The Ihara zeta function for infinite graphs
HTML articles powered by AMS MathViewer
- by Daniel Lenz, Felix Pogorzelski and Marcel Schmidt PDF
- Trans. Amer. Math. Soc. 371 (2019), 5687-5729 Request permission
Abstract:
We put forward the concept of measure graphs. These are (possibly uncountable) graphs equipped with an action of a groupoid and a measure invariant under this action. Examples include finite graphs, periodic graphs, graphings, and percolation graphs. Making use of Connes’s noncommutative integration theory, we construct a zeta function and present a determinant formula for it. We further introduce a notion of weak convergence of measure graphs and show that our construction is compatible with it. The approximation of the Ihara zeta function via the normalized version on finite graphs in the sense of Benjamini and Schramm follows as a special case. Our framework not only unifies corresponding earlier results occurring in the literature. It likewise provides extensions to rich new classes of objects such as percolation graphs.References
- Heinz Bauer, Measure and integration theory, De Gruyter Studies in Mathematics, vol. 26, Walter de Gruyter & Co., Berlin, 2001. Translated from the German by Robert B. Burckel. MR 1897176, DOI 10.1515/9783110866209
- Itai Benjamini, Russell Lyons, and Oded Schramm, Unimodular random trees, Ergodic Theory Dynam. Systems 35 (2015), no. 2, 359–373. MR 3316916, DOI 10.1017/etds.2013.56
- Itai Benjamini and Oded Schramm, Recurrence of distributional limits of finite planar graphs, Electron. J. Probab. 6 (2001), no. 23, 13. MR 1873300, DOI 10.1214/EJP.v6-96
- G. Chinta, J. Jorgenson, and A. Karlsson, Heat kernels on regular graphs and generalized Ihara zeta function formulas, Monatsh. Math. 178 (2015), no. 2, 171–190. MR 3394421, DOI 10.1007/s00605-014-0685-4
- Bryan Clair and Shahriar Mokhtari-Sharghi, Zeta functions of discrete groups acting on trees, J. Algebra 237 (2001), no. 2, 591–620. MR 1816705, DOI 10.1006/jabr.2000.8600
- Bryan Clair and Shahriar Mokhtari-Sharghi, Convergence of zeta functions of graphs, Proc. Amer. Math. Soc. 130 (2002), no. 7, 1881–1886. MR 1896018, DOI 10.1090/S0002-9939-02-06532-2
- Bryan Clair, The Ihara zeta function of the infinite grid, Electron. J. Combin. 21 (2014), no. 2, Paper 2.16, 19. MR 3210650
- Alain Connes, Sur la théorie non commutative de l’intégration, Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978) Lecture Notes in Math., vol. 725, Springer, Berlin, 1979, pp. 19–143 (French). MR 548112
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Anton Deitmar, Ihara zeta functions of infinite weighted graphs, SIAM J. Discrete Math. 29 (2015), no. 4, 2100–2116. MR 3416854, DOI 10.1137/140957925
- Jacques Dixmier, von Neumann algebras, North-Holland Mathematical Library, vol. 27, North-Holland Publishing Co., Amsterdam-New York, 1981. With a preface by E. C. Lance; Translated from the second French edition by F. Jellett. MR 641217
- Gábor Elek, On limits of finite graphs, Combinatorica 27 (2007), no. 4, 503–507. MR 2359831, DOI 10.1007/s00493-007-2214-8
- Gábor Elek, $L^2$-spectral invariants and convergent sequences of finite graphs, J. Funct. Anal. 254 (2008), no. 10, 2667–2689. MR 2406929, DOI 10.1016/j.jfa.2008.01.010
- Gábor Elek, Weak convergence of finite graphs, integrated density of states and a Cheeger type inequality, J. Combin. Theory Ser. B 98 (2008), no. 1, 62–68. MR 2368023, DOI 10.1016/j.jctb.2007.03.004
- Bent Fuglede and Richard V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520–530. MR 52696, DOI 10.2307/1969645
- Rostislav I. Grigorchuk and Andrzej Żuk, The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps, Random walks and geometry, Walter de Gruyter, Berlin, 2004, pp. 141–180. MR 2087782
- Michel L. Lapidus and Machiel van Frankenhuijsen, Fractal geometry, complex dimensions and zeta functions, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2013. Geometry and spectra of fractal strings. MR 2977849, DOI 10.1007/978-1-4614-2176-4
- Daniele Guido, Tommaso Isola, and Michel L. Lapidus, Ihara’s zeta function for periodic graphs and its approximation in the amenable case, J. Funct. Anal. 255 (2008), no. 6, 1339–1361. MR 2565711, DOI 10.1016/j.jfa.2008.07.011
- Daniele Guido, Tommaso Isola, and Michel L. Lapidus, Ihara’s zeta function for periodic graphs and its approximation in the amenable case, J. Funct. Anal. 255 (2008), no. 6, 1339–1361. MR 2565711, DOI 10.1016/j.jfa.2008.07.011
- Daniele Guido, Tommaso Isola, and Michel L. Lapidus, A trace on fractal graphs and the Ihara zeta function, Trans. Amer. Math. Soc. 361 (2009), no. 6, 3041–3070. MR 2485417, DOI 10.1090/S0002-9947-08-04702-8
- Misha Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom. 2 (1999), no. 4, 323–415. MR 1742309, DOI 10.1023/A:1009841100168
- D. Lenz, F. Pogorzelski, and M. Schmidt, Topological measure graphs and inverse semigroups (in preparation).
- Daniel Lenz, Norbert Peyerimhoff, and Ivan Veselić, Groupoids, von Neumann algebras and the integrated density of states, Math. Phys. Anal. Geom. 10 (2007), no. 1, 1–41. MR 2340531, DOI 10.1007/s11040-007-9019-2
- Hanfeng Li and Andreas Thom, Entropy, determinants, and $L^2$-torsion, J. Amer. Math. Soc. 27 (2014), no. 1, 239–292. MR 3110799, DOI 10.1090/S0894-0347-2013-00778-X
- László Lovász, Large networks and graph limits, American Mathematical Society Colloquium Publications, vol. 60, American Mathematical Society, Providence, RI, 2012. MR 3012035, DOI 10.1090/coll/060
- W. Lück, Approximating $L^2$-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), no. 4, 455–481. MR 1280122, DOI 10.1007/BF01896404
- Alan L. T. Paterson, Groupoids, inverse semigroups, and their operator algebras, Progress in Mathematics, vol. 170, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1724106, DOI 10.1007/978-1-4612-1774-9
- Vladimir G. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008), no. 4, 449–480. MR 2460675, DOI 10.2178/bsl/1231081461
- Felix Pogorzelski, Convergence theorems for graph sequences, Internat. J. Algebra Comput. 24 (2014), no. 8, 1233–1251. MR 3296365, DOI 10.1142/S0218196714500556
- F. Pogorzelski, Banach space-valued ergodic theorems and spectral approximation, 2014. Thesis (Ph.D.)–Friedrich-Schiller-Universität Jena.
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266
- Christoph Schumacher and Fabian Schwarzenberger, Approximation of the integrated density of states on sofic groups, Ann. Henri Poincaré 16 (2015), no. 4, 1067–1101. MR 3317792, DOI 10.1007/s00023-014-0342-4
- Jean-Pierre Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke $T_p$, J. Amer. Math. Soc. 10 (1997), no. 1, 75–102 (French). MR 1396897, DOI 10.1090/S0894-0347-97-00220-8
- H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), no. 1, 124–165. MR 1399606, DOI 10.1006/aima.1996.0050
- Audrey Terras, Zeta functions of graphs, Cambridge Studies in Advanced Mathematics, vol. 128, Cambridge University Press, Cambridge, 2011. A stroll through the garden. MR 2768284
- Joachim Weidmann, Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Springer-Verlag, New York-Berlin, 1980. Translated from the German by Joseph Szücs. MR 566954
- Benjamin Weiss, Sofic groups and dynamical systems, Sankhyā Ser. A 62 (2000), no. 3, 350–359. Ergodic theory and harmonic analysis (Mumbai, 1999). MR 1803462
Additional Information
- Daniel Lenz
- Affiliation: Mathematisches Institut, Friedrich Schiller Universität Jena, 07743 Jena, Germany
- MR Author ID: 656508
- Email: daniel.lenz@uni-jena.de
- Felix Pogorzelski
- Affiliation: Mathematisches Institut, Universität Leipzig, 04109 Leipzig, Germany
- MR Author ID: 1028684
- Email: felix.pogorzelski@math.uni-leipzig.de
- Marcel Schmidt
- Affiliation: Mathematisches Institut, Friedrich Schiller Universität Jena, 07743 Jena, Germany
- MR Author ID: 1091878
- ORCID: 0000-0002-7918-0715
- Email: schmidt.marcel@uni-jena.de
- Received by editor(s): February 20, 2017
- Received by editor(s) in revised form: November 7, 2017, December 16, 2017, and January 8, 2018
- Published electronically: September 18, 2018
- Additional Notes: The second author expresses his thanks for support through the German National Academic Foundation (Studienstiftung des deutschen Volkes).
The third author has been financially supported by the Graduiertenkolleg 1523/2: Quantum and gravitational fields - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 5687-5729
- MSC (2010): Primary 05C63; Secondary 05C38, 05C80, 22D40, 46L51
- DOI: https://doi.org/10.1090/tran/7508
- MathSciNet review: 3937307