## Affine zigzag algebras and imaginary strata for KLR algebras

HTML articles powered by AMS MathViewer

- by Alexander Kleshchev and Robert Muth PDF
- Trans. Amer. Math. Soc.
**371**(2019), 4535-4583 Request permission

## Abstract:

KLR algebras of affine $\texttt {ADE}$ types are known to be properly stratified if the characteristic of the ground field is greater than some explicit bound. Understanding the strata of this stratification reduces to semicuspidal cases, which split into real and imaginary subcases. Real semicuspidal strata are well understood. We show that the smallest imaginary stratum is Morita equivalent to Huerfano-Khovanov’s zigzag algebra tensored with a polynomial algebra in one variable. We introduce*affine zigzag algebras*and prove that these are Morita equivalent to arbitrary imaginary strata if the characteristic of the ground field is greater than the bound mentioned above.

## References

- Susumu Ariki, Andrew Mathas, and Hebing Rui,
*Cyclotomic Nazarov-Wenzl algebras*, Nagoya Math. J.**182**(2006), 47–134. MR**2235339**, DOI 10.1017/S0027763000026842 - Jonathan Brundan and Alexander Kleshchev,
*Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras*, Invent. Math.**178**(2009), no. 3, 451–484. MR**2551762**, DOI 10.1007/s00222-009-0204-8 - Jonathan Brundan, Alexander Kleshchev, and Weiqiang Wang,
*Graded Specht modules*, J. Reine Angew. Math.**655**(2011), 61–87. MR**2806105**, DOI 10.1515/CRELLE.2011.033 - Sabin Cautis and Anthony Licata,
*Heisenberg categorification and Hilbert schemes*, Duke Math. J.**161**(2012), no. 13, 2469–2547. MR**2988902**, DOI 10.1215/00127094-1812726 - K. Costello and I. Grojnowski, Hilbert schemes, Hecke algebras and the Calogero-Sutherland system, arXiv:math/0310189.
- Richard Dipper, Gordon James, and Andrew Mathas,
*Cyclotomic $q$-Schur algebras*, Math. Z.**229**(1998), no. 3, 385–416. MR**1658581**, DOI 10.1007/PL00004665 - Anton Evseev,
*RoCK blocks, wreath products and KLR algebras*, Math. Ann.**369**(2017), no. 3-4, 1383–1433. MR**3713545**, DOI 10.1007/s00208-016-1493-z - A. Evseev and A. Kleshchev,
*Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality*, Ann. of Math. (2), 188 (2018), no. 2, 453-512. - T. Geetha and Frederick M. Goodman,
*Cellularity of wreath product algebras and $A$-Brauer algebras*, J. Algebra**389**(2013), 151–190. MR**3065998**, DOI 10.1016/j.jalgebra.2013.04.034 - J. J. Graham and G. I. Lehrer,
*Cellular algebras*, Invent. Math.**123**(1996), no. 1, 1–34. MR**1376244**, DOI 10.1007/BF01232365 - Jun Hu and Andrew Mathas,
*Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type $A$*, Adv. Math.**225**(2010), no. 2, 598–642. MR**2671176**, DOI 10.1016/j.aim.2010.03.002 - Ruth Stella Huerfano and Mikhail Khovanov,
*A category for the adjoint representation*, J. Algebra**246**(2001), no. 2, 514–542. MR**1872113**, DOI 10.1006/jabr.2001.8962 - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - Seok-Jin Kang, Masaki Kashiwara, and Myungho Kim,
*Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras*, Invent. Math.**211**(2018), no. 2, 591–685. MR**3748315**, DOI 10.1007/s00222-017-0754-0 - Mikhail Khovanov and Aaron D. Lauda,
*A diagrammatic approach to categorification of quantum groups. I*, Represent. Theory**13**(2009), 309–347. MR**2525917**, DOI 10.1090/S1088-4165-09-00346-X - Alexander S. Kleshchev,
*Cuspidal systems for affine Khovanov-Lauda-Rouquier algebras*, Math. Z.**276**(2014), no. 3-4, 691–726. MR**3175157**, DOI 10.1007/s00209-013-1219-9 - Alexander S. Kleshchev,
*Affine highest weight categories and affine quasihereditary algebras*, Proc. Lond. Math. Soc. (3)**110**(2015), no. 4, 841–882. MR**3335289**, DOI 10.1112/plms/pdv004 - Alexander Kleshchev,
*Linear and projective representations of symmetric groups*, Cambridge Tracts in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005. MR**2165457**, DOI 10.1017/CBO9780511542800 - Alexander Kleshchev and Robert Muth,
*Imaginary Schur-Weyl duality*, Mem. Amer. Math. Soc.**245**(2017), no. 1157, xvii+83. MR**3589160**, DOI 10.1090/memo/1157 - Alexander Kleshchev and Robert Muth,
*Stratifying KLR algebras of affine ADE types*, J. Algebra**475**(2017), 133–170. MR**3612467**, DOI 10.1016/j.jalgebra.2016.07.006 - Alexander Kleshchev and Arun Ram,
*Homogeneous representations of Khovanov-Lauda algebras*, J. Eur. Math. Soc. (JEMS)**12**(2010), no. 5, 1293–1306. MR**2677617**, DOI 10.4171/JEMS/230 - Peter J. McNamara,
*Representations of Khovanov-Lauda-Rouquier algebras III: symmetric affine type*, Math. Z.**287**(2017), no. 1-2, 243–286. MR**3694676**, DOI 10.1007/s00209-016-1825-4 - Peter J. McNamara and Peter Tingley,
*Face functors for KLR algebras*, Represent. Theory**21**(2017), 106–131. MR**3670026**, DOI 10.1090/ert/496 - Daniele Rosso and Alistair Savage,
*A general approach to Heisenberg categorification via wreath product algebras*, Math. Z.**286**(2017), no. 1-2, 603–655. MR**3648512**, DOI 10.1007/s00209-016-1776-9 - R. Rouquier, $2$-Kac-Moody algebras, arXiv:0812.5023.
- Peter Tingley and Ben Webster,
*Mirković-Vilonen polytopes and Khovanov-Lauda-Rouquier algebras*, Compos. Math.**152**(2016), no. 8, 1648–1696. MR**3542489**, DOI 10.1112/S0010437X16007338 - S. Tsuchioka, personal communication.
- W. Turner,
*Rock blocks*, Mem. Amer. Math. Soc.**202**(2009), no. 947, viii+102. MR**2553536**, DOI 10.1090/S0065-9266-09-00562-6

## Additional Information

**Alexander Kleshchev**- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- MR Author ID: 268538
- Email: klesh@uoregon.edu
**Robert Muth**- Affiliation: Department of Mathematics, Washington and Jefferson College, Washington, Pennsylvania 15301
- MR Author ID: 1191042
- Email: rmuth@washjeff.edu
- Received by editor(s): January 20, 2016
- Received by editor(s) in revised form: June 19, 2017
- Published electronically: September 13, 2018
- Additional Notes: The first author was supported by the NSF grant DMS-1161094, Max-Planck-Institut, and the Fulbright Foundation.
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**371**(2019), 4535-4583 - MSC (2010): Primary 20C08, 17B10, 05E10
- DOI: https://doi.org/10.1090/tran/7464
- MathSciNet review: 3934461