Finite decomposition rank for virtually nilpotent groups
HTML articles powered by AMS MathViewer
- by Caleb Eckhardt, Elizabeth Gillaspy and Paul McKenney PDF
- Trans. Amer. Math. Soc. 371 (2019), 3971-3994 Request permission
Abstract:
We show that inductive limits of virtually nilpotent groups have strongly quasidiagonal C*-algebras, extending results of the first author on solvable virtually nilpotent groups. We use this result to show that the decomposition rank of the group C*-algebra of a finitely generated virtually nilpotent group $G$ is bounded by $2\cdot h(G)!-1$, where $h(G)$ is the Hirsch length of $G.$ This extends and sharpens results of the first and third authors on finitely generated nilpotent groups. It then follows that if a C*-algebra generated by an irreducible representation of a virtually nilpotent group satisfies the universal coefficient theorem, it is classified by its Elliott invariant.References
- Selçuk Barlak and Gábor Szabó, Rokhlin actions of finite groups on UHF-absorbing $\textrm {C}^*$-algebras, Trans. Amer. Math. Soc. 369 (2017), no. 2, 833–859. MR 3572256, DOI 10.1090/tran6697
- B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006. Theory of $C^*$-algebras and von Neumann algebras; Operator Algebras and Non-commutative Geometry, III. MR 2188261, DOI 10.1007/3-540-28517-2
- Joan Bosa, Nathanial Brown, Yasuhiko Sato, Aaron Tikuisis, Stuart White, and Wilhelm Winter, Covering dimension of C*-algebras and 2-coloured classification, arXiv:1506.03974 [math.OA], 2016.
- Nathanial P. Brown and Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387, DOI 10.1090/gsm/088
- José R. Carrión, Classification of a class of crossed product $C^\ast$-algebras associated with residually finite groups, J. Funct. Anal. 260 (2011), no. 9, 2815–2825. MR 2772352, DOI 10.1016/j.jfa.2011.02.002
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Caleb Eckhardt, Quasidiagonal representations of nilpotent groups, Adv. Math. 254 (2014), 15–32. MR 3161088, DOI 10.1016/j.aim.2013.12.011
- Caleb Eckhardt, A note on strongly quasidiagonal groups, J. Operator Theory 73 (2015), no. 2, 417–424. MR 3346129, DOI 10.7900/jot.2014jan22.2034
- Caleb Eckhardt and Elizabeth Gillaspy, Irreducible representations of nilpotent groups generate classifiable $C^*$-algebras, Münster J. Math. 9 (2016), no. 1, 253–261. MR 3549551, DOI 10.17879/35209675696
- Caleb Eckhardt, Craig Kleski, and Paul McKenney, Classification of $\textrm {C}^*$-algebras generated by representations of the unitriangular group $UT(4,\Bbb {Z})$, J. Funct. Anal. 271 (2016), no. 4, 1022–1042. MR 3507997, DOI 10.1016/j.jfa.2016.05.003
- Caleb Eckhardt and Paul McKenney, Finitely generated nilpotent group $\rm C^*$-algebras have finite nuclear dimension, J. Reine Angew. Math. 738 (2018), 281–298. MR 3794894, DOI 10.1515/crelle-2015-0049
- G. A. Elliott, On the $K$-theory of the $C^{\ast }$-algebra generated by a projective representation of a torsion-free discrete abelian group, Operator algebras and group representations, Vol. I (Neptun, 1980) Monogr. Stud. Math., vol. 17, Pitman, Boston, MA, 1984, pp. 157–184. MR 731772
- George A. Elliott, Guihua Gong, Huaxin Lin, and Zhuang Niu, On the classification of simple amenable C*-algebras with finite decomposition rank, II, arXiv:1507.03437v3, 2016.
- George A. Elliott and Andrew S. Toms, Regularity properties in the classification program for separable amenable $C^*$-algebras, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 2, 229–245. MR 2383304, DOI 10.1090/S0273-0979-08-01199-3
- Julien Giol and David Kerr, Subshifts and perforation, J. Reine Angew. Math. 639 (2010), 107–119. MR 2608192, DOI 10.1515/CRELLE.2010.012
- Guihua Gong, Huaxin Lin, and Zhuang Niu, Classification of finite simple amenable $\mathcal {Z}$-stable C*-algebras, arXiv:1501.00135v6, 2016.
- Philip Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), no. 3-4, 191–250. MR 493349, DOI 10.1007/BF02392308
- Don Hadwin, Strongly quasidiagonal $C^*$-algebras, J. Operator Theory 18 (1987), no. 1, 3–18. With an appendix by Jonathan Rosenberg. MR 912809
- Ilan Hirshberg and Jianchao Wu, The nuclear dimension of $C^*$-algebras associated to homeomorphisms, Adv. Math. 304 (2017), 56–89. MR 3558205, DOI 10.1016/j.aim.2016.08.022
- Roger E. Howe, On representations of discrete, finitely generated, torsion-free, nilpotent groups, Pacific J. Math. 73 (1977), no. 2, 281–305. MR 499004
- Xinhui Jiang and Hongbing Su, On a simple unital projectionless $C^*$-algebra, Amer. J. Math. 121 (1999), no. 2, 359–413. MR 1680321
- Eberhard Kaniuth, Ideals in group algebras of finitely generated FC-nilpotent discrete groups, Math. Ann. 248 (1980), no. 2, 97–108. MR 573341, DOI 10.1007/BF01421950
- Eberhard Kirchberg and Wilhelm Winter, Covering dimension and quasidiagonality, Internat. J. Math. 15 (2004), no. 1, 63–85. MR 2039212, DOI 10.1142/S0129167X04002119
- Christopher Lance, On nuclear $C^{\ast }$-algebras, J. Functional Analysis 12 (1973), 157–176. MR 0344901, DOI 10.1016/0022-1236(73)90021-9
- Hiroki Matui and Yasuhiko Sato, Decomposition rank of UHF-absorbing $\mathrm {C}^*$-algebras, Duke Math. J. 163 (2014), no. 14, 2687–2708. MR 3273581, DOI 10.1215/00127094-2826908
- Hiroki Matui and Yasuhiko Sato, $\scr Z$-stability of crossed products by strongly outer actions II, Amer. J. Math. 136 (2014), no. 6, 1441–1496. MR 3282978, DOI 10.1353/ajm.2014.0043
- Calvin C. Moore and Jonathan Rosenberg, Groups with $T_{1}$ primitive ideal spaces, J. Functional Analysis 22 (1976), no. 3, 204–224. MR 0419675, DOI 10.1016/0022-1236(76)90009-4
- May Nilsen, $C^*$-bundles and $C_0(X)$-algebras, Indiana Univ. Math. J. 45 (1996), no. 2, 463–477. MR 1414338, DOI 10.1512/iumj.1996.45.1086
- Judith A. Packer, $C^*$-algebras generated by projective representations of the discrete Heisenberg group, J. Operator Theory 18 (1987), no. 1, 41–66. MR 912812
- Judith A. Packer and Iain Raeburn, Twisted crossed products of $C^*$-algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 2, 293–311. MR 1002543, DOI 10.1017/S0305004100078129
- Judith A. Packer and Iain Raeburn, Twisted crossed products of $C^*$-algebras. II, Math. Ann. 287 (1990), no. 4, 595–612. MR 1066817, DOI 10.1007/BF01446916
- Judith A. Packer and Iain Raeburn, On the structure of twisted group $C^*$-algebras, Trans. Amer. Math. Soc. 334 (1992), no. 2, 685–718. MR 1078249, DOI 10.1090/S0002-9947-1992-1078249-7
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- Detlev Poguntke, Discrete nilpotent groups have a $T_{1}$ primitive ideal space, Studia Math. 71 (1981/82), no. 3, 271–275. MR 667315, DOI 10.4064/sm-71-3-271-275
- Marc A. Rieffel, $C^{\ast }$-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), no. 2, 415–429. MR 623572
- Marc A. Rieffel, Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40 (1988), no. 2, 257–338. MR 941652, DOI 10.4153/CJM-1988-012-9
- M. Rørdam, Classification of nuclear, simple $C^*$-algebras, Classification of nuclear $C^*$-algebras. Entropy in operator algebras, Encyclopaedia Math. Sci., vol. 126, Springer, Berlin, 2002, pp. 1–145. MR 1878882, DOI 10.1007/978-3-662-04825-2_{1}
- Jonathan Rosenberg and Claude Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor, Duke Math. J. 55 (1987), no. 2, 431–474. MR 894590, DOI 10.1215/S0012-7094-87-05524-4
- Daniel Segal, Polycyclic groups, Cambridge Tracts in Mathematics, vol. 82, Cambridge University Press, Cambridge, 1983. MR 713786, DOI 10.1017/CBO9780511565953
- M. Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition; Operator Algebras and Non-commutative Geometry, 5. MR 1873025
- Aaron Tikuisis, Stuart White, and Wilhelm Winter, Quasidiagonality of nuclear $C^\ast$-algebras, Ann. of Math. (2) 185 (2017), no. 1, 229–284. MR 3583354, DOI 10.4007/annals.2017.185.1.4
- Dana P. Williams, Crossed products of $C{^\ast }$-algebras, Mathematical Surveys and Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007. MR 2288954, DOI 10.1090/surv/134
- Wilhelm Winter, Nuclear dimension and $\scr {Z}$-stability of pure $\rm C^*$-algebras, Invent. Math. 187 (2012), no. 2, 259–342. MR 2885621, DOI 10.1007/s00222-011-0334-7
- Wilhelm Winter and Joachim Zacharias, The nuclear dimension of $C^\ast$-algebras, Adv. Math. 224 (2010), no. 2, 461–498. MR 2609012, DOI 10.1016/j.aim.2009.12.005
Additional Information
- Caleb Eckhardt
- Affiliation: Department of Mathematics, Miami University, Oxford, Ohio, 45056
- MR Author ID: 885145
- Email: eckharc@miamioh.edu
- Elizabeth Gillaspy
- Affiliation: Department of Mathematical Sciences, University of Montana, 32 Campus Drive # 0864, Missoula, Montana, 59812-0864
- MR Author ID: 1107754
- Email: elizabeth.gillaspy@mso.umt.edu
- Paul McKenney
- Affiliation: Department of Mathematics, Miami University, Oxford, Ohio, 45056
- MR Author ID: 1024792
- Email: mckennp2@miamioh.edu
- Received by editor(s): July 21, 2017
- Received by editor(s) in revised form: October 30, 2017
- Published electronically: December 3, 2018
- Additional Notes: The first author was partially supported by a grant from the Simons Foundation.
The second author was primarily supported by the Deutsches Forschungsgemeinschaft via SFB 878 (awarded to the Universität Münster, Germany). - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 3971-3994
- MSC (2010): Primary 46L05; Secondary 20F19, 46L35, 46L55, 46L80
- DOI: https://doi.org/10.1090/tran/7453
- MathSciNet review: 3917214