A variational time discretization for compressible Euler equations
HTML articles powered by AMS MathViewer
- by Fabio Cavalletti, Marc Sedjro and Michael Westdickenberg PDF
- Trans. Amer. Math. Soc. 371 (2019), 5083-5155 Request permission
Abstract:
We introduce a variational time discretization for the multidimensional gas dynamics equations, in the spirit of minimizing movements for curves of maximal slope. Each time step requires the minimization of a functional measuring the acceleration of fluid elements, over the cone of monotone transport maps. We prove convergence to measure-valued solutions for the pressureless gas dynamics and the compressible Euler equations. For one space dimension, we obtain sticky particle solutions for the pressureless case.References
- Giovanni Alberti and Luigi Ambrosio, A geometrical approach to monotone functions in $\textbf {R}^n$, Math. Z. 230 (1999), no. 2, 259–316. MR 1676726, DOI 10.1007/PL00004691
- Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292
- Luigi Ambrosio and Nicola Gigli, Construction of the parallel transport in the Wasserstein space, Methods Appl. Anal. 15 (2008), no. 1, 1–29. MR 2482206, DOI 10.4310/MAA.2008.v15.n1.a3
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. MR 2401600
- Luigi Ambrosio and Dario Trevisan, Well-posedness of Lagrangian flows and continuity equations in metric measure spaces, Anal. PDE 7 (2014), no. 5, 1179–1234. MR 3265963, DOI 10.2140/apde.2014.7.1179
- Heinz H. Bauschke and Xianfu Wang, The kernel average for two convex functions and its application to the extension and representation of monotone operators, Trans. Amer. Math. Soc. 361 (2009), no. 11, 5947–5965. MR 2529920, DOI 10.1090/S0002-9947-09-04698-4
- Douglas Blount and Michael A. Kouritzin, On convergence determining and separating classes of functions, Stochastic Process. Appl. 120 (2010), no. 10, 1898–1907. MR 2673979, DOI 10.1016/j.spa.2010.05.018
- Guy Bouchitté, Giuseppe Buttazzo, and Luigi De Pascale, The Monge-Kantorovich problem for distributions and applications, J. Convex Anal. 17 (2010), no. 3-4, 925–943. MR 2731285
- François Bouchut and François James, Équations de transport unidimensionnelles à coefficients discontinus, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 9, 1097–1102 (French, with English and French summaries). MR 1332618
- François Bouchut and François James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Partial Differential Equations 24 (1999), no. 11-12, 2173–2189. MR 1720754, DOI 10.1080/03605309908821498
- Yann Brenier, $L^2$ formulation of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal. 193 (2009), no. 1, 1–19. MR 2506069, DOI 10.1007/s00205-009-0214-0
- Y. Brenier, W. Gangbo, G. Savaré, and M. Westdickenberg, Sticky particle dynamics with interactions, J. Math. Pures Appl. (9) 99 (2013), no. 5, 577–617 (English, with English and French summaries). MR 3039208, DOI 10.1016/j.matpur.2012.09.013
- Yann Brenier and Emmanuel Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal. 35 (1998), no. 6, 2317–2328. MR 1655848, DOI 10.1137/S0036142997317353
- Alberto Bressan and Truyen Nguyen, Non-existence and non-uniqueness for multidimensional sticky particle systems, Kinet. Relat. Models 7 (2014), no. 2, 205–218. MR 3195073, DOI 10.3934/krm.2014.7.205
- J. Brezina and E. Eduard, Maximal dissipation principle for the complete Euler system, arXiv:1712.04761 [math.AP] (2017).
- Tristan Buckmaster, Onsager’s conjecture almost everywhere in time, Comm. Math. Phys. 333 (2015), no. 3, 1175–1198. MR 3302631, DOI 10.1007/s00220-014-2262-z
- Tristan Buckmaster, Camillo De Lellis, and László Székelyhidi Jr., Dissipative Euler flows with Onsager-critical spatial regularity, Comm. Pure Appl. Math. 69 (2016), no. 9, 1613–1670. MR 3530360, DOI 10.1002/cpa.21586
- Charles Castaing, Paul Raynaud de Fitte, and Michel Valadier, Young measures on topological spaces, Mathematics and its Applications, vol. 571, Kluwer Academic Publishers, Dordrecht, 2004. With applications in control theory and probability theory. MR 2102261, DOI 10.1007/1-4020-1964-5
- Fabio Cavalletti, Marc Sedjro, and Michael Westdickenberg, A simple proof of global existence for the 1D pressureless gas dynamics equations, SIAM J. Math. Anal. 47 (2015), no. 1, 66–79. MR 3296602, DOI 10.1137/130945296
- Fabio Cavalletti and Michael Westdickenberg, The polar cone of the set of monotone maps, Proc. Amer. Math. Soc. 143 (2015), no. 2, 781–787. MR 3283664, DOI 10.1090/S0002-9939-2014-12332-X
- Gui-Qiang Chen, Compactness methods and nonlinear hyperbolic conservation laws, Some current topics on nonlinear conservation laws, AMS/IP Stud. Adv. Math., vol. 15, Amer. Math. Soc., Providence, RI, 2000, pp. 33–75. MR 1767623, DOI 10.1090/amsip/015/02
- Gui-Qiang Chen and Philippe G. LeFloch, Compressible Euler equations with general pressure law, Arch. Ration. Mech. Anal. 153 (2000), no. 3, 221–259. MR 1771521, DOI 10.1007/s002050000091
- Gui-Qiang Chen and Mikhail Perepelitsa, Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow, Comm. Pure Appl. Math. 63 (2010), no. 11, 1469–1504. MR 2683391, DOI 10.1002/cpa.20332
- Elisabetta Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Equ. 11 (2014), no. 3, 493–519. MR 3261301, DOI 10.1142/S0219891614500143
- Elisabetta Chiodaroli and Ondrej Kreml, On the energy dissipation rate of solutions to the compressible isentropic Euler system, Arch. Ration. Mech. Anal. 214 (2014), no. 3, 1019–1049. MR 3269641, DOI 10.1007/s00205-014-0771-8
- Elisabetta Chiodaroli, Camillo De Lellis, and Ondřej Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1157–1190. MR 3352460, DOI 10.1002/cpa.21537
- Ion Chiţescu, Loredana Ioana, Radu Miculescu, and Lucian Niţă, Monge-Kantorovich norms on spaces of vector measures, Results Math. 70 (2016), no. 3-4, 349–371. MR 3544865, DOI 10.1007/s00025-016-0531-1
- Camillo De Lellis and László Székelyhidi Jr., The Euler equations as a differential inclusion, Ann. of Math. (2) 170 (2009), no. 3, 1417–1436. MR 2600877, DOI 10.4007/annals.2009.170.1417
- Camillo De Lellis and László Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 (2010), no. 1, 225–260. MR 2564474, DOI 10.1007/s00205-008-0201-x
- Constantine M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differential Equations 14 (1973), 202–212. MR 328368, DOI 10.1016/0022-0396(73)90043-0
- Sophia Demoulini, David M. A. Stuart, and Athanasios E. Tzavaras, A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy, Arch. Ration. Mech. Anal. 157 (2001), no. 4, 325–344. MR 1831175, DOI 10.1007/s002050100137
- Sophia Demoulini, David M. A. Stuart, and Athanasios E. Tzavaras, Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics, Arch. Ration. Mech. Anal. 205 (2012), no. 3, 927–961. MR 2960036, DOI 10.1007/s00205-012-0523-6
- Ennio De Giorgi, New problems on minimizing movements, Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math., vol. 29, Masson, Paris, 1993, pp. 81–98. MR 1260440
- A. Dermoune, $d$-dimensional pressureless gas equations, Teor. Veroyatn. Primen. 49 (2004), no. 3, 610–614 (English, with Russian summary); English transl., Theory Probab. Appl. 49 (2005), no. 3, 540–545. MR 2144873, DOI 10.1137/S0040585X97981251
- Xia Xi Ding, Gui Qiang Chen, and Pei Zhu Luo, Convergence of the Lax-Friedrichs scheme for the system of equations of isentropic gas dynamics. I, Acta Math. Sci. (Chinese) 7 (1987), no. 4, 467–480 (Chinese). MR 943646
- Xia Xi Ding, Gui Qiang Chen, and Pei Zhu Luo, Convergence of the Lax-Friedrichs scheme for the system of equations of isentropic gas dynamics. II, Acta Math. Sci. (Chinese) 8 (1988), no. 1, 61–94 (Chinese). MR 958382
- Ronald J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983), no. 1, 1–30. MR 719807, DOI 10.1007/BF01206047
- R. M. Dudley, Convergence of Baire measures, Studia Math. 27 (1966), 251–268. MR 200710, DOI 10.4064/sm-27-3-251-268
- Weinan E, Yu. G. Rykov, and Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys. 177 (1996), no. 2, 349–380. MR 1384139, DOI 10.1007/BF02101897
- Eduard Feireisl, Maximal dissipation and well-posedness for the compressible Euler system, J. Math. Fluid Mech. 16 (2014), no. 3, 447–461. MR 3247361, DOI 10.1007/s00021-014-0163-8
- Eduard Feireisl, Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, and Emil Wiedemann, Regularity and energy conservation for the compressible Euler equations, Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1375–1395. MR 3594358, DOI 10.1007/s00205-016-1060-5
- Ulrik S. Fjordholm, Siddhartha Mishra, and Eitan Tadmor, Entropy stable ENO scheme, Hyperbolic problems—theory, numerics and applications. Volume 1, Ser. Contemp. Appl. Math. CAM, vol. 17, World Sci. Publishing, Singapore, 2012, pp. 12–27. MR 3014553
- Isidore Fleischer and John E. Porter, Convergence of metric space-valued BV functions, Real Anal. Exchange 27 (2001/02), no. 1, 315–319. MR 1887861, DOI 10.2307/44154127
- Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. MR 1681462
- W. Gangbo, T. Nguyen, and A. Tudorascu, Euler-Poisson systems as action-minimizing paths in the Wasserstein space, Arch. Ration. Mech. Anal. 192 (2009), no. 3, 419–452. MR 2505360, DOI 10.1007/s00205-008-0148-y
- Wilfrid Gangbo and Michael Westdickenberg, Optimal transport for the system of isentropic Euler equations, Comm. Partial Differential Equations 34 (2009), no. 7-9, 1041–1073. MR 2560310, DOI 10.1080/03605300902892345
- Nassif Ghoussoub, A variational theory for monotone vector fields, J. Fixed Point Theory Appl. 4 (2008), no. 1, 107–135. MR 2447965, DOI 10.1007/s11784-008-0083-4
- N. Gigli, On the geometry of the space of probability measures endowed with the quadratic optimal transport distance, 2008. Thesis (Ph.D.)–Scuola Normale Superiore.
- Emmanuel Grenier, Existence globale pour le système des gaz sans pression, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 2, 171–174 (French, with English and French summaries). MR 1345441
- Nicholas J. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Algebra Appl. 103 (1988), 103–118. MR 943997, DOI 10.1016/0024-3795(88)90223-6
- A. Tayebi and M. B. Zaremba, Authors’ reply to: “Comments on: ‘Robust iterative learning control design is straightforward for uncertain LTI systems satisfying the robust performance condition’ ” [IEEE Trans. Automat. Control 49 (2004), no. 4, 629–630; MR2049827] by T.-Y. Doh, IEEE Trans. Automat. Control 49 (2004), no. 12, 2303. MR 2183905, DOI 10.1109/TAC.2004.839233
- Feimin Huang and Zhen Wang, Well posedness for pressureless flow, Comm. Math. Phys. 222 (2001), no. 1, 117–146. MR 1853866, DOI 10.1007/s002200100506
- Philip Isett, Hölder continuous Euler flows in three dimensions with compact support in time, Annals of Mathematics Studies, vol. 196, Princeton University Press, Princeton, NJ, 2017. MR 3616258, DOI 10.1515/9781400885428
- Richard Jordan, David Kinderlehrer, and Felix Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), no. 1, 1–17. MR 1617171, DOI 10.1137/S0036141096303359
- Jan Kristensen and Filip Rindler, Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and BV, Arch. Ration. Mech. Anal. 197 (2010), no. 2, 539–598. MR 2660519, DOI 10.1007/s00205-009-0287-9
- Philippe G. LeFloch and Michael Westdickenberg, Finite energy solutions to the isentropic Euler equations with geometric effects, J. Math. Pures Appl. (9) 88 (2007), no. 5, 389–429 (English, with English and French summaries). MR 2369876, DOI 10.1016/j.matpur.2007.07.004
- H. Lim, Y. Yu, J. Glimm, X. L. Li, and D. H. Sharp, Chaos, transport and mesh convergence for fluid mixing, Acta Math. Appl. Sin. Engl. Ser. 24 (2008), no. 3, 355–368. MR 2433866, DOI 10.1007/s10255-008-8019-8
- Hyunkyung Lim, Justin Iwerks, James Glimm, and David H. Sharp, Nonideal Rayleigh-Taylor mixing, Proc. Natl. Acad. Sci. USA 107 (2010), no. 29, 12786–12792. MR 2670988, DOI 10.1073/pnas.1002410107
- Pierre-Louis Lions, Benoît Perthame, and Panagiotis E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 49 (1996), no. 6, 599–638. MR 1383202, DOI 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5
- P.-L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and $p$-systems, Comm. Math. Phys. 163 (1994), no. 2, 415–431. MR 1284790, DOI 10.1007/BF02102014
- Mark Mandelkern, Metrization of the one-point compactification, Proc. Amer. Math. Soc. 107 (1989), no. 4, 1111–1115. MR 991703, DOI 10.1090/S0002-9939-1989-0991703-4
- Octave Moutsinga, Convex hulls, sticky particle dynamics and pressure-less gas system, Ann. Math. Blaise Pascal 15 (2008), no. 1, 57–80. MR 2418013, DOI 10.5802/ambp.239
- John Nash, $C^1$ isometric imbeddings, Ann. of Math. (2) 60 (1954), 383–396. MR 65993, DOI 10.2307/1969840
- John Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20–63. MR 75639, DOI 10.2307/1969989
- Luca Natile and Giuseppe Savaré, A Wasserstein approach to the one-dimensional sticky particle system, SIAM J. Math. Anal. 41 (2009), no. 4, 1340–1365. MR 2540269, DOI 10.1137/090750809
- Truyen Nguyen and Adrian Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws, SIAM J. Math. Anal. 40 (2008), no. 2, 754–775. MR 2438785, DOI 10.1137/070704459
- L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6 (1949), no. Supplemento, 2 (Convegno Internazionale di Meccanica Statistica), 279–287. MR 36116, DOI 10.1007/BF02780991
- F. Poupaud and M. Rascle, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients, Comm. Partial Differential Equations 22 (1997), no. 1-2, 337–358. MR 1434148, DOI 10.1080/03605309708821265
- Filip Rindler, Lower semicontinuity for integral functionals in the space of functions of bounded deformation via rigidity and Young measures, Arch. Ration. Mech. Anal. 202 (2011), no. 1, 63–113. MR 2835863, DOI 10.1007/s00205-011-0408-0
- R. Tyrrell Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original; Princeton Paperbacks. MR 1451876
- Michael Sever, An existence theorem in the large for zero-pressure gas dynamics, Differential Integral Equations 14 (2001), no. 9, 1077–1092. MR 1852872
- Eitan Tadmor, A minimum entropy principle in the gas dynamics equations, Appl. Numer. Math. 2 (1986), no. 3-5, 211–219. MR 863987, DOI 10.1016/0168-9274(86)90029-2
- Michael Westdickenberg, Projections onto the cone of optimal transport maps and compressible fluid flows, J. Hyperbolic Differ. Equ. 7 (2010), no. 4, 605–649. MR 2746202, DOI 10.1142/S0219891610002244
- Gershon Wolansky, Dynamics of a system of sticking particles of finite size on the line, Nonlinearity 20 (2007), no. 9, 2175–2189. MR 2351029, DOI 10.1088/0951-7715/20/9/009
- Eduardo H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory. I. Projections on convex sets, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971) Academic Press, New York, 1971, pp. 237–341. MR 0388177
- Ya. B. Zel’dovich, Gravitational instability: An approximate theory for large density perturbations, Astro. Astrophys. 5 (1970), 84–89.
Additional Information
- Fabio Cavalletti
- Affiliation: SISSA, Via Bonomea 265, 34136 Trieste, Italy
- MR Author ID: 956139
- Email: cavallet@sissa.it
- Marc Sedjro
- Affiliation: AIMS Tanzania, Plot No. 288, Makwahiya Street, Regent Estate, Dar es Salaam, Tanzania
- MR Author ID: 1092511
- Email: sedjro@aims.ac.tz
- Michael Westdickenberg
- Affiliation: Lehrstuhl für Mathematik (Analysis), RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
- MR Author ID: 654309
- Email: mwest@instmath.rwth-aachen.de
- Received by editor(s): July 15, 2015
- Received by editor(s) in revised form: September 25, 2018
- Published electronically: January 2, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 5083-5155
- MSC (2010): Primary 35L65, 49J40, 82C40
- DOI: https://doi.org/10.1090/tran/7747
- MathSciNet review: 3934479