Links with non-trivial Alexander polynomial which are topologically concordant to the Hopf link
HTML articles powered by AMS MathViewer
- by Min Hoon Kim, David Krcatovich and JungHwan Park PDF
- Trans. Amer. Math. Soc. 371 (2019), 5379-5400 Request permission
Abstract:
We give infinitely many 2-component links with unknotted components which are topologically concordant to the Hopf link, but not smoothly concordant to any 2-component link with trivial Alexander polynomial. Our examples are pairwise non-concordant.References
- Selman Akbulut and Robion Kirby, Branched covers of surfaces in $4$-manifolds, Math. Ann. 252 (1979/80), no. 2, 111–131. MR 593626, DOI 10.1007/BF01420118
- József Bodnár, Daniele Celoria, and Marco Golla, A note on cobordisms of algebraic knots, Algebr. Geom. Topol. 17 (2017), no. 4, 2543–2564. MR 3686406, DOI 10.2140/agt.2017.17.2543
- Maciej Borodzik and Charles Livingston, Heegaard Floer homology and rational cuspidal curves, Forum Math. Sigma 2 (2014), Paper No. e28, 23. MR 3347955, DOI 10.1017/fms.2014.28
- Jae Choon Cha, Stefan Friedl, and Mark Powell, Concordance of links with identical Alexander invariants, Bull. Lond. Math. Soc. 46 (2014), no. 3, 629–642. MR 3210718, DOI 10.1112/blms/bdu002
- Tim D. Cochran and Robert E. Gompf, Applications of Donaldson’s theorems to classical knot concordance, homology $3$-spheres and property $P$, Topology 27 (1988), no. 4, 495–512. MR 976591, DOI 10.1016/0040-9383(88)90028-6
- Tim D. Cochran and Peter D. Horn, Structure in the bipolar filtration of topologically slice knots, Algebr. Geom. Topol. 15 (2015), no. 1, 415–428. MR 3325742, DOI 10.2140/agt.2015.15.415
- Tim D. Cochran, Shelly Harvey, and Peter Horn, Filtering smooth concordance classes of topologically slice knots, Geom. Topol. 17 (2013), no. 4, 2103–2162. MR 3109864, DOI 10.2140/gt.2013.17.2103
- Jae Choon Cha, Taehee Kim, Daniel Ruberman, and Sašo Strle, Smooth concordance of links topologically concordant to the Hopf link, Bull. Lond. Math. Soc. 44 (2012), no. 3, 443–450. MR 2966989, DOI 10.1112/blms/bdr103
- James F. Davis, A two component link with Alexander polynomial one is concordant to the Hopf link, Math. Proc. Cambridge Philos. Soc. 140 (2006), no. 2, 265–268. MR 2212279, DOI 10.1017/S0305004105008856
- Christopher W. Davis and Arunima Ray, A new family of links topologically, but not smoothly, concordant to the Hopf link, J. Knot Theory Ramifications 26 (2017), no. 2, 1740002, 12. MR 3604484, DOI 10.1142/S0218216517400028
- Andrew Donald and Faramarz Vafaee, A slicing obstruction from the $\frac {10}{8}$ theorem, Proc. Amer. Math. Soc. 144 (2016), no. 12, 5397–5405. MR 3556281, DOI 10.1090/proc/13056
- Hisaaki Endo, Linear independence of topologically slice knots in the smooth cobordism group, Topology Appl. 63 (1995), no. 3, 257–262. MR 1334309, DOI 10.1016/0166-8641(94)00062-8
- Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1201584
- Michael H. Freedman, A surgery sequence in dimension four; the relations with knot concordance, Invent. Math. 68 (1982), no. 2, 195–226. MR 666159, DOI 10.1007/BF01394055
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- M. Golla and M. Marengon, Correction terms and the non-orientable slice genus, arXiv:1607.08117, 2016.
- Robert E. Gompf, Smooth concordance of topologically slice knots, Topology 25 (1986), no. 3, 353–373. MR 842430, DOI 10.1016/0040-9383(86)90049-2
- Stavros Garoufalidis and Peter Teichner, On knots with trivial Alexander polynomial, J. Differential Geom. 67 (2004), no. 1, 167–193. MR 2153483
- Matthew Hedden, On knot Floer homology and cabling. II, Int. Math. Res. Not. IMRN 12 (2009), 2248–2274. MR 2511910, DOI 10.1093/imrn/rnp015
- Jonathan Hillman, Algebraic invariants of links, Series on Knots and Everything, vol. 32, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. MR 1932169, DOI 10.1142/9789812776648
- Matthew Hedden, Se-Goo Kim, and Charles Livingston, Topologically slice knots of smooth concordance order two, J. Differential Geom. 102 (2016), no. 3, 353–393. MR 3466802
- Matthew Hedden, Charles Livingston, and Daniel Ruberman, Topologically slice knots with nontrivial Alexander polynomial, Adv. Math. 231 (2012), no. 2, 913–939. MR 2955197, DOI 10.1016/j.aim.2012.05.019
- Kristen Hendricks and Ciprian Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017), no. 7, 1211–1299. MR 3649355, DOI 10.1215/00127094-3793141
- Jennifer Hom, The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014), no. 3, 537–570. MR 3260841, DOI 10.4171/CMH/326
- Jennifer Hom, An infinite-rank summand of topologically slice knots, Geom. Topol. 19 (2015), no. 2, 1063–1110. MR 3336278, DOI 10.2140/gt.2015.19.1063
- Jennifer Hom, A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications 26 (2017), no. 2, 1740015, 24. MR 3604497, DOI 10.1142/S0218216517400156
- M. Hedden and L. Watson, On the geography and botany of knot Floer homology, arXiv:1404.6913, 2014.
- Jennifer Hom and Zhongtao Wu, Four-ball genus bounds and a refinement of the Ozváth-Szabó tau invariant, J. Symplectic Geom. 14 (2016), no. 1, 305–323. MR 3523259, DOI 10.4310/JSG.2016.v14.n1.a12
- Akio Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. MR 1417494
- M. H. Kim and K. B. Park, An infinite-rank summand of knots with trivial Alexander polynomial, arXiv:1604.04037, to appear in J. Symplectic Geom., 2016.
- David Krcatovich, The reduced knot Floer complex, Topology Appl. 194 (2015), 171–201. MR 3404612, DOI 10.1016/j.topol.2015.08.008
- Charles Livingston, Slice knots with distinct Ozsváth-Szabó and Rasmussen invariants, Proc. Amer. Math. Soc. 136 (2008), no. 1, 347–349. MR 2350422, DOI 10.1090/S0002-9939-07-09276-3
- Ciprian Manolescu and Brendan Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN 20 (2007), Art. ID rnm077, 21. MR 2363303, DOI 10.1093/imrn/rnm077
- Yi Ni and Zhongtao Wu, Cosmetic surgeries on knots in $S^3$, J. Reine Angew. Math. 706 (2015), 1–17. MR 3393360, DOI 10.1515/crelle-2013-0067
- Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261. MR 1957829, DOI 10.1016/S0001-8708(02)00030-0
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116. MR 2065507, DOI 10.1016/j.aim.2003.05.001
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158. MR 2113019, DOI 10.4007/annals.2004.159.1027
- Peter Ozsváth and Zoltán Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6, 1281–1300. MR 2168576, DOI 10.1016/j.top.2005.05.001
- Peter S. Ozsváth and Zoltán Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008), no. 1, 101–153. MR 2377279, DOI 10.2140/agt.2008.8.101
- Peter S. Ozsváth and Zoltán Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011), no. 1, 1–68. MR 2764036, DOI 10.2140/agt.2011.11.1
- Peter S. Ozsváth, András I. Stipsicz, and Zoltán Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017), 366–426. MR 3667589, DOI 10.1016/j.aim.2017.05.017
- Jacob Andrew Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Harvard University. MR 2704683
- Guillermo Torres, On the Alexander polynomial, Ann. of Math. (2) 57 (1953), 57–89. MR 52104, DOI 10.2307/1969726
Additional Information
- Min Hoon Kim
- Affiliation: School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
- MR Author ID: 1067137
- Email: kminhoon@kias.re.kr
- David Krcatovich
- Affiliation: Department of Mathematics, Rice University, 6100 Main Street, Houston, Texas 77005
- MR Author ID: 1128670
- Email: dk27@rice.edu
- JungHwan Park
- Affiliation: Department of Mathematics, Rice University, 6100 Main Street, Houston, Texas 77005
- MR Author ID: 1188099
- Email: jp35@rice.edu
- Received by editor(s): April 5, 2017
- Received by editor(s) in revised form: August 17, 2017, and September 6, 2017
- Published electronically: January 15, 2019
- Additional Notes: The first author was partially supported by the Overseas Research Program for Young Scientists through the Korea Institute for Advanced Study.
The third author was partially supported by the National Science Foundation grant DMS-1309081.
The first and the third authors thank the Hausdorff Institute for Mathematics in Bonn for both support and its outstanding research environment. - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 5379-5400
- MSC (2010): Primary 20J05, 57M07; Secondary 55P60, 57M27
- DOI: https://doi.org/10.1090/tran/7389
- MathSciNet review: 3937296