## Cayley and Langlands type correspondences for orthogonal Higgs bundles

HTML articles powered by AMS MathViewer

- by David Baraglia and Laura P. Schaposnik PDF
- Trans. Amer. Math. Soc.
**371**(2019), 7451-7492 Request permission

## Abstract:

Through Cayley and Langlands type correspondences, we give a geometric description of the moduli spaces of real orthogonal and symplectic Higgs bundles of any signature in the regular fibers of the Hitchin fibration. As applications of our methods, we complete the concrete abelianization of real slices corresponding to all quasi-split real forms, and we describe how extra components emerge naturally from the spectral data point of view.## References

- M. Aparicio Arroyo,
*The geometry of $SO(p,q)$-Higgs bundles*, 2009. Thesis (Ph.D.)–University of Salamanca. - M. F. Atiyah and R. Bott,
*A Lefschetz fixed point formula for elliptic complexes. II. Applications*, Ann. of Math. (2)**88**(1968), 451–491. MR**232406**, DOI 10.2307/1970721 - David Baraglia,
*Monodromy of the $SL(n)$ and $GL(n)$ Hitchin fibrations*, Math. Ann.**370**(2018), no. 3-4, 1681–1716. MR**3770177**, DOI 10.1007/s00208-017-1611-6 - D. Baraglia and L. P. Schaposnik,
*Monodromy of rank $2$ twisted Hitchin systems and real character varieties*, Trans. of the AMS, DOI: https://doi.org/10.1090/tran/7144. - David Baraglia and Laura P. Schaposnik,
*Real structures on moduli spaces of Higgs bundles*, Adv. Theor. Math. Phys.**20**(2016), no. 3, 525–551. MR**3565861**, DOI 10.4310/ATMP.2016.v20.n3.a2 - Arnaud Beauville, M. S. Narasimhan, and S. Ramanan,
*Spectral curves and the generalised theta divisor*, J. Reine Angew. Math.**398**(1989), 169–179. MR**998478**, DOI 10.1515/crll.1989.398.169 - Olivier Biquard, Oscar García-Prada, and Roberto Rubio,
*Higgs bundles, the Toledo invariant and the Cayley correspondence*, J. Topol.**10**(2017), no. 3, 795–826. MR**3797597**, DOI 10.1112/topo.12023 - Steven B. Bradlow, Oscar García-Prada, and Peter B. Gothen,
*Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces*, Geom. Dedicata**122**(2006), 185–213. MR**2295550**, DOI 10.1007/s10711-007-9127-y - Marc Burger, Alessandra Iozzi, and Anna Wienhard,
*Surface group representations with maximal Toledo invariant*, Ann. of Math. (2)**172**(2010), no. 1, 517–566. MR**2680425**, DOI 10.4007/annals.2010.172.517 - B. Collier,
*SO(n,n+1)-surface group representations and their Higgs bundles*, arXiv:1710.01287 (2017). - Brian Collier,
*Finite order automorphisms of Higgs Bsundles: Theory and application*, ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign. MR**3624308** - B. Collier, N. Tholozan, and J. Touilisse,
*The geometry of maximal representations of surface groups into $SO_0(2,n)$*, arXiv:1702.08799 (2017). - R. Donagi and T. Pantev,
*Langlands duality for Hitchin systems*, Invent. Math.**189**(2012), no. 3, 653–735. MR**2957305**, DOI 10.1007/s00222-012-0373-8 - O. García-Prada, P. B. Gothen, and I. Mundet i Riera,
*Higgs bundles and surface group representations in the real symplectic group*, J. Topol.**6**(2013), no. 1, 64–118. MR**3029422**, DOI 10.1112/jtopol/jts030 - Oscar García-Prada and André G. Oliveira,
*Connectedness of the moduli of $\textrm {Sp}(2p,2q)$-Higgs bundles*, Q. J. Math.**65**(2014), no. 3, 931–956. MR**3261975**, DOI 10.1093/qmath/hat045 - P. Gothen,
*The topology of Higgs bundle moduli spaces*, 1995. Thesis (Ph.D.)–University of Warwick. - Peter B. Gothen and André G. Oliveira,
*Rank two quadratic pairs and surface group representations*, Geom. Dedicata**161**(2012), 335–375. MR**2994046**, DOI 10.1007/s10711-012-9709-1 - O. Guichard and A. Wienhard,
*Positivity and higher Teichmüller theory*, Proc. of the 7th ECM (to appear). - Olivier Guichard and Anna Wienhard,
*Topological invariants of Anosov representations*, J. Topol.**3**(2010), no. 3, 578–642. MR**2684514**, DOI 10.1112/jtopol/jtq018 - Jochen Heinloth,
*Uniformization of $\scr G$-bundles*, Math. Ann.**347**(2010), no. 3, 499–528. MR**2640041**, DOI 10.1007/s00208-009-0443-4 - N. J. Hitchin,
*The self-duality equations on a Riemann surface*, Proc. London Math. Soc. (3)**55**(1987), no. 1, 59–126. MR**887284**, DOI 10.1112/plms/s3-55.1.59 - Nigel Hitchin,
*Stable bundles and integrable systems*, Duke Math. J.**54**(1987), no. 1, 91–114. MR**885778**, DOI 10.1215/S0012-7094-87-05408-1 - N. J. Hitchin,
*Lie groups and Teichmüller space*, Topology**31**(1992), no. 3, 449–473. MR**1174252**, DOI 10.1016/0040-9383(92)90044-I - Nigel Hitchin,
*Langlands duality and $G_2$ spectral curves*, Q. J. Math.**58**(2007), no. 3, 319–344. MR**2354922**, DOI 10.1093/qmath/ham016 - Nigel Hitchin and Laura P. Schaposnik,
*Nonabelianization of Higgs bundles*, J. Differential Geom.**97**(2014), no. 1, 79–89. MR**3229050** - Nigel Hitchin,
*Higgs bundles and characteristic classes*, Arbeitstagung Bonn 2013, Progr. Math., vol. 319, Birkhäuser/Springer, Cham, 2016, pp. 247–264. MR**3618052**, DOI 10.1007/978-3-319-43648-7_{8} - Anton Kapustin and Edward Witten,
*Electric-magnetic duality and the geometric Langlands program*, Commun. Number Theory Phys.**1**(2007), no. 1, 1–236. MR**2306566**, DOI 10.4310/CNTP.2007.v1.n1.a1 - Jun Li,
*The space of surface group representations*, Manuscripta Math.**78**(1993), no. 3, 223–243. MR**1206154**, DOI 10.1007/BF02599310 - David Nadler,
*Perverse sheaves on real loop Grassmannians*, Invent. Math.**159**(2005), no. 1, 1–73. MR**2142332**, DOI 10.1007/s00222-004-0382-3 - M. S. Narasimhan and C. S. Seshadri,
*Stable and unitary vector bundles on a compact Riemann surface*, Ann. of Math. (2)**82**(1965), 540–567. MR**184252**, DOI 10.2307/1970710 - A. Peón-Nieto,
*Higgs bundles, real forms and the Hitchin fibration*, 2013. Thesis (Ph.D.)–Autonomous University of Madrid. - A. Peón-Nieto,
*Cameral data for $SU(p+ 1, p)$-Higgs bundles*, arXiv:1506.01318 (2015). - Laura P. Schaposnik,
*Spectral data for G-Higgs bundles*, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (D.Phil.)–University of Oxford (United Kingdom). MR**3389247** - Laura P. Schaposnik,
*Spectral data for $U(m,m)$-Higgs bundles*, Int. Math. Res. Not. IMRN**11**(2015), 3486–3498. MR**3373057** - L. P. Schaposnik,
*A geometric approach to orthogonal Higgs bundles*, Eur. J. Math. (2017), DOI 10.1007/s40879-017-0206-9. arXiv:1608.00300. - Carlos T. Simpson,
*Higgs bundles and local systems*, Inst. Hautes Études Sci. Publ. Math.**75**(1992), 5–95. MR**1179076** - Carlos T. Simpson,
*Moduli of representations of the fundamental group of a smooth projective variety. I*, Inst. Hautes Études Sci. Publ. Math.**79**(1994), 47–129. MR**1307297** - Carlos T. Simpson,
*Moduli of representations of the fundamental group of a smooth projective variety. II*, Inst. Hautes Études Sci. Publ. Math.**80**(1994), 5–79 (1995). MR**1320603** - Eugene Z. Xia,
*The moduli of flat $\textrm {U}(p,1)$ structures on Riemann surfaces*, Geom. Dedicata**97**(2003), 33–43. Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999). MR**2003688**, DOI 10.1023/A:1023675007667

## Additional Information

**David Baraglia**- Affiliation: School of Mathematical Sciences, The University of Adelaide, South Australia 5005, Australia
- MR Author ID: 912405
- Email: david.baraglia@adelaide.edu.au
**Laura P. Schaposnik**- Affiliation: University of Illinois at Chicago, Chicago, Illinois 60607; and FU Berlin, 14195 Berlin, Germany
- MR Author ID: 1013453
- ORCID: 0000-0003-1417-2201
- Email: schapos@uic.edu
- Received by editor(s): October 10, 2017
- Received by editor(s) in revised form: February 15, 2018, March 7, 2018, and April 4, 2018
- Published electronically: November 5, 2018
- Additional Notes: The first author was financially supported by the Australian Research Council Discovery Early Career Researcher Award DE160100024.

The second author was partially supported by the NSF grant DMS-1509693, the NSF CAREER Award DMS-1749013, and the Alexander von Humboldt Foundation.

The authors are thankful for financial support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties" (the GEAR Network), which financed several research visits during which the paper was written. - © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**371**(2019), 7451-7492 - MSC (2010): Primary 14D20, 14D21, 53C07; Secondary 14H70, 14P25
- DOI: https://doi.org/10.1090/tran/7587
- MathSciNet review: 3939583