The $K$-theory spectrum of varieties
HTML articles powered by AMS MathViewer
- by Jonathan A. Campbell PDF
- Trans. Amer. Math. Soc. 371 (2019), 7845-7884 Request permission
Abstract:
We produce an $E_\infty$-ring spectrum $K(\mathbf {Var}_{/k})$ whose components model the Grothendieck ring of varieties (over a field $k$) $K_0 (\mathbf {Var}_{/k})$. This is achieved by slightly modifying Waldhausen categories and the Waldhausen $S_\bullet$-construction. As an application, we produce liftings of various motivic measures to spectrum-level maps, including maps into Waldhausen’s $K$-theory of spaces $A(\ast )$ and to $K(\mathbf {Q})$.References
- Michael Barratt and Stewart Priddy, On the homology of non-connected monoids and their associated groups, Comment. Math. Helv. 47 (1972), 1–14. MR 314940, DOI 10.1007/BF02566785
- Clark Barwick, On the algebraic $K$-theory of higher categories, J. Topol. 9 (2016), no. 1, 245–347. MR 3465850, DOI 10.1112/jtopol/jtv042
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Andrew J. Blumberg, David Gepner, and Gonçalo Tabuada, A universal characterization of higher algebraic $K$-theory, Geom. Topol. 17 (2013), no. 2, 733–838. MR 3070515, DOI 10.2140/gt.2013.17.733
- Andrew J. Blumberg and Michael A. Mandell, Derived Koszul duality and involutions in the algebraic $K$-theory of spaces, J. Topol. 4 (2011), no. 2, 327–342. MR 2805994, DOI 10.1112/jtopol/jtr003
- Andrew J. Blumberg and Michael A. Mandell, The homotopy groups of the algebraic k-theory of the sphere spectrum, 2014.
- Andrew J. Blumberg and Michael A. Mandell, Tate-Poitou duality and the fiber of the cyclotomic trace for the sphere spectrum, 2015.
- Alexey I. Bondal, Michael Larsen, and Valery A. Lunts, Grothendieck ring of pretriangulated categories, Int. Math. Res. Not. 29 (2004), 1461–1495. MR 2051435, DOI 10.1155/S1073792804140385
- Denis-Charles Cisinski, personal communication.
- A. D. Elmendorf and M. A. Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006), no. 1, 163–228. MR 2254311, DOI 10.1016/j.aim.2005.07.007
- Thomas Geisser and Lars Hesselholt, Topological cyclic homology of schemes, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 41–87. MR 1743237, DOI 10.1090/pspum/067/1743237
- E. Getzler, Resolving mixed Hodge modules on configuration spaces, Duke Math. J. 96 (1999), no. 1, 175–203. MR 1663927, DOI 10.1215/S0012-7094-99-09605-9
- Henri Gillet and Daniel R. Grayson, The loop space of the $Q$-construction, Illinois J. Math. 31 (1987), no. 4, 574–597. MR 909784
- Mark Hovey, Brooke Shipley, and Jeff Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), no. 1, 149–208. MR 1695653, DOI 10.1090/S0894-0347-99-00320-3
- John R. Isbell, On coherent algebras and strict algebras, J. Algebra 13 (1969), 299–307. MR 249484, DOI 10.1016/0021-8693(69)90076-3
- Michael Larsen and Valery A. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003), no. 1, 85–95, 259 (English, with English and Russian summaries). MR 1996804, DOI 10.17323/1609-4514-2003-3-1-85-95
- Qing Liu and Julien Sebag, The Grothendieck ring of varieties and piecewise isomorphisms, Math. Z. 265 (2010), no. 2, 321–342. MR 2609314, DOI 10.1007/s00209-009-0518-7
- Eduard Looijenga, Motivic measures, Astérisque 276 (2002), 267–297. Séminaire Bourbaki, Vol. 1999/2000. MR 1886763
- Jacob Lurie, Higher algebra, 2015, unpublished.
- M. A. Mandell, J. P. May, S. Schwede, and B. Shipley, Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001), no. 2, 441–512. MR 1806878, DOI 10.1112/S0024611501012692
- Randy McCarthy, On fundamental theorems of algebraic $K$-theory, Topology 32 (1993), no. 2, 325–328. MR 1217072, DOI 10.1016/0040-9383(93)90023-O
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- Dan Petersen, Is there a higher Grothendieck ring of varieties?, MathOverflow. https://mathoverflow.net/q/179022 (version: 2014-08-21). https://mathoverflow.net/q/179022.
- Daniel Quillen, Higher algebraic $K$-theory: I [MR0338129], Cohomology of groups and algebraic $K$-theory, Adv. Lect. Math. (ALM), vol. 12, Int. Press, Somerville, MA, 2010, pp. 413–478. MR 2655184
- John Rognes, A spectrum level rank filtration in algebraic $K$-theory, Topology 31 (1992), no. 4, 813–845. MR 1191383, DOI 10.1016/0040-9383(92)90012-7
- Karl Schwede, Gluing schemes and a scheme without closed points, Recent progress in arithmetic and algebraic geometry, Contemp. Math., vol. 386, Amer. Math. Soc., Providence, RI, 2005, pp. 157–172. MR 2182775, DOI 10.1090/conm/386/07222
- Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 353298, DOI 10.1016/0040-9383(74)90022-6
- The Stacks Project Authors, Stacks project, http://stacks.math.columbia.edu, 2015.
- Ross E. Staffeldt, On fundamental theorems of algebraic $K$-theory, $K$-Theory 2 (1989), no. 4, 511–532. MR 990574, DOI 10.1007/BF00533280
- Friedhelm Waldhausen, Algebraic $K$-theory of generalized free products. I, II, Ann. of Math. (2) 108 (1978), no. 1, 135–204. MR 498807, DOI 10.2307/1971165
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 802796, DOI 10.1007/BFb0074449
- Charles A. Weibel, The $K$-book, Graduate Studies in Mathematics, vol. 145, American Mathematical Society, Providence, RI, 2013. An introduction to algebraic $K$-theory. MR 3076731, DOI 10.1090/gsm/145
- Inna Zakharevich, The annihilator of the Lefschetz motive, Duke Math. J. 166 (2017), no. 11, 1989–2022. MR 3694563, DOI 10.1215/00127094-0000016X
- Inna Zakharevich, The $K$-theory of assemblers, Adv. Math. 304 (2017), 1176–1218. MR 3558230, DOI 10.1016/j.aim.2016.08.045
Additional Information
- Jonathan A. Campbell
- Affiliation: Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, Tennessee 37240
- Email: j.campbell@vanderbilt.edu
- Received by editor(s): January 9, 2017
- Received by editor(s) in revised form: February 14, 2018, February 28, 2018, and March 23, 2018
- Published electronically: February 14, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 371 (2019), 7845-7884
- MSC (2010): Primary 19D99
- DOI: https://doi.org/10.1090/tran/7648
- MathSciNet review: 3955537