Rigidity of circle polyhedra in the $2$-sphere and of hyperideal polyhedra in hyperbolic $3$-space
HTML articles powered by AMS MathViewer
- by John C. Bowers, Philip L. Bowers and Kevin Pratt PDF
- Trans. Amer. Math. Soc. 371 (2019), 4215-4249 Request permission
Abstract:
We generalize Cauchy’s celebrated theorem on the global rigidity of convex polyhedra in Euclidean $3$-space $\mathbb {E}^{3}$ to the context of circle polyhedra in the $2$-sphere $\mathbb {S}^{2}$. We prove that any two convex and proper nonunitary c-polyhedra with Möbius-congruent faces that are consistently oriented are Möbius congruent. Our result implies the global rigidity of convex inversive distance circle packings in the Riemann sphere, as well as that of certain hyperideal hyperbolic polyhedra in $\mathbb {H}^{3}$.References
- E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 81 (123) (1970), 445–478 (Russian). MR 0259734
- E. M. Andreev, Convex polyhedra of finite volume in Lobačevskiĭ space, Mat. Sb. (N.S.) 83 (125) (1970), 256–260 (Russian). MR 0273510
- Xiliang Bao and Francis Bonahon, Hyperideal polyhedra in hyperbolic 3-space, Bull. Soc. Math. France 130 (2002), no. 3, 457–491 (English, with English and French summaries). MR 1943885, DOI 10.24033/bsmf.2426
- John C. Bowers and Philip L. Bowers, Ma-Schlenker c-octahedra in the $2$-sphere, Discrete and Comp. Geometry (2016), DOI 10.1007/s00454-017-9928-1.
- Philip L. Bowers and Monica K. Hurdal, Planar conformal mappings of piecewise flat surfaces, Visualization and mathematics III, Math. Vis., Springer, Berlin, 2003, pp. 3–34. MR 2046999
- Philip L. Bowers and Kenneth Stephenson, Uniformizing dessins and Belyĭ maps via circle packing, Mem. Amer. Math. Soc. 170 (2004), no. 805, xii+97. MR 2053391, DOI 10.1090/memo/0805
- A. Cauchy, Sur les polygones et les polyhedres, J. Ecole Polytechnique XVIe Cahier (1813), 87–98.
- M. Dehn, Die Eulersche Formel im Zusammenhang mit dem Inhalt in der Nicht-Euklidischen Geometrie, Math. Ann. 61 (1906), no. 4, 561–586 (German). MR 1511363, DOI 10.1007/BF01449498
- Dmitry Fuchs and Serge Tabachnikov, Mathematical omnibus, American Mathematical Society, Providence, RI, 2007. Thirty lectures on classic mathematics. MR 2350979, DOI 10.1090/mbk/046
- Ren Guo, Local rigidity of inversive distance circle packing, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4757–4776. MR 2806690, DOI 10.1090/S0002-9947-2011-05239-6
- Craig D. Hodgson and Igor Rivin, A characterization of compact convex polyhedra in hyperbolic $3$-space, Invent. Math. 111 (1993), no. 1, 77–111. MR 1193599, DOI 10.1007/BF01231281
- Feng Luo, Rigidity of polyhedral surfaces, III, Geom. Topol. 15 (2011), no. 4, 2299–2319. MR 2862158, DOI 10.2140/gt.2011.15.2299
- Jiming Ma and Jean-Marc Schlenker, Non-rigidity of spherical inversive distance circle packings, Discrete Comput. Geom. 47 (2012), no. 3, 610–617. MR 2891251, DOI 10.1007/s00454-012-9399-3
- Henri Poncaré, Sur les groupes kleinéens, C. R. Acad. Sci. Paris 93 (1881), 44–46.
- Igor Rivin, A characterization of ideal polyhedra in hyperbolic $3$-space, Ann. of Math. (2) 143 (1996), no. 1, 51–70. MR 1370757, DOI 10.2307/2118652
- Mathias Rousset, Sur la rigidité de polyèdres hyperboliques en dimension 3: cas de volume fini, cas hyperidéal cas fuchsien, Bull. Soc. Math. France 132 (2004), no. 2, 233–261 (French, with English and French summaries). MR 2075567, DOI 10.24033/bsmf.2465
- Hans Schwerdtfeger, Geometry of complex numbers, Mathematical Expositions, No. 13, University of Toronto Press, Toronto, 1962. MR 0133044
- William P. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Princeton University Press, Princeton, NJ, 1980.
Additional Information
- John C. Bowers
- Affiliation: Department of Computer Science, James Madison University, Harrisonburg, Virginia 22807
- MR Author ID: 1056730
- Email: bowersjc@jmu.edu
- Philip L. Bowers
- Affiliation: Department of Mathematics, The Florida State University, Tallahassee, Florida 32306
- MR Author ID: 40455
- Email: bowers@math.fsu.edu
- Kevin Pratt
- Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
- MR Author ID: 1207765
- Email: kevin.pratt@uconn.edu
- Received by editor(s): June 1, 2017
- Received by editor(s) in revised form: December 6, 2017
- Published electronically: September 25, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 4215-4249
- MSC (2010): Primary 52C26
- DOI: https://doi.org/10.1090/tran/7483
- MathSciNet review: 3917221