Imprimitive irreducible modules for finite quasisimple groups. II
Authors:
Gerhard Hiss and Kay Magaard
Journal:
Trans. Amer. Math. Soc. 371 (2019), 833-882
MSC (2010):
Primary 20C33, 20C15; Secondary 20C40, 20E42, 20E45
DOI:
https://doi.org/10.1090/tran/7359
Published electronically:
June 20, 2018
MathSciNet review:
3885163
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: This work completes the classification of the imprimitive irreducible modules, over algebraically closed fields of characteristic $0$, of the finite quasisimple groups.
- Cédric Bonnafé, Sur les caractères des groupes réductifs finis à centre non connexe: applications aux groupes spéciaux linéaires et unitaires, Astérisque 306 (2006), vi+165 (French, with English and French summaries). MR 2274998
- N. Bourbaki, Algèbre, Chapitre IX, Hermann, Paris, 1958.
- Michel Broué and Gunter Malle, Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis, Math. Ann. 292 (1992), no. 2, 241–262 (French). MR 1149033, DOI https://doi.org/10.1007/BF01444619
- Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI https://doi.org/10.2307/1971021
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841
- Dragomiz Ž. Djoković and Jerry Malzan, Imprimitive, irreducible complex characters of the alternating group, Canadian J. Math. 28 (1976), no. 6, 1199–1204. MR 419580, DOI https://doi.org/10.4153/CJM-1976-119-x
- Michel Enguehard, Vers une décomposition de Jordan des blocs des groupes réductifs finis, J. Algebra 319 (2008), no. 3, 1035–1115 (French, with English summary). MR 2379092, DOI https://doi.org/10.1016/j.jalgebra.2007.06.036
- Paul Fong and Bhama Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69 (1982), no. 1, 109–153. MR 671655, DOI https://doi.org/10.1007/BF01389188
- Paul Fong and Bhama Srinivasan, The blocks of finite classical groups, J. Reine Angew. Math. 396 (1989), 122–191. MR 988550
- The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.8.5; 2016, http://www-gap.dcs.st-and.ac.uk/~gap.
- Meinolf Geck, Gerhard Hiss, Frank Lübeck, Gunter Malle, and Götz Pfeiffer, CHEVIE—a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175–210. Computational methods in Lie theory (Essen, 1994). MR 1486215, DOI https://doi.org/10.1007/BF01190329
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- Gerhard Hiss, William J. Husen, and Kay Magaard, Imprimitive irreducible modules for finite quasisimple groups, Mem. Amer. Math. Soc. 234 (2015), no. 1104, vi+114. MR 3307751, DOI https://doi.org/10.1090/memo/1104
- R. B. Howlett and G. I. Lehrer, Representations of generic algebras and finite groups of Lie type, Trans. Amer. Math. Soc. 280 (1983), no. 2, 753–779. MR 716849, DOI https://doi.org/10.1090/S0002-9947-1983-0716849-6
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- F. Lübeck, Centralizers and numbers of semisimple classes in exceptional groups of Lie type, http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/CentSSClasses/.
- G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125–175. MR 463275, DOI https://doi.org/10.1007/BF01390002
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472
- G. Lusztig, On the representations of reductive groups with disconnected centre, Astérisque 168 (1988), 10, 157–166. Orbites unipotentes et représentations, I. MR 1021495
- Gunter Malle, Extensions of unipotent characters and the inductive McKay condition, J. Algebra 320 (2008), no. 7, 2963–2980. MR 2442005, DOI https://doi.org/10.1016/j.jalgebra.2008.06.033
- Daniel Nett and Felix Noeske, The imprimitive faithful complex characters of the Schur covers of the symmetric and alternating groups, J. Group Theory 14 (2011), no. 3, 413–435. MR 2794376, DOI https://doi.org/10.1515/JGT.2010.066
- Donald E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR 1189139
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20C33, 20C15, 20C40, 20E42, 20E45
Retrieve articles in all journals with MSC (2010): 20C33, 20C15, 20C40, 20E42, 20E45
Additional Information
Gerhard Hiss
Affiliation:
Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
MR Author ID:
86475
Email:
gerhard.hiss@math.rwth-aachen.de
Kay Magaard
Affiliation:
School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
Address at time of publication:
Departement of Mathematics, University of Arizona, 617 Santa Rita Road, 85721 Tucson, Arizona
MR Author ID:
252279
Email:
magaard@email.arizona.edu
Keywords:
Finite quasisimple group,
finite classical group,
imprimitive ordinary representation
Received by editor(s):
March 13, 2017
Published electronically:
June 20, 2018
Article copyright:
© Copyright 2018
American Mathematical Society