {0} � ξ′ �= ξ.

It remains to check that p, q ∈ E can be chosen so that H� is not tangent to E
at any of the four points where they intersect, in addition to satisfying (11-6).

Identify, as usual, the tangent space to G(1, 3) at some line m (simultaneously
regarded as a 2-plane in the 4-dimensional vector space V ) with the space of linear
maps m → V/m. Generally, we will conflate linear subspaces of V and their
projectivized versions.

For any u ∈ E, the tangent line to E ⊂ G(1, 3) at u(u+ ξ) can be identified with

the space of linear maps u(u+ ξ) → V/u(u+ ξ) that send the lines u and u+ ξ in

V to the 2-planes TuE and Tu+ξE in V respectively modulo u(u+ ξ).
On the other hand, reverting to the notation introduced above for u ∈ E so that

2u+ ξ + p+ q = 0, the tangent space at u(u+ ξ) ∈ G(1, 3) to H� consists of those

linear maps u(u+ ξ) → V/u(u+ ξ) that send the intersection s = pq ∩ u(u+ ξ) to

pq modulo u(u+ ξ) (see e.g. [13, Ex. 16.6]).
Since the line s ⊂ V is in the span of u and u+ ξ, we would be certain that the

tangent space in the previous paragraph does not contain the tangent line described
two paragraphs up if we knew that the tangents to E at u and u+ ξ are coplanar.
This is indeed the case if 4u = 0, so simply take u ∈ E[4] and afterwards select p
and q so that (11-6) holds. �

11.5.1. There is another perspective on the Γ-equivariant Q′-modules parametrized
by E/〈ξ〉. The family of Q′-modules Mx,ξ is parametrized by x ∈ E/E[2]. The
quotient of the fundamental groups, π1(E/E[2])/π1(E/〈ξ〉), which is naturally iso-
morphic to E[2]/〈ξ〉, acts freely and transitively on each fiber of the natural map
E/〈ξ〉 → E/E[2]. If we identify the fiber over x with the set of isomorphism classes
of equivariant structures on Mx,ξ, then H1(Γ,Aut(Mx,ξ)) also acts on the fiber over
x. As the paragraph explains, these actions of E/〈ξ〉 and H1(Γ,Aut(Mx,ξ)) on the
fibers are compatible in a natural way.

The Weil pairing 〈·, ·〉 : E[2]×E[2] → μ2 = {±1} ⊆ k× is a non-degenerate skew-
symmetric bilinear form on E[2] viewed as a 2-dimensional vector space over F2.
Since 〈ξ, ξ〉 = 1, there is an induced non-degenerate bilinear map 〈ξ〉×E[2]/〈ξ〉 → μ2

or, what is essentially the same thing, a group isomorphism

E[2]/〈ξ〉 −→ HomZ(〈ξ〉, μ2) = HomZ(〈ξ〉, k×) ∼= H1(Γ,Aut(Mx,ξ)),
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where the right-most isomorphism was established in the proof of Theorem 11.6(3).

11.6. Under quite general conditions, which Q̃ satisfies, Shelton and Vancliff prove
that every irreducible component of the scheme parametrizing the line modules has
dimension ≥ 1 [29, Cor. 2.6] and that every point module is a quotient of a line
module [29, Prop. 3.1]. We will investigate this relationship in a subsequent paper.

We also show there that the line modules for Q̃ described above are not all the line
modules.

Appendix A. Equivariant structures

A.1. Groups acting on categories. An action of a group Γ on a category C
consists of data {α∗, tα,β | α, β ∈ Γ} where each α∗ : C → C is an auto-equivalence
and each tα,β : α∗β∗ → (αβ)∗ is a natural isomorphism such that the diagrams

α∗ ◦ β∗ ◦ γ∗ α∗·tβ,γ ��

tα,β ·γ∗

��

α∗ ◦ (βγ)∗

tα,βγ

��
(αβ)∗ ◦ γ∗

tαβ,γ

�� (αβγ)∗

commute for all α, β, γ ∈ Γ.

Lemma A.1. Let x ∈ Ob(C) and let φ = {φα : x → α∗x | α ∈ Γ} be a set of
isomorphisms. If Aut(x) is abelian, then there is an action of Γ on Aut(x) given
by the formula

Γ×Aut(x) → Aut(x)

(α, f) �→ α · f := φ−1
α α∗(f)φα.

This action does not depend on the choice of the φα’s.

Proof. Because tα,β : α∗ ◦ β∗ → (αβ)∗ is a natural transformation, the diagram

α∗(β∗x)
(tα,β)x ��

α∗β∗(f)

��

(αβ)∗x

(αβ)∗(f)

��
α∗(β∗x)

(tα,β)x

�� (αβ)∗x

commutes for all f ∈ Aut(x) and all α, β ∈ Γ. In other words,

(A-1) (αβ)∗(f) = (tα,β)x ◦ α∗β∗(f) ◦ (tα,β)−1
x .

Since Aut(α∗β∗x) is abelian, (tα,β)
−1
x φαβφ

−1
α α∗(φβ)

−1 commutes with α∗β∗(f).
This fact can be expressed as

φ−1
α α∗(φ−1

β ) ◦ α∗β∗(f) ◦ α∗(φβ)φα = φ−1
αβ(tα,β)x ◦ α∗β∗(f) ◦ (tα,β)−1

x φαβ ,

which we rewrite as

(A-2) φ−1
α α∗

(
φ−1
β β∗(f)φβ

)
φα = φ−1

αβ(tα,β)x ◦ α∗β∗(f) ◦ (tα,β)−1
x φαβ .
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The left-hand side of (A-2) is φ−1
α α∗(β · f)φα = α · (β · f), and, by (A-1), the

right-hand side of (A-2) is equal to

φ−1
αβ(αβ)

∗(f)φαβ,

which equals (αβ) · f . Thus α · (β · f) = (αβ) · f .
To see that the action does not depend on the choice of the φα’s suppose that

{φ′
α : x → α∗x | α ∈ Γ} is another collection of isomorphisms. There are automor-

phisms ψα ∈ Aut(α∗x) such that φ′
α = ψαφα. The action of Γ on Aut(x) associated

to the φ′
α, α ∈ Γ, is

(α, f) �→ (φ′
α)

−1α∗(f)φ′
α = φ−1

α ψ−1
α α∗(f)ψαφα,

but ψ−1
α α∗(f)ψα = α∗(f) because Aut(α∗x) is abelian, so the right-hand side of

the displayed equation is equal to α · f . �

A.2. Equivariant objects. Suppose Γ acts on C. A Γ-equivariant structure on an
object x ∈ C is a set of isomorphisms {φα : x → α∗x | α ∈ Γ} such that the
diagrams

(A-3) x
φα ��

φαβ

��

α∗x

α∗(φβ)

��
(αβ)∗x α∗(β∗x)

(tα,β)x

��

commute for all α, β, γ ∈ Γ.
An arbitrary set of isomorphisms φα : x → α∗x, α ∈ Γ, will not usually give

an equivariant structure on x. Their failure to do so, i.e., the failure of (A-3) to
commute, is measured by the automorphisms

(A-4) aα,β := φ−1
αβ ◦ (tα,β)x ◦ α∗(φβ) ◦ φα

of x.

Lemma A.2. Let x ∈ Ob(C) and let {φα : x → α∗x | α ∈ Γ} be a set of isomor-
phisms. If Aut(x) is abelian, then the function

a : Γ× Γ → Aut(x), (α, β) �→ aα,β ,

is a 2-cocycle.

Proof. We must show that aαβ,γ ◦ aα,β = aα,βγ ◦ (α · aβ,γ) for all α, β, γ ∈ Γ.
First, aαβ,γ ◦ aα,β equals

φ−1
αβγ ◦ (tαβ,γ)x ◦ (αβ)∗(φγ) ◦ φαβ ◦ φ−1

αβ ◦ (tα,β)x ◦ α∗(φβ) ◦ φα

= φ−1
αβγ ◦ (tαβ,γ)x ◦ (αβ)∗(φγ) ◦ (tα,β)x ◦ α∗(φβ) ◦ φα

= φ−1
αβγ ◦ (tαβ,γ)x ◦ (tα,β)γ∗x ◦ α∗β∗(φγ) ◦ α∗(φβ) ◦ φα,

where the last equality follows from the commutative diagram

α∗β∗x
(tα,β)x ��

α∗β∗(φγ)

��

(αβ)∗x

(αβ)∗(φγ)

��
α∗β∗(γ∗x)

(tα,β)γ∗x

�� (αβ)∗(γ∗x)
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which exists by virtue of the fact that tα,β is a natural transformation (applied to
the isomorphism φγ : x → γ∗x).

On the other hand, aα,βγ ◦ (α · aβ,γ) equals
φ−1
αβγ ◦ (tα,βγ)x ◦ α∗(φβγ) ◦ φα ◦ φ−1

α ◦ α∗(φ−1
βγ ◦ (tβ,γ)x ◦ β∗(φγ) ◦ φβ

)
◦ φα

= φ−1
αβγ ◦ (tα,βγ)x ◦ α∗((tβ,γ)x) ◦ α∗β∗(φγ) ◦ α∗(φβ) ◦ φα

= φ−1
αβγ ◦ (tα,βγ)x ◦ (α∗ · tβ,γ)x ◦ α∗β∗(φγ) ◦ α∗(φβ) ◦ φα

= φ−1
αβγ ◦ (tαβ,γ)x ◦ (tα,β)γ∗x ◦ α∗β∗(φγ) ◦ α∗(φβ) ◦ φα.

Thus, aα,βγ ◦ (α · aβ,γ) = aαβ,γ ◦ aα,β . �

Proposition A.3. Let x ∈ Ob(C) and suppose Aut(x) is abelian. If the 2-cocycle
(α, β) �→ aα,β defined in (A-4) is the coboundary of the function f : Γ → Aut(x),
α �→ aα, then the isomorphisms {φαa

−1
α : x → α∗x | α ∈ Γ} form an equivariant

structure on x.

Proof. The hypothesis says that

φ−1
αβ ◦ (tα,β)x ◦ α∗(φβ) ◦ φα = (df)(α, β) = (α · aβ) ◦ a−1

αβ ◦ aα
for all α, β ∈ Γ. Since Aut(x) is abelian, we can rewrite this as

φ−1
αβ ◦ (tα,β)x ◦ α∗(φβ) ◦ φα = a−1

αβ ◦ aα ◦ (α · aβ)
= a−1

αβ ◦ aα ◦ φ−1
α α∗(aβ)φα,

whence (tα,β)x ◦ α∗(φβ) = φαβa
−1
αβ ◦ aαφ−1

α ◦ α∗(aβ). In other words, the diagram

x
φαa−1

α ��

φαβa
−1
αβ

��

α∗x

α∗(φβa
−1
β )

��
(αβ)∗x α∗(β∗x)

(tα,β)x

��

commutes; i.e., the maps {φαa
−1
α : x → α∗x | α ∈ Γ} form an equivariant structure

on x. �

A.3. Classification of equivariant structures. In order to classify equivariant
structures we must first say what it means for two equivariant structures to be the
“same”.

Suppose that Γ acts on C. The objects in the category CΓ of Γ-equivariant
objects in C are pairs (x, φ) consisting of an object x in C and a set of isomorphisms
φ = {φα : x → α∗x | α ∈ Γ} that give x the structure of a Γ-equivariant object.
A morphism f : (x, φ) → (y, ψ) in CΓ is a morphism f : x → y in C such that the
diagram

x
φα ��

f

��

α∗x

α∗(f)

��
y

ψα

�� α∗y

commutes for all α ∈ Γ.
We will classify equivariant structures on an x ∈ Ob(C) up to isomorphism in

the special case when Aut(x) is abelian.
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Lemma A.4. Let x ∈ Ob(C). Suppose that {φα : x → α∗x | α ∈ Γ} and {ψα :
x → α∗x | α ∈ Γ} are equivariant structures on x. If Aut(x) is abelian, then the
function f : Γ → Aut(x), f(α) := ψ−1

α φα, is a 1-cocycle.

Proof. By definition,

(A-5) (df)(α, β) = (α · ψ−1
β φβ) ◦

(
ψ−1
αβφαβ

)−1 ◦ ψ−1
α φα.

Because the φ’s and ψ’s define equivariant structures,

ψ−1
αβφαβ =

(
tα,βα

∗(ψβ)ψα

)−1

◦
(
tα,βα

∗(φβ)φα

)
= ψ−1

α α∗(ψ−1
β φβ)φα.

Therefore

(df)(α, β) = φ−1
α α∗(ψ−1

β φβ)φα ◦
(
ψ−1
α α∗(ψ−1

β φβ)φα

)−1 ◦ ψ−1
α φα

= idx.

Thus, f is a 1-cocycle as claimed. �

Let x ∈ Ob(x). We write Φ(x) for the set of equivariant structures on x and
Φ(x)Isom for the set of isomorphism classes of equivariant structures on x. If φ =
{φα : x → α∗x | α ∈ Γ} ∈ Φ(x) we write [φ] for the isomorphism class of φ; i.e.,
φ �→ [φ] denotes the obvious function Φ(x) → Φ(x)Isom.

Proposition A.5. Let x ∈ Ob(C) and suppose Aut(x) is abelian. If φ = {φα :
x → α∗x | α ∈ Γ} is an equivariant structure on x and f : Γ → Aut(x), α �→ fα, a
1-cocycle, then

(f · φ) := {φαfα : x → α∗x | α ∈ Γ}
is an equivariant structure on x that depends only on the class of f in H1(Γ,Aut(x)).
This gives an action of H1(Γ,Aut(x)) on Φ(x)Isom. Furthermore, if Φ(x) �= ∅, then
H1(Γ,Aut(x)) acts simply transitively on Φ(x)Isom.

Proof. Let [f ] ∈ H1(Γ,Aut(x)) where f is a 1-cocycle. Let φ = {φα} ∈ Φ(x).
Because f is a 1-cocycle, (α · fβ)f−1

αβ fα = idx. Because Aut(x) is abelian this
equality can be rewritten as

fαβ = (α · fβ)fα = φ−1
α α∗(fβ)φαfα.

Since the φα’s form an equivariant structure on x,

φαβ = (tα,β)xα
∗(φβ)φα

for all α, β ∈ Γ. Therefore

φαβfαβ =
(
(tα,β)xα

∗(φβ)φα

)
◦
(
φ−1
α α∗(fβ)φαfα

)
= (tα,β)xα

∗(φβfβ)φαfα.

In other words, the diagram

x
φαfα ��

φαβfαβ

��

α∗x

α∗(φβfβ)

��
(αβ)∗x α∗(β∗x)

(tα,β)x

��

commutes; i.e., the maps {φαfα : x → α∗x | α ∈ Γ} form an equivariant structure
on x.
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We now show that the isomorphism class of (x, f · φ) depends only on the coho-
mology class of f . Let f, f ′ : Γ → Aut(x) be 1-cocycles. They are cohomologous
if and only if f ′f−1 = dg for some g ∈ C0(Γ,Aut(x)) = Aut(x), i.e., if and only if
there is g ∈ Aut(x) such that

f ′
αf

−1
α = (dg)(α) = (α · g)g−1

for all α ∈ Γ. On the other hand, (x, f · φ) ∼= (x, f ′ · φ) if and only if there is an
isomorphism g : x → x such that the diagram

x
φαfα ��

g

��

α∗x

α∗(g)

��
x

φαf ′
α

�� α∗x

commutes for all α ∈ Γ, i.e., if and only if α∗(g)φαfα = φαf
′
αg or, equivalently,

φ−1
α α∗(g)φαfα = f ′

αg for all α ∈ Γ. Since Aut(x) is abelian, this is equivalent to
the condition that φ−1

α α∗(g)φαg
−1 = f ′

αf
−1
α for all α ∈ Γ, i.e., (α · g)g−1 = f ′

αf
−1
α .

This completes the proof that (x, f · φ) ∼= (x, f ′ · φ) if and only if [f ] = [f ′]. Thus,
once we have shown that ([f ], [φ]) �→ [f ·φ] really is an action, as we do in the next
paragraph, we will have shown that H1(Γ,Aut(x)) acts on Φ(x)Isom and all isotropy
groups are trivial.

We now check that ([f ], φ) �→ (f · φ) is an action of H1(Γ,Aut(x)) on Φ(x). Let
f, f ′ : Γ → Aut(x) be 1-cocycles. Then f · (f ′ · φ) = {φαf

′
αfα | α ∈ Γ}. Since

fα and f ′
α are elements in the abelian group Aut(x), f ′

αfα = fαf
′
α, from which it

follows that f · (f ′ · φ) = (ff ′) · φ.
It remains to show that H1(Γ,Aut(x)) acts transitively on Φ(x)Isom is transitive.

Let φ, φ′ ∈ Φ(x). We will show there is a 1-cocycle f such that φ′ ∼= f · φ. By
Lemma A.6 below, the function f : Γ → Aut(x) defined by f(α) := φ−1

α φ′
α is a

1-cocycle. But (f · φ)α = φαfα = φ′
α, so φ′ = f · φ. �

Lemma A.6. Let x ∈ Ob(C) and suppose that Aut(x) is abelian. If φ, ψ ∈ Φ(x),
then φ−1ψ := {φ−1

α ψα | α ∈ Γ} is a 1-cocycle for Γ with values in Aut(x).

Proof. We must show that d(φ−1ψ)(α, β) is the identity for all α, β ∈ Γ. This is
the case because

d(φ−1ψ)(α, β) = α · (φ−1
β ψβ) ◦ (φ−1

αβψαβ)
−1 ◦ φ−1

α ψα

= α · (φ−1
β ψβ) ◦ φ−1

α ψα ◦ (φ−1
αβψαβ)

−1

= φ−1
α α∗(φ−1

β ψβ)φα ◦ φ−1
α ψα ◦ ψ−1

αβφαβ

= φ−1
α α∗(φ−1

β ψβ)ψα ◦ ψ−1
α α∗(ψβ)

−1(tα,β)
−1
x ◦ (tα,β)xα∗(φβ)φα

= φ−1
α α∗(φ−1

β ψβ)α
∗(ψβ)

−1α∗(φβ)φα,

which is certainly equal to idx. �

A.4. Equivariant modules. Let Γ act as k-algebra automorphisms of a k-algebra
R. If α ∈ Γ and M is a left R-module we define α∗M to be M as a k-vector space
with a new action of R, namely, x ·α m := α−1(x)m. If f : M → N is an R-module
homomorphism we define α∗(f) : α∗M → α∗N to be the function f , now viewed as
a homomorphism from α∗M to α∗N . In this way, α∗ becomes an auto-equivalence
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of the category of left R-modules, Mod(R). Since α∗β∗ = (αβ)∗ this gives an action
of Γ on Mod(R).

Suppose M is a Γ-equivariant left R-module via the isomorphisms φα : M →
α∗M , α ∈ Γ. Since α∗M = M , each φα is a k-linear map φα : M → M and
it has the property that φα(xm) = x ·α φα(m) = α−1(x)φα(m) or, equivalently,
φ−1
α (xm) = α(x)φ−1

α (m), for all x ∈ R and m ∈ M . If we write mα := φ−1
α (m),

then we obtain a left action of Γ on M with the property that (xm)α = α(x)mα

for all x ∈ R, α ∈ Γ, and m ∈ M .
Conversely, if M is a left R-module with a left action of Γ on M such that

(xm)α = α(x)mα for all x ∈ R, α ∈ Γ, and m ∈ M , then the maps φα : M → α∗M

defined by φα(m) = mα−1

gives M the structure of a Γ-equivariant R-module.
Thus, a Γ-equivariant R-module is an R-module, M , say, together with an action

of Γ via a group homomorphism Γ → AutZ(M), α �→ (m �→ mα), such that
(xm)α = α(x)mα for all α ∈ Γ and m ∈ M .
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