Actions on semigroups and an infinitary Gowers–Hales–Jewett Ramsey theorem
HTML articles powered by AMS MathViewer
- by Martino Lupini PDF
- Trans. Amer. Math. Soc. 371 (2019), 3083-3116 Request permission
Abstract:
We introduce the notion of (Ramsey) action on a (filtered) semigroup. We then prove in this setting a general result providing a common generalization of the infinitary Gowers Ramsey theorem for multiple tetris operations, the infinitary Hales–Jewett theorems (for both located and nonlocated words), and the Farah–Hindman–McLeod Ramsey theorem for layered actions on partial semigroups. We also establish a polynomial version of our main result, recovering the polynomial Milliken–Taylor theorem of Bergelson–Hindman–Williams as a particular case. We present applications of our Ramsey-theoretic results to the structure of recurrence sets in amenable groups.References
- Ethan Akin, Recurrence in topological dynamics, The University Series in Mathematics, Plenum Press, New York, 1997. Furstenberg families and Ellis actions. MR 1467479, DOI 10.1007/978-1-4757-2668-8
- Dana Bartošová and Aleksandra Kwiatkowska, Gowers’ Ramsey theorem with multiple operations and dynamics of the homeomorphism group of the Lelek fan, J. Combin. Theory Ser. A 150 (2017), 108–136. MR 3645569, DOI 10.1016/j.jcta.2017.02.002
- Mathias Beiglböck, Vitaly Bergelson, and Alexander Fish, Sumset phenomenon in countable amenable groups, Adv. Math. 223 (2010), no. 2, 416–432. MR 2565535, DOI 10.1016/j.aim.2009.08.009
- Vitaly Bergelson, Andreas Blass, and Neil Hindman, Partition theorems for spaces of variable words, Proc. London Math. Soc. (3) 68 (1994), no. 3, 449–476. MR 1262304, DOI 10.1112/plms/s3-68.3.449
- Vitaly Bergelson and Tomasz Downarowicz, Large sets of integers and hierarchy of mixing properties of measure preserving systems, Colloq. Math. 110 (2008), no. 1, 117–150. MR 2353901, DOI 10.4064/cm110-1-4
- Vitaly Bergelson, Hillel Furstenberg, and Randall McCutcheon, IP-sets and polynomial recurrence, Ergodic Theory Dynam. Systems 16 (1996), no. 5, 963–974. MR 1417769, DOI 10.1017/S0143385700010130
- Vitaly Bergelson, Neil Hindman, and Kendall Williams, Polynomial extensions of the Milliken-Taylor theorem, Trans. Amer. Math. Soc. 366 (2014), no. 11, 5727–5748. MR 3256182, DOI 10.1090/S0002-9947-2014-05958-8
- B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006. Theory of $C^*$-algebras and von Neumann algebras; Operator Algebras and Non-commutative Geometry, III. MR 2188261, DOI 10.1007/3-540-28517-2
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- Ilijas Farah, Neil Hindman, and Jillian McLeod, Partition theorems for layered partial semigroups, J. Combin. Theory Ser. A 98 (2002), no. 2, 268–311. MR 1899627, DOI 10.1006/jcta.2001.3237
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625, DOI 10.1515/9781400855162
- W. T. Gowers, Lipschitz functions on classical spaces, European J. Combin. 13 (1992), no. 3, 141–151. MR 1164759, DOI 10.1016/0195-6698(92)90020-Z
- W. T. Gowers, Ramsey methods in Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1071–1097. MR 1999191, DOI 10.1016/S1874-5849(03)80031-1
- A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222–229. MR 143712, DOI 10.1090/S0002-9947-1963-0143712-1
- Neil Hindman, Finite sums from sequences within cells of a partition of $N$, J. Combinatorial Theory Ser. A 17 (1974), 1–11. MR 349574, DOI 10.1016/0097-3165(74)90023-5
- Neil Hindman and Dona Strauss, Algebra in the Stone-Čech compactification, De Gruyter Textbook, Walter de Gruyter & Co., Berlin, 2012. Theory and applications; Second revised and extended edition [of MR1642231]. MR 2893605
- Vassilis Kanellopoulos, A proof of W. T. Gowers’ $c_0$ theorem, Proc. Amer. Math. Soc. 132 (2004), no. 11, 3231–3242. MR 2073297, DOI 10.1090/S0002-9939-04-07320-4
- Martino Lupini, Gowers’ Ramsey theorem for generalized tetris operations, J. Combin. Theory Ser. A 149 (2017), 101–114. MR 3620731, DOI 10.1016/j.jcta.2017.02.001
- Keith R. Milliken, Ramsey’s theorem with sums or unions, J. Combinatorial Theory Ser. A 18 (1975), 276–290. MR 373906, DOI 10.1016/0097-3165(75)90039-4
- Diana Ojeda-Aristizabal, Finite forms of Gowers’ theorem on the oscillation stability of $C_0$, Combinatorica 37 (2017), no. 2, 143–155. MR 3638339, DOI 10.1007/s00493-015-3223-7
- Christian Schell, Idempotent ultrafilters and polynomial recurrence, arXiv:0711.0484 (2007).
- Sławomir Solecki, Monoid actions and ultrafilter methods in Ramsey theory, arXiv:1611.06600 (2016).
- Alan D. Taylor, A canonical partition relation for finite subsets of $\omega$, J. Combinatorial Theory Ser. A 21 (1976), no. 2, 137–146. MR 424571, DOI 10.1016/0097-3165(76)90058-3
- Stevo Todorcevic, Introduction to Ramsey spaces, Annals of Mathematics Studies, vol. 174, Princeton University Press, Princeton, NJ, 2010. MR 2603812, DOI 10.1515/9781400835409
- Konstantinos Tyros, Primitive recursive bounds for the finite version of Gowers’ $c_0$ theorem, Mathematika 61 (2015), no. 3, 501–522. MR 3415638, DOI 10.1112/S0025579314000345
Additional Information
- Martino Lupini
- Affiliation: Department of Mathematics, California Institute of Technology, 1200 East California Boulevard, Mail Code 253-37, Pasadena, California 91125
- MR Author ID: 1071243
- Email: lupini@caltech.edu
- Received by editor(s): November 27, 2016
- Received by editor(s) in revised form: June 12, 2017, and July 19, 2017
- Published electronically: December 3, 2018
- Additional Notes: The author was supported by the NSF grant DMS-1600186.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 3083-3116
- MSC (2010): Primary 05D10, 54D80; Secondary 20M99, 05C05, 06A06
- DOI: https://doi.org/10.1090/tran/7337
- MathSciNet review: 3896106