On the trace of Schrödinger heat kernels and regularity of potentials
HTML articles powered by AMS MathViewer
- by Hart Smith PDF
- Trans. Amer. Math. Soc. 371 (2019), 3857-3875 Request permission
Abstract:
For the Schrödinger operator $-\Delta _{\mathrm {g}}+V$ on a complete Riemannian manifold with real valued potential $V$ of compact support, we establish a sharp equivalence between Sobolev regularity of $V$ and the existence of finite-order asymptotic expansions as $t\rightarrow 0$ of the relative trace of the Schrödinger heat kernel. As an application, we generalize a result of Sà Barreto and Zworski concerning the existence of resonances on compact metric perturbations of Euclidean space to the case of bounded measurable potentials.References
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313
- Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR 0169148
- Jochen Brüning, On the compactness of isospectral potentials, Comm. Partial Differential Equations 9 (1984), no. 7, 687–698. MR 745021, DOI 10.1080/03605308408820344
- Nelia Charalambous and Julie Rowlett, The heat trace for the drifting Laplacian and Schrödinger operators on manifolds, preprint.
- Siu Yuen Cheng, Peter Li, and Shing Tung Yau, On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math. 103 (1981), no. 5, 1021–1063. MR 630777, DOI 10.2307/2374257
- Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects, Mathematical Surveys and Monographs, vol. 163, American Mathematical Society, Providence, RI, 2010. MR 2604955, DOI 10.1090/surv/163
- T. Christiansen, Schrödinger operators with complex-valued potentials and no resonances, Duke Math. J. 133 (2006), no. 2, 313–323. MR 2225694, DOI 10.1215/S0012-7094-06-13324-0
- Yves Colin de Verdière, Une formule de traces pour l’opérateur de Schrödinger dans $\textbf {R}^{3}$, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 1, 27–39 (French). MR 618729
- Jozef Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J. 32 (1983), no. 5, 703–716. MR 711862, DOI 10.1512/iumj.1983.32.32046
- Harold Donnelly, Compactness of isospectral potentials, Trans. Amer. Math. Soc. 357 (2005), no. 5, 1717–1730. MR 2115073, DOI 10.1090/S0002-9947-04-03813-9
- H. P. McKean and P. van Moerbeke, The spectrum of Hill’s equation, Invent. Math. 30 (1975), no. 3, 217–274. MR 397076, DOI 10.1007/BF01425567
- S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256. MR 31145, DOI 10.4153/cjm-1949-021-5
- Steven Rosenberg, The Laplacian on a Riemannian manifold, London Mathematical Society Student Texts, vol. 31, Cambridge University Press, Cambridge, 1997. An introduction to analysis on manifolds. MR 1462892, DOI 10.1017/CBO9780511623783
- Antônio Sá Barreto and Maciej Zworski, Existence of resonances in three dimensions, Comm. Math. Phys. 173 (1995), no. 2, 401–415. MR 1355631
- Hart F. Smith and Maciej Zworski, Heat traces and existence of scattering resonances for bounded potentials, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 2, 455–475 (English, with English and French summaries). MR 3477881
- Michael E. Taylor, Partial differential equations III. Nonlinear equations, 2nd ed., Applied Mathematical Sciences, vol. 117, Springer, New York, 2011. MR 2744149, DOI 10.1007/978-1-4419-7049-7
Additional Information
- Hart Smith
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
- MR Author ID: 264225
- Email: hfsmith@uw.edu
- Received by editor(s): March 21, 2017
- Received by editor(s) in revised form: September 13, 2017
- Published electronically: December 3, 2018
- Additional Notes: This material is based upon work supported by the National Science Foundation under Grant DMS-1500098
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 3857-3875
- MSC (2010): Primary 58J35; Secondary 35P25
- DOI: https://doi.org/10.1090/tran/7486
- MathSciNet review: 3917211