Satellites and concordance of knots in 3–manifolds
HTML articles powered by AMS MathViewer
- by Stefan Friedl, Matthias Nagel, Patrick Orson and Mark Powell PDF
- Trans. Amer. Math. Soc. 371 (2019), 2279-2306 Request permission
Abstract:
Given a $3$–manifold $Y$ and a free homotopy class in $[S^1,Y]$, we investigate the set of topological concordance classes of knots in $Y \times [0,1]$ representing the given homotopy class. The concordance group of knots in the $3$–sphere acts on this set. We show in many cases that the action is not transitive, using two techniques. Our first technique uses Reidemeister torsion invariants, and the second uses linking numbers in covering spaces. In particular, we show using covering links that for the trivial homotopy class, and for any $3$–manifold that is not the $3$–sphere, the set of orbits is infinite. On the other hand, for the case that $Y=S^1 \times S^2$, we apply topological surgery theory to show that all knots with winding number one are concordant.References
- Matthias Aschenbrenner, Stefan Friedl, and Henry Wilton, 3-manifold groups, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2015. MR 3444187, DOI 10.4171/154
- Daniele Celoria, On concordances in 3-manifolds, J. Topol. 11 (2018), no. 1, 180–200. MR 3784229, DOI 10.1112/topo.12051
- David Cimasoni and Vincent Florens, Generalized Seifert surfaces and signatures of colored links, Trans. Amer. Math. Soc. 360 (2008), no. 3, 1223–1264. MR 2357695, DOI 10.1090/S0002-9947-07-04176-1
- Jae Choon Cha and Stefan Friedl, Twisted torsion invariants and link concordance, Forum Math. 25 (2013), no. 3, 471–504. MR 3062861, DOI 10.1515/form.2011.125
- T. A. Chapman, Topological invariance of Whitehead torsion, Amer. J. Math. 96 (1974), 488–497. MR 391109, DOI 10.2307/2373556
- D. Cooper, The universal abelian cover of a link, Low-dimensional topology (Bangor, 1979) London Math. Soc. Lecture Note Ser., vol. 48, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 51–66. MR 662427
- Jae Choon Cha and Mark Powell, Nonconcordant links with homology cobordant zero-framed surgery manifolds, Pacific J. Math. 272 (2014), no. 1, 1–33. MR 3270170, DOI 10.2140/pjm.2014.272.1
- Sylvain E. Cappell and Julius L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974), 277–348. MR 339216, DOI 10.2307/1970901
- James F. Davis, A two component link with Alexander polynomial one is concordant to the Hopf link, Math. Proc. Cambridge Philos. Soc. 140 (2006), no. 2, 265–268. MR 2212279, DOI 10.1017/S0305004105008856
- Stefan Friedl and Taehee Kim, Twisted Alexander norms give lower bounds on the Thurston norm, Trans. Amer. Math. Soc. 360 (2008), no. 9, 4597–4618. MR 2403698, DOI 10.1090/S0002-9947-08-04455-3
- Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1201584
- Stefan Friedl and Stefano Vidussi, A survey of twisted Alexander polynomials, The mathematics of knots, Contrib. Math. Comput. Sci., vol. 1, Springer, Heidelberg, 2011, pp. 45–94. MR 2777847, DOI 10.1007/978-3-642-15637-3_{3}
- Deborah L. Goldsmith, A linking invariant of classical link concordance, Knot theory (Proc. Sem., Plans-sur-Bex, 1977) Lecture Notes in Math., vol. 685, Springer, Berlin, 1978, pp. 135–170. MR 521732
- Prudence Heck, Homotopy properties of knots in prime manifolds, preprint, available at https://arxiv.org/abs/1110.6903, 2011.
- Jonathan Hillman, Algebraic invariants of links, 2nd ed., Series on Knots and Everything, vol. 52, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR 2931688, DOI 10.1142/8493
- W. B. Raymond Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, 1997. MR 1472978, DOI 10.1007/978-1-4612-0691-0
- John Milnor, Isotopy of links, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 280–306. MR 0092150
- David Miller, An extension of Milnor’s $\overline \mu$-invariants, Topology Appl. 65 (1995), no. 1, 69–82. MR 1354382, DOI 10.1016/0166-8641(94)00098-N
- Dale Rolfsen, Piecewise-linear $I$-equivalence of links, Low-dimensional topology (Chelwood Gate, 1982) London Math. Soc. Lecture Note Ser., vol. 95, Cambridge Univ. Press, Cambridge, 1985, pp. 161–178. MR 827301, DOI 10.1017/CBO9780511662744.006
- Rob Schneiderman, Algebraic linking numbers of knots in 3-manifolds, Algebr. Geom. Topol. 3 (2003), 921–968. MR 2012959, DOI 10.2140/agt.2003.3.921
- Jean-Pierre Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell; Corrected 2nd printing of the 1980 English translation. MR 1954121
- John Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. MR 175956, DOI 10.1016/0021-8693(65)90017-7
- Vladimir Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. Notes taken by Felix Schlenk. MR 1809561, DOI 10.1007/978-3-0348-8321-4
Additional Information
- Stefan Friedl
- Affiliation: Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
- MR Author ID: 746949
- Email: stefan.friedl@mathematik.uni-regensburg.de
- Matthias Nagel
- Affiliation: Département de Mathématiques, Université du Québec, Montréal, Québec, H2X 3YZ Canada
- Email: nagel@cirget.ca
- Patrick Orson
- Affiliation: Département de Mathématiques, Université du Québec, Montréal, Québec, H2X 3YZ Canada
- MR Author ID: 1157713
- Email: patrick.orson@cirget.ca
- Mark Powell
- Affiliation: Département de Mathématiques, Université du Québec, Montréal, Québec, H2X 3YZ Canada
- MR Author ID: 975189
- Email: mark@cirget.ca
- Received by editor(s): December 6, 2016
- Received by editor(s) in revised form: June 19, 2017
- Published electronically: September 10, 2018
- Additional Notes: The first author was supported by the SFB 1085 ‘Higher Invariants’ at the University of Regensburg, funded by the Deutsche Forschungsgemeinschaft (DFG). The first author is grateful for the hospitality received at Durham University and wishes to thank Wolfgang Lück for supporting a long stay at the Hausdorff Institute.
The second author was supported by a CIRGET postdoctoral fellowship.
The third author was supported by the EPSRC grant EP/M000389/1 of Andrew Lobb.
The fourth author was supported by an NSERC Discovery Grant.
The second, third, and fourth authors all thank the Hausdorff Institute for Mathematics in Bonn for both support and its outstanding research environment. - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 2279-2306
- MSC (2010): Primary 57M27, 57N70
- DOI: https://doi.org/10.1090/tran/7313
- MathSciNet review: 3896081