## Pinned distance problem, slicing measures, and local smoothing estimates

HTML articles powered by AMS MathViewer

- by Alex Iosevich and Bochen Liu PDF
- Trans. Amer. Math. Soc.
**371**(2019), 4459-4474 Request permission

## Abstract:

We improve on the Peres–Schlag result on pinned distances in sets of a given Hausdorff dimension. In particular, for Euclidean distances, with \[ \Delta ^y(E) = \{|x-y|:x\in E\},\] we prove that for any $E, F\subset {\mathbb {R}}^d$, there exists a probability measure $\mu _F$ on $F$ such that for $\mu _F$-a.e. $y\in F$,

${\dim _{{\mathcal H}}}(\Delta ^y(E))\geq \beta$ if ${\dim _{{\mathcal H}}}(E)+\frac {d-1}{d+1}{\dim _{{\mathcal H}}}(F)>d-1+\beta$,

$\Delta ^y(E)$ has positive Lebesgue measure if ${\dim _{{\mathcal H}}}(E)+\frac {d-1}{d+1}{\dim _{{\mathcal H}}}(F)>d$,

$\Delta ^y(E)$ has nonempty interior if ${\dim _{{\mathcal H}}}(E)+\frac {d-1}{d+1}{\dim _{{\mathcal H}}}(F)>d+1$.

We also show that in the case in which ${\dim _{{\mathcal H}}}(E)+\frac {d-1}{d+1}{\dim _{{\mathcal H}}}(F)>d$, for $\mu _F$-a.e. $y\in F$, \[ \left \{t\in {\mathbb {R}} : {\dim _{{\mathcal H}}}(\{x\in E:|x-y|=t\}) \geq {\dim _{{\mathcal H}}}(E)+\frac {d+1}{d-1}{\dim _{{\mathcal H}}}(F)-d \right \} \] has positive Lebesgue measure. This describes dimensions of slicing subsets of $E$, sliced by spheres centered at $y$.

In our proof, local smoothing estimates of Fourier integral operators plays a crucial role. In turn, we obtain results on sharpness of local smoothing estimates by constructing geometric counterexamples.

## References

- D. Beltran, J. Hickman, and C. D. Sogge,
*Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds*, arXiv:1801.06910 (2018). - Jean Bourgain and Ciprian Demeter,
*The proof of the $l^2$ decoupling conjecture*, Ann. of Math. (2)**182**(2015), no. 1, 351–389. MR**3374964**, DOI 10.4007/annals.2015.182.1.9 - Jeremy Chapman, M. Burak Erdoğan, Derrick Hart, Alex Iosevich, and Doowon Koh,
*Pinned distance sets, $k$-simplices, Wolff’s exponent in finite fields and sum-product estimates*, Math. Z.**271**(2012), no. 1-2, 63–93. MR**2917133**, DOI 10.1007/s00209-011-0852-4 - X. Du and R. Zhang,
*Sharp $L^2$ estimate of Schrödinger maximal function in higher dimensions*, arXiv:1805.02775 (2018). - X. D. Du, L. Guth, Y. Ou, H. Wang, B. Wilson, and R. Zhang,
*Weighted restriction estimates and application to Falconer distance set problem*, arXiv:1802.10186 (2018). - M. Burak Erdog̃an,
*A bilinear Fourier extension theorem and applications to the distance set problem*, Int. Math. Res. Not.**23**(2005), 1411–1425. MR**2152236**, DOI 10.1155/IMRN.2005.1411 - Suresh Eswarathasan, Alex Iosevich, and Krystal Taylor,
*Fourier integral operators, fractal sets, and the regular value theorem*, Adv. Math.**228**(2011), no. 4, 2385–2402. MR**2836125**, DOI 10.1016/j.aim.2011.07.012 - K. J. Falconer,
*On the Hausdorff dimensions of distance sets*, Mathematika**32**(1985), no. 2, 206–212 (1986). MR**834490**, DOI 10.1112/S0025579300010998 - Allan Greenleaf, Alex Iosevich, Bochen Liu, and Eyvindur Palsson,
*A group-theoretic viewpoint on Erdős-Falconer problems and the Mattila integral*, Rev. Mat. Iberoam.**31**(2015), no. 3, 799–810. MR**3420476**, DOI 10.4171/RMI/854 - Lars Hörmander,
*Fourier integral operators. I*, Acta Math.**127**(1971), no. 1-2, 79–183. MR**388463**, DOI 10.1007/BF02392052 - Alex Iosevich and Bochen Liu,
*Falconer distance problem, additive energy and Cartesian products*, Ann. Acad. Sci. Fenn. Math.**41**(2016), no. 2, 579–585. MR**3525385**, DOI 10.5186/aasfm.2016.4135 - A. Iosevich, K. Taylor, and I. Uriarte-Tuero,
*Pinned geometric configurations in Euclidean space and Riemannian manifolds*, arXiv:1610.00349v1 (2016). - T. Keleti and P. Shmerkin,
*New bounds on the dimensions of planar distance sets*, arXiv:1801.08745 (2018). - B. Liu,
*Group actions, the Mattila integral and applications*, arXiv:1705.00560 (2017). - B. Liu,
*Improvement on $2$-chains inside thin subsets of Euclidean spaces*, arXiv:1709.06814 (2017). - B. Liu,
*An $L^2$-identity and pinned distance problem*, arXiv:1802.00350 (2018). Geom. Funct. Anal. (to appear). - Pertti Mattila,
*Geometry of sets and measures in Euclidean spaces*, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR**1333890**, DOI 10.1017/CBO9780511623813 - Pertti Mattila,
*Recent progress on dimensions of projections*, Geometry and analysis of fractals, Springer Proc. Math. Stat., vol. 88, Springer, Heidelberg, 2014, pp. 283–301. MR**3276006**, DOI 10.1007/978-3-662-43920-3_{1}0 - Pertti Mattila,
*Fourier analysis and Hausdorff dimension*, Cambridge Studies in Advanced Mathematics, vol. 150, Cambridge University Press, Cambridge, 2015. MR**3617376**, DOI 10.1017/CBO9781316227619 - William P. Minicozzi II and Christopher D. Sogge,
*Negative results for Nikodym maximal functions and related oscillatory integrals in curved space*, Math. Res. Lett.**4**(1997), no. 2-3, 221–237. MR**1453056**, DOI 10.4310/MRL.1997.v4.n2.a5 - Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge,
*Local smoothing of Fourier integral operators and Carleson-Sjölin estimates*, J. Amer. Math. Soc.**6**(1993), no. 1, 65–130. MR**1168960**, DOI 10.1090/S0894-0347-1993-1168960-6 - Tuomas Orponen,
*Slicing sets and measures, and the dimension of exceptional parameters*, J. Geom. Anal.**24**(2014), no. 1, 47–80. MR**3145914**, DOI 10.1007/s12220-012-9326-0 - Tuomas Orponen,
*On the distance sets of Ahlfors-David regular sets*, Adv. Math.**307**(2017), 1029–1045. MR**3590535**, DOI 10.1016/j.aim.2016.11.035 - Yuval Peres and Wilhelm Schlag,
*Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions*, Duke Math. J.**102**(2000), no. 2, 193–251. MR**1749437**, DOI 10.1215/S0012-7094-00-10222-0 - Pablo Shmerkin,
*On distance sets, box-counting and Ahlfors regular sets*, Discrete Anal. , posted on (2017), Paper No. 9, 22. MR**3667933**, DOI 10.19086/da.1643 - P. Shmerkin,
*On the Hausdorff dimension of pinned distance sets*, arXiv:1706.00131 (2017). - Christopher D. Sogge,
*Propagation of singularities and maximal functions in the plane*, Invent. Math.**104**(1991), no. 2, 349–376. MR**1098614**, DOI 10.1007/BF01245080 - Christopher D. Sogge,
*Fourier integrals in classical analysis*, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. MR**1205579**, DOI 10.1017/CBO9780511530029 - Terence Tao,
*The Bochner-Riesz conjecture implies the restriction conjecture*, Duke Math. J.**96**(1999), no. 2, 363–375. MR**1666558**, DOI 10.1215/S0012-7094-99-09610-2 - Thomas Wolff,
*Decay of circular means of Fourier transforms of measures*, Internat. Math. Res. Notices**10**(1999), 547–567. MR**1692851**, DOI 10.1155/S1073792899000288 - T. Wolff,
*Local smoothing type estimates on $L^p$ for large $p$*, Geom. Funct. Anal.**10**(2000), no. 5, 1237–1288. MR**1800068**, DOI 10.1007/PL00001652

## Additional Information

**Alex Iosevich**- Affiliation: Department of Mathematics, University of Rochester, Rochester, New York
- MR Author ID: 356191
- Email: iosevich@math.rochester.edu
**Bochen Liu**- Affiliation: Department of Mathematics, University of Rochester, Rochester, New York
- MR Author ID: 1066951
- Email: bochen.liu@rochester.edu
- Received by editor(s): September 23, 2017
- Received by editor(s) in revised form: July 30, 2018
- Published electronically: November 19, 2018
- Additional Notes: The second author would like to thank Professor Ka-Sing Lau for the financial support of a research assistantship at Chinese University of Hong Kong.

This work was partially supported by NSA Grant H98230-15-1-0319 - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**371**(2019), 4459-4474 - MSC (2010): Primary 28A75; Secondary 42B20
- DOI: https://doi.org/10.1090/tran/7693
- MathSciNet review: 3917228