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TOPOLOGICAL FORMULA OF THE LOOP EXPANSION

OF THE COLORED JONES POLYNOMIALS

TETSUYA ITO

Abstract. We give a formula of the loop expansion of the colored Jones
polynomials based on homological representation of braid groups. This gives
a direct proof of the Melvin-Morton-Rozansky conjecture, and a connection
between entropy of braids and quantum representations.

1. Introduction

For α ∈ {2, 3, 4, . . .} and an oriented knot K in S3, let JK,α(q) ∈ Z[q, q−1] be the
α-colored Jones polynomial of K, normalized so that JUnknot,α(q) = 1. As Melvin-
Morton proved [MeMo], by putting q = e�, the colored Jones polynomials can be
expanded as a power series of two independent variables �α and �, as

JK,α(e
�) =

∞∑
i=0

D(i)(�α)�i =
∞∑
i=0

( ∞∑
k=0

d
(i)
k (�α)k

)
�i.

Further, by putting z = e�α we write the colored Jones polynomials as a function
on � and z,

CJK(z, �) = JK,α(e
�) =

∞∑
i=0

V
(i)
K (z)�i.

We call CJK the colored Jones function, or, perturbative expansion of the colored
Jones polynomial, or, the loop expansion of quantum sl2-invariant. It coincides with
the sl2 weight system reduction of the loop expansion of the Kontsevich invariant.
In particular, the ith coefficient V (i)(z) corresponds to the (i + 1)st loop part of
the loop expansion [Oh]. In [Ov] Overbay studied the expansion by investigating

an expansion of the R-matrix from Uq(sl2), and computed V
(1)
K (z) and V

(2)
K (z) for

knots up to 10 crossings.
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Let ΔK(z) be the Alexander-Conway polynomial of K, characterized by the
skein relation

Δ
����

(z)−Δ
����

(z) = (z
1
2 − z−

1
2 )∇

��
(z), ΔUnknot(z) = 1.

The Alexander-Conway polynomial appears as one of the basic building blocks
of CJK . The Melvin-Morton-Rozansky conjecture [MeMo] (MMR conjecture, for
short), proven in [BG], states that the V (0)(z) is equal to ΔK(z)−1. More generally,
V (i)(z) is a rational function whose denominator is ΔK(z)2i+1 [Ro1].

In a theory of quantum invariants, this appearance of the Alexander-Conway
polynomial is well-understood. The aforementioned rationality of V (i)(z) follows
from Rozansky’s rationality conjecture [Ro2] of the loop expansion of the Kontse-
vich invariant, proven in [Kri]: The Århus integral computation of the Kontsevich
(LMO) invariant [BGRT] based on a surgery presentation of knots, provides the de-
sired rationality (see [GK, Section 1.2] for a brief summary of Kricker’s argument).

The clasper surgery [Ha] explains a geometric connection between the loop
expansion and infinite cyclic covering [GR]. A null-clasper, a clasper with null-
homologous leaves in the knot complement, lifts to a clasper in the infinite cyclic
covering, and the loop expansion nicely behaves under the clasper surgery along
null-claspers. Thus schematically speaking, the loop expansion is a Z-equivariant
LMO invariant [LMO], so it is not surprising that the Alexander-Conway polyno-
mial appears in the loop expansion.

Nevertheless, in a purely topological point of view it is still somewhat mysterious
why the Alexander polynomial appears in such a particular and direct form. In a
known proof of the MMR conjecture, one uses quantum-invariant-like treatments of
the Alexander-Conway polynomial, such as, state-sum, R-matrix, or weight systems
so its topological content is often indirect.

In this paper, we give a formula of CJK by using homological braid group rep-
resentations (Theorem 3.1). Our starting point is a recent result in [I, Koh] that
identifies certain homological representations introduced by Lawrence [La] with
generic Uq(sl2) representations.

Our approach is similar to Lawrence-Bigelow’s approach of the Jones polyno-
mial [Big2,La2], but there are several important differences. We give a formula of
the loop expansion but do not provide a formula of the individual colored Jones
polynomials. We use closed braid representatives and trace, whereas Lawrence
and Bigelow used plat representatives and intersection products. It also should
be emphasized that quantum representations from finite dimensional irreducible
Uq(sl2)-modules are not identified with homological representations so translating
a construction of quantum invariants in terms of homological representation is by
no means routine.

Our formula leads to several insights. First, the MMR conjecture is a direct
consequence of our formula. At � = 0, topological considerations show that the
homological representations is equal to the symmetric powers of the reduced Bu-
rau representation, so they naturally lead to the Alexander-Conway polynomial.
Second, our formula gives a direct way to calculate CJK(z, �) without knowing
or computing the individual colored Jones polynomial JK,α(q), although a gen-
eral calculation is difficult and impractical. Finally, as we discuss in Section 4, an
identification with homological and quantum representations leads to an inequality
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between the entropy of braids and quantum sl2 invariants of its closure (Theo-
rem 4.3). This justifies a naive intuition that a knot with “complicated” quantum
sl2 invariants is represented as a closure of a “complicated” braid, namely, a braid
with large entropy.

2. A topological description of generic quantum sl2 representation

In this section we review the result in [I] that identifies a generic quantum sl2

representation given in [JK] with Lawrence’s homological representation and some
additional arguments to treat the non-generic case.

Throughout the paper, we use the following notation and conventions. The
q-numbers, q-factorials, and q-binomial coefficients are defined by

[n]q =
q

n
2 − q−

n
2

q
1
2 − q−

1
2

, [n]q! = [n]q[n− 1]q · · · [2]q[1]q,
[
n
j

]
q

=
[n]q!

[n− j]q![j]q!
,

respectively. The quantum parameter q corresponds to q2 in [I, JK]. We always
assume that the braid group Bn is acting from the left.

Let R be a commutative ring. For R-modules (resp., RBn-modules) V and W ,
we denote V ∼=Q W if they are isomorphic over the quotient field Q of R, that is,
V ⊗R Q and W ⊗R Q are isomorphic as Q-modules (resp., QBn-modules).

For a subring R ⊂ C, let R[x±1] be the Laurent polynomial ring, and for an
R[x±1]-module V and c ∈ C, we denote the specialization of the variable x to
complex parameter c by V |x=c.

2.1. Generic quantum representation. Let C[[�]] be the algebra of the complex
formal power series in one variable �, and we put q = e�, as usual. A quantum
enveloping algebra U�(sl2) is a topological Hopf algebra over C[[�]] generated by
H,E, F subjected to the relations⎧⎪⎨⎪⎩

[H,E] = 2E, [H,F ] = −2F,

[E,F ] =
sinh(�H2 )

sinh(�2 )
=

e
�H
2 − e−

�H
2

e
�

2 − e−
�

2

.

Let R ∈ U�(sl2)⊗ U�(sl2) be a universal R-matrix given by

(2.1) R = e
�

4 (H⊗H)

( ∞∑
n=0

q
n(n−1)

4
(q

1
2 − q−

1
2 )n

[n]q!
En ⊗ Fn

)
.

(Strictly speaking, here we need to use the topological tensor product ⊗̃, the �-adic
completion of U�(sl2)⊗ U�(sl2). To make notation simple, in the rest of the paper
⊗ should be regarded as the topological tensor product, if we should do so.)

For λ ∈ C∗, let Vλ be the Verma module of highest weight λ, a topologically
free U�(sl2)-module generated by a highest weight vector v0 with Hv0 = λv0, and

Ev0 = 0. We regard λ as an abstract variable. Let V̂�,λ be a C[λ][[�]]-module freely
generated by {v̂0, v̂1, . . . , }, equipped with a U�(sl2)-module structure⎧⎪⎨⎪⎩

Hv̂i = (λ− 2i)v̂i,

Ev̂i = v̂i−1,

F v̂i = [i+ 1]q[λ− i]q v̂i+1.

(2.2)
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Here we put

[λ− i]q =
sinh( 12�(λ− i))

sinh( 12�)
=

e
1
2�(λ−i) − e−

1
2�(λ−i)

e
1
2� − e−

1
2�

.

We call V̂�,λ a generic Verma module.
For j = 0, 1, . . . , define

vj = [λ]q[λ− 1]q · · · [λ− j + 1]q v̂j

and let V�,λ be the sub-U�(sl2)-module of V̂�,λ spanned by {v0, v1, . . .}, with the
action of U�(sl2) ⎧⎪⎨⎪⎩

Hvi = (λ− 2i)vi,

Evi = [λ+ 1− i]qvi−1,

Fvi = [i+ 1]qvi+1.

(2.3)

For c �∈ C∗ − {1, 2, . . .}, V̂�,λ|λ=c is isomorphic to V�,λ|λ=c because
[λ]q[λ−1]q · · · [λ−j+1]q is invertible for all j. On the other hand, for c ∈ {1, 2, . . . , },
vj = 0 if j > c and (2.3) shows that V�,λ|λ=c is nothing but the standard irreducible

U�(sl2)-module of dimension (c+ 1) whereas V̂�,λ|λ=c is infinite dimensional.

Let us define R : V̂�,λ ⊗ V̂�,λ → V̂�,λ ⊗ V̂�,λ by R = e−
1
4�λ

2

TR, where T :

V̂�,λ ⊗ V̂�,λ → V̂�,λ ⊗ V̂�,λ is the transposition map T (v⊗w) = w⊗ v, and R is the
universal R-matrix (2.1).

By putting z = qλ−1 = e�(λ−1), the action of R is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R(v̂i ⊗ v̂j) = z−

i+j
2 q−

i+j
2

i∑
n=0

F (i, j, n)
n−1∏
k=0

(z
1
2 q−

1+k+j
2 − z−

1
2 q

1+k+j
2 )v̂j+n ⊗ v̂i−n,

R(vi ⊗ vj) = z−
i+j
2 q−

i+j
2

i∑
n=0

F (i, j, n)

n−1∏
k=0

(z
1
2 q

1−i+k
2 − z−

1
2 q−

1−i+k
2 )vj+n ⊗ vi−n,

(2.4)

where we put F (i, j, n) = q(i−n)(j+n)q
n(n−1)

4

[
n+j
n

]
q
.

Let L = Z[q±1, z±1] = Z[e±�, e±�(λ−1)] ⊂ C[λ][[�]] and let VL and V̂L be the

sub-free L-module of V̂�,λ and V�,λ, spanned by {v̂0, . . .} and {v0, . . .}, respectively.
Since all the coefficients of the action of R (2.4) lie in L, V̂L and VL are equipped

with an LBn-module structure. We denote the corresponding braid group repre-
sentations by

ϕ̂L : Bn → GL(V̂L
⊗n), ϕL : Bn → GL(V ⊗n

L
).

These are decomposed as finite dimensional representations as follows. For m ≥
0, define V̂n,m ⊂ V̂L

⊗n
and Vn,m ⊂ V ⊗n

L
by

{
V̂n,m = ker (q

H
2 − q

nλ−2m
2 ) = span{v̂i1 ⊗ · · · ⊗ v̂in | i1 + · · ·+ in = m},

Vn,m = ker (q
H
2 − q

nλ−2m
2 ) = span{vi1 ⊗ · · · ⊗ vin | i1 + · · ·+ in = m}.

By (2.4), the Bn-action preserves both V̂n,m and Vn,m so we have linear represen-
tations

ϕ̂V
n,m : Bn → GL(V̂n,m) and ϕV

n,m : Bn → GL(Vn,m).
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We call the LBn-module V̂n,m the (generic) weight space of weight qnλ−2m.

By definition, as LBn-modules, V̂L

⊗n
and V ⊗n

L
split as

(2.5) V̂L

⊗n ∼=
∞⊕

m=0

V̂n,m, V ⊗n
L

∼=
∞⊕

m=0

Vn,m.

Finally, we define the space of (generic) null-vectors Ŵn,m by

Ŵn,m = Ker (E) ∩ V̂n,m.

Since the action of Bn commutes with the action of Uq(sl2), we have linear repre-
sentation

ϕ̂W
n,m : Bn → GL(Ŵn,m).

In [JK, Lemma 13], it is shown that for k = 1, . . . ,m, the map Fm−k : Ŵn,k →
V̂n,m is injective and that over the quotient field, V̂n,m splits as

(2.6) V̂n,m
∼=Q

m⊕
k=0

Fm−kŴn,k
∼=Q

m⊕
k=0

Ŵn,k,

hence combining with (2.5), we conclude that the LBn-module V̂L

⊗n
splits, over

the quotient field,

(2.7) V̂L

⊗n ∼=Q

∞⊕
m=0

m⊕
k=0

Ŵn,k.

2.2. Lawrence’s homological representations. Here we briefly review the defi-
nition of (geometric) Lawrence’s representation Ln,m. An explicit matrix of Ln,m(σi)
and some details will be given in the appendix.

For i = 1, 2, . . . , n, let pi = i ∈ C and let Dn = {z ∈ C | |z| ≤ n+1}−{p1, . . . , pn}
be the n-punctured disc. We identify the braid group Bn with the mapping class
group of Dn so that the standard generator σi corresponds to the right-handed half
Dehn twist that interchanges the ith and (i+ 1)st punctures.

For m > 0, let Cn,m be the unordered configuration space of m-points in Dn,

Cn,m = {(z1, . . . , zm) ∈ Dn | zi �= zj (i �= j)}/Sm.

Here Sm is the symmetric group acting as permutations of the indices. For i =

1, . . . , n, let di = (n + 1)e(
3
2+iε)π

√
−1 ∈ ∂Dn, where ε > 0 is a sufficiently small

number, and we take d = {d1, . . . , dm} as a base point of Cn,m.
The first homology group H1(Cn,m;Z) is isomorphic to Z⊕n ⊕ Z, where the

first n components correspond to the meridians of the hyperplanes {z1 = pi} (i =
1, . . . , n) and the last component corresponds to the meridian of the discriminant⋃

1≤i<j≤n{zi = zj}.
Let α : π1(Cn,m) → Z2 = 〈x, d〉 be the homomorphism obtained by composing

the Hurewicz homomorphism π1(Cn,m) → H1(Cn,m;Z) and the projection

H1(Cn,m;Z) = Z⊕n ⊕ Z = 〈x1, . . . , xn〉 ⊕ 〈d〉 → 〈x1 + · · ·+ xn〉 ⊕ 〈d〉 = 〈x〉 ⊕ 〈d〉.

Let π : C̃n,m → Cn,m be the covering corresponding to Ker α. We fix a lift

d̃ ∈ π−1(d) ⊂ C̃n,m and use d̃ as a base point of C̃n,m. By identifying x and d as

deck translations, Hm(C̃n,m;Z) is a free Z[x±1, d±1]-module of rank
(
m+n−2

m

)
.
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We will actually use H lf
m (C̃n,m;Z), the homology of locally finite chains, and

consider a free sub-Z[x±1, d±1]-module Hn,m ⊂ H lf
m (C̃n,m;Z) of rank

(
m+n−2

m

)
,

spanned by homology classes represented by certain geometric objects called mul-
tiforks. The subspace Hn,m is preserved by Bn actions, hence by using a natural
basis of Hn,m called standard multiforks, we get a linear representation

Ln,m : Bn → GL(Hn,m) = GL(
(
m+n−2

m

)
;Z[x±1, d±1]),

which we call (geometric) Lawrence’s representation.
In the case m = 1 the discriminant

⋃
1≤i<j≤n{zi = zj} is empty so the variable

d does not appear, and

Ln,1 : Bn → GL(n− 1;Z[x±1])

coincides with the reduced Burau representation. The representation Ln,2 is often
called the Lawrence-Krammer-Bigelow representation, which is extensively studied
in [Big1,Kra,Kra2] and known to be faithful.

Remark 2.1. In general, the braid group representations Hn,m, Hm(C̃n,m;Z) and

H lf
m (C̃n,m;Z) are not isomorphic to each other. However, all representations are

generically identical, namely, there is an open dense subset U ⊂ C2 such that if
we specialize x and d to complex parameters in U , then these three representations

are isomorphic [Koh]. In particular, Hn,m
∼=Q Hm(C̃n,m;Z) ∼=Q H lf

m (C̃n,m;Z).

The following result gives a topological background why the MMR conjecture is
true.

Proposition 2.2. At d=−1, Lawrence’s representation Ln,m is equal to Symm Ln,1,
the mth symmetric power of the reduced Burau representation Ln,1.

Proposition 2.2 seems to be known to experts although we do not know suit-
able references. This is directly seen by the formula of Ln,m(σi) in the appen-
dix. Roughly speaking, when we specialized d = −1, we ignored the discriminant⋃

1≤i<j≤n{zi = zj} and a natural inclusion Cn,m → Cm
n,1/Sm induces an isomor-

phism

Hm(C̃n,m;Z)|d=−1→Hm(C̃n,1

m
/Sm;Z)∼=H1(C̃n,1;Z)

⊗m/Sm=Symm H1(C̃n,1;Z)

of the braid group representations.
Here, we remark that a somewhat confusing minus sign of d comes from the con-

vention of the orientation of submanifolds representing an element of Hm(C̃n,m;Z),
as we will explain in the appendix.

2.3. Identification and specializations of quantum and homological rep-
resentations. Here we summarize relations of braid group representations intro-
duced in previous sections. First, generically a quantum representation is identified
with Lawrence’s representation. This was conjectured by Jackson and Kerler [JK]
and proved by Kohno [Koh].

Theorem 2.3 ([Koh], [I, Corollary 4.6]). As a braid group representation, there is
an isomorphism

Ŵn,m
∼= Hn,m|x=z−1q,d=−q.
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For α ∈ {2, 3, . . .}, let Vα be the α-dimensional irreducible Uq(sl2)-module and
let ϕα : Bn → GL(V ⊗n

α ) be the quantum representation. Let e : Bn → Z be the
exponent sum map given by e(σ±

i ) = ±1. The usual quantum representation ϕα is
recovered from a version of generic quantum representation as follows.

Proposition 2.4. Let β ∈ Bn and α ∈ {2, 3, . . .}. Then

e
1
4�(α−1)2e(β)ϕL(β)|λ=α−1 = ϕα(β).

Proof. As we have seen, as Uq(sl2)-module we have an isomorphism Vα
∼= VL|λ=α−1.

The formula follows from this observation and the definition R = e−
1
4�λ

2

TR. �

Next we observe when we specialize λ as an integer, a certain symmetry appears.

Lemma 2.5. For α ∈ {2, 3, . . .}, Vn,m|λ=α−1
∼= Vn,nα−n−m|λ=α−1.

Proof. Let us put

R(vi ⊗ vj) =

∞∑
n=0

anvj+n ⊗ vi−n, R(vλ−j ⊗ vλ−i) =

∞∑
n=0

bnvλ−i+n ⊗ vλ−j−n,

where an, bn ∈ L|z=qα−1
∼= Z[q±1]. We show an = bn for all i, j. This shows an

equivalence of R-operators hence proves the desired isomorphism.
Note that when the weight variable λ is specialized as a positive integer α − 1,

vk = 0 whenever k ≥ λ, so an = bn = 0 if n > min{i, λ− j}. Hence we consider the
case n ≤ min{i, λ− j}.

By (2.4), with putting z = qλ−1, we have

bn = q
λ
2 (2λ−i−j)q(λ−j−n)(λ−i+n)q

n(n−1)
4

[
n+ λ− i

n

]
q

n−1∏
k=0

(q
1
2 (j+k+1) − q−

1
2 (j+k+1))

= q−
λ
2 (i+j)q(i−n)(j+n)q

n(n−1)
4

[n+ λ− i]q!

[n]q![λ− i]q!

n−1∏
k=0

(q
1
2 (j+k+1) − q−

1
2 (j+k+1)).

Since

n−1∏
k=0

(q
1
2 (j+k+1) − q−

1
2 (j+k+1)) =

[j + 1]q · · · [j + n]q

(q
1
2 − q−

1
2 )n

=
[j + n]q!

[j]q!(q
1
2 − q−

1
2 )n

we conclude

bn = q−
λ
2 (i+j)q(i−n)(j+n)q

n(n−1)
4

[n+ λ− i]q!

[n]q![λ− i]q!
· [j + n]q!

[j]q!(q
1
2 − q−

1
2 )n

= q−
λ
2 (i+j)q(i−n)(j+n)q

n(n−1)
4

[j + n]q!

[n]q![j]q!
· [n+ λ− i]q!

[λ− i]q!(q
1
2 − q−

1
2 )n

= q−
λ
2 (i+j)q(i−n)(j+n)q

n(n−1)
4

[
n+ j

n

]
q

n−1∏
k=0

(q
1
2 (λ−i+k+1) − q−

1
2 (λ−i+k+1))

= an.

�
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3. A topological formula for the loop expansion of the colored

Jones polynomials

Now we are ready to prove our main result, a formula of the loop expansion of
the colored Jones polynomials based on homological representation.

Theorem 3.1. Let K be an oriented knot in S3 represented as a closure of an
n-braid β. Then the loop expansion of the colored Jones polynomial is given by

CJK(�, z)

=
z−

1
2 e(β)q

1
2 e(β)

z
1
2 − z−

1
2

∞∑
m=0

(z
n
2 q

1−n−2m
2 − z−

n
2 q

−1+n+2m
2 ) traceLn,m(β)|x=qz−1,d=−q.

Here we put q = e�.

Proof. The colored Jones polynomial JK,α(q) is defined by

JK,α(q) =
1

[α]q
q−

1
4 (α

2−1)e(β) trace(q
H
2 ϕα(β)).

By Proposition 2.4,

JK,α(q) =
1

[α]q
q−

1
4 (α

2−1)e(β)q
1
4 (α−1)2e(β) trace(q

H
2 ϕL(β)|λ=α−1).

The colored Jones function CJK(z, �) is obtained by taking the limit α → ∞
keeping z = e�α constant, namely treating �α as an independent variable:

CJK(�, z) =
q

1
2 − q−

1
2

z
1
2 − z−

1
2

z−
1
2 e(β)q

1
2 e(β) lim

α→∞
�α:constant

trace(q
H
2 ϕL(β)|λ=α−1).

We compute the limit as follows (see Figure 1 for a diagrammatic summary of
the computation).

Since Vn,i|λ=α−1 = 0 if i > nλ = n(α − 1), by (2.7), we have an LBn-module

isomorphism V ⊗n
L

∼=
⊕nλ

i=0 Vn,i. Moreover, q
H
2 acts on Vn,i as a scalar multiple by

q
nλ−2i

2 . So

trace(q
H
2 ϕL(β)|λ=α−1) =

nλ∑
i=0

q
nλ−2i

2 trace(ϕV
n,i(β)|λ=α−1).

By Lemma 2.5, we identify the braid group representation Vn,nλ−k as Vn,k for

k ≤ nλ
2 , and then regard each Vn,i as a sub-LBn-module of V̂n,i. Recall that

trace(ϕV
n,i(β)|λ=α−1) is equal to trace(ϕ̂V

n,i(β)|λ=α−1) when α is treated as an in-

dependent variable. By (2.6), over the quotient field, V̂n,i splits as
⊕i

m=0 Ŵn,m,
hence

trace(ϕ̂V
n,i(β)|λ=α−1) =

min{m,nλ−m}∑
m=0

trace(ϕ̂W
n,m(β)|λ=α−1).
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Figure 1. This diagram explains how to compute the desired
limit. In the diagram, all representations are understood as tak-
ing specialization λ = α − 1. The notation ⊂∗ means that we

regard Vn,nλ−i as a submodule of V̂n,i, by using the isomorphism
Vn,nλ−i

∼= Vn,i in Lemma 2.5.

This shows

α−1∑
i=0

q
nλ−2i

2 trace(ϕ̂V
n,i(β)|λ=α−1) =

α−1∑
i=0

q
nλ−2i

2

min{m,nλ−m}∑
m=0

trace(ϕ̂W
n,i(β)|λ=α−1)

=

nλ
2∑

m=0

nλ−m∑
i=m

q
nλ−2i

2 trace(ϕ̂W
n,m(β)|λ=α−1)

=

nλ
2∑

m=0

[nλ+ 1− 2m]q trace(ϕ̂W
n,m(β)|λ=α−1).

By Theorem 2.3, when we treat α as an independent variable, trace(ϕ̂W
n,i(β)) =

trace(Ln,m(β)|x=z−1q,d=−q) hence

lim
α→∞

�α:constant

trace(q
H
2 ◦ ϕL(β)|λ=α−1)

= lim
α→∞

�α:constant

min{m,nλ−m}∑
m=0

[nλ+ 1− 2m]q trace(Ln,m(β)|x=z−1q,d=−q)

=

∞∑
m=0

z
n
2 q

1
2 (1−n−2m) − z−

n
2 q−

1
2 (1−n−2m)

q
1
2 − q−

1
2

trace(Ln,m(β)|x=z−1q,d=−q).
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Therefore we conclude that CJK(�, z) is written as

z−
1
2 e(β)q

1
2 e(β)

z
1
2 − z−

1
2

∞∑
m=0

(z
n
2 q

1
2 (1−n−2m) − z−

n
2 q−

1
2 (1−n−2m)) trace(Ln,m(β)|x=z−1q,d=−q).

�

As we have mentioned, Theorem 3.1 provides an alternative, direct method to
compute the loop expansion of the colored Jones polynomial. Actual computation
may be quite hard and impractical, since one needs to compute Ln,m(β) for all m.
Here we give a sample calculation.

Example 3.2 ((2, p)-torus knot). Let us consider (2, p)-torus knot T (2, p) repre-
sented as a closure of 2-braid σp

1 . The trace of Lawrence’s representation is given

by traceL2,m(σp
1) = (−xp)m(−dp)(

m
2 ) so

(3.1) CJT (2,p)(z, �) =
z−

1
2pq

1
2p

z
1
2 − z−

1
2

∞∑
m=0

(zq
−1−2m

2 − z−1q
1+2m

2 )(−z−p)mq(
m+1

2 )p.

To compute the 1-loop part, let us put � = 0. Then

V
(0)
T (2,p)(z) =

z−
1
2 p

z
1
2 − z−

1
2

∞∑
m=0

(z − z−1)(−z−p)m = (z
1
2 + z−

1
2 )z−

p
2

∞∑
m=0

(−z−p)m

= (z
1
2 + z−

1
2 )z−

p
2

1

1 + z−p
=

z
1
2 + z−

1
2

z
1
2 p + z−

1
2p

which is equal to the inverse of the Alexander-Conway polynomial of T (2, p).
To compute the 2-loop part, we put q = e� and look at the coefficient of � in

(3.1). Then

V
(1)
T (2,p)(z) =

z−
1
2p

z
1
2 − z−

1
2

(
z

2

∞∑
m=0

[pm2 + (p− 2)m+ (p− 1)](−z−pm)

−z−1

2

∞∑
m=0

[pm2 + (p+ 2)m+ (p+ 1)](−z−pm)

)
.

In the ring of formal power series C[[z, z−1]],

∞∑
m=0

zm =
1

1− z
,

∞∑
m=0

mzm =
z

(1− z)2
,

∞∑
m=0

m2zm =
z + z2

(1− z)3
,

hence

V
(1)
T (2,p)(z) =

(p− 1)(zp+1 − z−p−1)− (p+ 1)(zp−1 − z−p+1)

2(z
1
2 − z−

1
2 )(z

1
2 p + z−

1
2p)3

.

For example,

V
(1)
T (2,3)(z) =

(z4 − z−4)− 2(z2 − z−2)

(z
1
2 − z−

1
2 )(z

3
2 + z−

3
2 )3

=
(z2 − 2z + 2− 2z−1 + z−2)

(z − 1 + z−1)3
.

This coincides with the computation of Overbay [Ov].

It is a direct consequence that the 1-loop part is the inverse of the Alexander-
Conway polynomial.
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Corollary 3.3 (Melvin-Morton-Rozansky conjecture).

V (0)(z) =
1

ΔK(z)
.

Proof. The 1-loop part V (0)(z) is obtained by putting � = 0 in the formula of
Theorem 3.1. Since d = −q = −e�, in a homological representation, putting � = 0
corresponds to putting d = −1. As we have pointed out in Proposition 2.2,

Ln,m(β)|d=−1 = Symm Ln,1(β).

Therefore, by Theorem 3.1, the 1-loop part V (0)(z) is written as

V (0)(z) = z−
1
2 e(β)

z
n
2 − z−

n
2

z
1
2 − z−

1
2

∞∑
i=0

traceLn,i(β)|x=z−1,d=−1

= z−
1
2 e(β)

z
n
2 − z−

n
2

z
1
2 − z−

1
2

∞∑
i=0

trace(Symi Ln,1)(β)|x=z−1 .

The MacMahon Master theorem says that
∞∑
i=0

trace(Symi Ln,1)(β) = det(I − Ln,1(β))
−1

hence

V (0)(z) = z−
1
2 e(β)

z
n
2 − z−

n
2

z
1
2 − z−

1
2

1

det(I − Ln,1(β)|x=z−1)
=

1

ΔK(z−1)
=

1

ΔK(z)
.

�

4. Entropy and colored Jones polynomials

In this section we give an application of topological interpretation of quantum
representations.

4.1. Entropy estimates from configuration space. For a homeomorphism of
a compact topological space or a metric space f : X → X, there is a fundamen-
tal numerical invariant h(f) ∈ R of topological dynamics called the (topological)
entropy.

Let Cm(X) and Cm(X) be the ordered and unordered configuration space of
m-points of X,

Cm(X) = {(x1 . . . , xm) ∈ Xm | xi �= xj}, Cm(X) = Cm(X)/Sm,

where Sm is the symmetric group that acts as permutations of the coordinates.
Then f induces the continuous maps Cm(f) : Cm(X) → Cm(X) and Cm(f) :
Cm(X) → Cm(X), respectively.

Note that Cm(X) ⊂ Xm is invariant under f×m : Xm → Xm so

h(Cm(f)) ≤ h(f×m) = mh(f).

The unordered configuration space Cm(X) is a finite cover of Cm(X) so h(Cm(f)) =
h(Cm(f)).

Now for A ∈ GL(n;C) let ρ(A) be its spectral radius of A, the maximum of the
absolute value of the eigenvalues of A. It is known that if Cm(f) is nice enough
(see [Fr] for sufficient conditions for inequality (4.1) to hold), then

(4.1) log ρ(Cm(f)∗ : H∗(Cm(f),Z) → H∗(Cm(f),Z)) ≤ h(Cm(f)).
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Hence by using configuration spaces we have an estimate of the entropy

(4.2) log ρ(Cm(f)∗) ≤ mh(f).

The above considerations fit for the braid groups. Let us regard the braid group
Bn as the mapping class group of n-punctured disc Dn. The entropy of braid
β ∈ Bn is defined by the infimum of entropy of homeomorphisms representing β,

h(β) = inf{h(f) |f : Dn → Dn, [f ] = β ∈ MCG(Dn) = Bn}.
By the Nielsen-Thurston classification [FLP,Th], there is a representative homeo-
morphism fβ that attains the infimum so h(β) = h(fβ). In particular, if β is pseudo-
Anosov, then a pseudo-Anosov representative attains the infimum. By abuse of no-
tation, we will use the same symbol β to mean its representative homeomorphism
fβ that attains the infimum of the entropy.

As Koberda shows in [Kob], the inequality (4.1) holds in the case X is a surface.
This implies that Lawrence’s representation gives an estimate of entropy.

Theorem 4.1. For an n-braid β,

sup
|x|=1,|d|=1

log ρ(Ln,m(β)) ≤ mh(β)

Proof. Let C̃ be a finite covering of the unordered configuration space Cn,m =

Cm(Dn). If the action of β on Cn,m lifts, then by (4.2), log ρ(β̃
˜C∗) ≤ mh(β) holds,

where β̃
˜C : C̃ → C̃ denotes the lift of a homeomorphism β.

For non-negative integers A,B, let C̃ = C̃A,B be a finite abelian covering of Cn,m

that corresponds to the kernel of αA,B : π1(Cn,m) → Z/AZ ⊕ Z/BZ, where αA,B

is given by the compositions

π1(Cn,m)
α �� Z⊕ Z ∼= 〈x〉 ⊕ 〈d〉 �� (〈x〉/xA)⊕ (〈d〉/dB) = Z/AZ⊕ Z/BZ.

The standard topological argument, using the eigenspace decompositions for the
deck translations (see [BB] for the case Z-covering, the case of the reduced Burau
representation Ln,1. The same argument applies to the case Z2-covering) shows
that for a = 1, . . . , A− 1 and b = 1, . . . , B − 1,

ρ(Ln,m(β)|
x=e

2πa
√

−1
A ,d=e

2πb
√

−1
B

) ≤ ρ(β̃
˜CA,B

).

The sets {(e 2πa
√

−1
A , e

2πb
√

−1
B ) ∈ | A, a,B, b ∈ Z} are dense in S1 × S1 = {(x, d) ∈

C2 | |x| = |d| = 1}, hence we get the desired inequality. �
Generically one can identify the quantum representation with Lawrence’s repre-

sentation, so quantum representations also provide estimates of entropy.

Theorem 4.2. Let β be an n-braid.

(1) sup|q|=1,|z|=1 log ρ(ϕ̂
W
n,m(β)) ≤ mh(β).

(2) sup|q|=1,|z|=1 log ρ(ϕ̂
V
n,m(β)) ≤ mh(β).

(3) sup|q|=1 log ρ(ϕα(β)) ≤ nα−n
2 h(β).

Proof. The assertions (1) and (2) follow from Theorem 4.1 and Theorem 2.3. To
see (3), recall that as an LBn|z=qα−1 = C[q±1]Bn-module, we have

V ⊗n
α

∼= VL|z=qα−1 ⊂
n(α−1)⊕
m=0

Vn,m|λ=α−1.
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Moreover, by Lemma 2.5 Vn,m|λ=α−1
∼= Vn,n(α−1)−m|λ=α−1. Therefore,

sup
|q|=1

ρ(ϕα(β)) ≤ max
1≤m≤n(α−1)

2

sup
|q|=1

(ϕV
n,m(β)|z=qα−1)

≤ max
1≤m≤n(α−1)

2

sup
|q|=1

ρ(ϕ̂V
n,m(β)|z=qα−1).

By (1), we conclude sup|q|=1 log ρ(ϕα(β)) ≤ n(α−1)
2 h(β). �

The estimates in Theorem 4.1 and Theorem 4.2 are not really practical since
the left-hand side is quite hard to compute. We do not know whether Theorem 4.1
and Theorem 4.2 give strictly better estimates than the previously known Burau
estimate, the case m = 1.

4.2. Quantum sl2 invariants and entropy. An estimate in Theorem 4.2 suggests
a relationship between quantum invariants and entropy of braids.

For α ∈ {2, 3 . . . , }, let Qsl2;Vα

K (q) = trace(q
H
2 ϕα(β)) = [α]qJα,K(q) be the quan-

tum (sl2, Vα)-invariant of the knot K, another common normalization of the colored
Jones polynomials used to define quantum invariants of 3-manifolds.

Theorem 4.3. Let K be a knot represented as the closure of an n-braid β, and
α ∈ {2, 3, . . .}. Then

sup
|q|=1

log |Qsl2;Vα

K (q)| ≤ n logα+ log ρ(ϕα(β)) ≤ n logα+
n(α− 1)

2
h(β).

Proof. By definition of the spectral radius,

|Qsl2;Vα

K (q)| = | trace(qH
2 ϕα(β))| ≤ αnρ(q

H
2 ϕα(β)) ≤ αnρ(q

H
2 )ρ(ϕα(β)).

Here the last inequality follows from the fact that q
H
2 and ϕα(β) commute. For

|q| = 1, ρ(q
H
2 ) = 1 hence by Theorem 4.2 (3), we conclude

sup
|q|=1

| trace(qH
2 ϕα(β))| ≤ sup

|q|=1

αnρ(ϕα(β)) ≤ αne
n(α−1)

2 h(β).

�
As we have mentioned, Theorem 4.3 justifies an intuitive statement

“a knot with complicated quantum sl2 invariants (colored Jones
polynomial) is a closure of a complicated (large entropy) braid”.

By an analogy of the famous volume conjecture [Ka,MuMu], it is interesting to

look at the asymptotic behavior of |Qsl2;Vα

K (q)|. By Theorem 4.3, we have

sup|q|=1 log |Q
sl2;Vα

K (q)|
α

≤ n
logα

α
+
sup|q|=1 log ρ(ϕα(β))

α
≤ n

logα

α
+
n(α− 1)

2α
h(β).

This shows

(4.3) lim sup
α→∞

sup|q|=1 log |Q
sl2;Vα

K (q)|
α

≤ lim sup
α→∞

sup|q|=1 log ρ(ϕα(β))

α
≤ n

2
h(β).

It is interesting to ask when the limit converges and when the inequalities (4.3)

yield the equalities, Is there a closed braid representative β̂ of K with (4.3) equali-
ties? The second inequality is related to the question when the quantum represen-
tation estimate of the entropy is (asymptotically) sharp.
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A. Appendix: Multiforks for Lawrence’s representation Ln,m

In this appendix, we present multiforks in Lawrence’s representation Ln,m and
explicit matrices of Ln,m(σi). For the basics of geometric treatments of Lawrence’s
representation, see [I, Section 2].

Let Y be the Y -shaped graph with four vertices c, r, v1, v2 and oriented edges as
shown in Figure 2(1). A fork F based on d ∈ ∂Dn is an embedded image of Y into
D2 = {z ∈ C | |z| � n+ 1} such that:

• All points of Y \ {r, v1, v2} are mapped to the interior of Dn.
• The vertex r is mapped to di.
• The other two external vertices v1 and v2 are mapped to the puncture
points.

The image of the edge [r, c] and the image of [v1, v2] = [v1, c] ∪ [c, v2] regarded
as a single oriented arc, are denoted by H(F ) and T (F ). We call H(F ) and T (F )
the handle and the tine of the fork F , respectively.

A multifork of dimension m is an ordered tuple of m forks F = (F1, . . . , Fm) such
that

• Fi is a fork based on di.
• T (Fi) ∩ T (Fj) ∩Dn = ∅ (i �= j).
• H(Fi) ∩H(Fj) = ∅ (i �= j).

Figure 2 (2) illustrates an example of a multifork of dimension 3. We represent
multiforks consisting of k parallel forks by drawing a single fork labeled by k, as
shown in Figure 2 (3).

Figure 2. Multiforks: to distinguish tines from handles, we often
denote the tines of forks by a bold gray line.

We regard the handle H(Fi) of the fork Fi as a path γi : [0, 1] → Dn. Then
the handles of F define a path H(F) = {γ1, . . . , γm} : [0, 1] → Cn,m. Take a lift of

H(F), H̃(F) : [0, 1] → C̃n,m so that H̃(F)(0) = d̃.

Let Σ(F)={{z1, . . . , zm}∈Cn,m | zi ∈ T (Fi)}, and let Σ̃(F) be them-dimensional

submanifold of C̃n,m which is the connected component of π−1(Σ(F)) containing

H̃(F)(1). The submanifold Σ̃(F) represents an element of H lf
m (C̃n,m;Z). By abuse

of notation, we use F to represent both a multifork and its representing homology

class [Σ̃(F)] ∈ H lf
m (C̃n,m;Z).

Here the orientation of Σ̃(F) is defined so that a canonical homeomorphism
T (F1) × · · · × T (Fm) → Σ(F) is orientation preserving. Thus, for a fork Fτ =
(Fτ(1), . . . , Fτ(m)) obtained by permuting its coordinate by a permutation τ ∈ Sm,

we have Fτ = sgn(τ )F ∈ H lf
m (C̃n,m;Z).
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For e = (e1, . . . , en−1) ∈ Zn−1
≥0 with e1 + · · · + en−1 = m, we assign a multifork

Fe = {F1, . . . , Fm} in Figure 3 and call Fe a standard multifork. The set of standard

multiforks spans a Z[x±1, d±1]-submodule Hn,m of H lf
m (C̃n,m;Z), which is free of

dimension
(
n+m−2

2

)
and is invariant under the Bn-action. This defines a (geometric)

Lawrence’s representation Ln,m : Bn → GL
((

n+m−2
2

)
;Z[x±1, d±1]

)
.

Figure 3. Standard multifork Fe for e = (e1, . . . , en−1)

Figure 4. Geometric rewriting formula for multiforks. Here

{a}q = qa−1
q−1 is a different version of a q-integer, and

{
a
b

}
q

=
{a}q !

{a−b}q !{b}q !
is the version of a q-binomial coefficient.

From the definition of the submanifold Σ̃(F) and by using noodle-fork pairing

(the homology intersection Hm(C̃n,m, ∂C̃n,m;Z)×H lf
m (C̃n,m;Z) → Z[x±1, d±1]; see

[Big1, I]) computation, we graphically express relations among homology classes
represented by multiforks as in Figure 4. This allows us to express a given multifork
as a sum of standard multiforks (see [Kra,Big2] for the case m = 2). In particular,
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these formulae lead to a formula of an explicit matrix representative of Ln,m(σi):

Ln,m(σ1)(Fe1,...,en−1
)

=

e2∑
l=0

(−1)e1(−d)(
e1
2 )xe1

{
e2
l

}
−d

Fe1+e2−l,l,...

Ln,m(σi)(Fe1,...,en−1
) (i = 2, . . . , n− 2)

=

ei−1∑
k=0

ei+1∑
l=0

(−1)ei(−d)(
ei+k

2 )xei+k

{
ei−1

k

}
−d

{
ei+1

l

}
−d

F...,ei−1−k,ei+k+ei+1−l,l,...

Ln,m(σn−1)(Fe1,...,en−1
)

=

en−2∑
k=0

(−1)en−1(−d)(
en−1+k

2 )xen−1+k

{
en−2

k

}
−d

F...,en−2−k,en−1+k.

Then Proposition 2.2 follows from the formula. However, a multifork expression
gives a direct way to see Proposition 2.2. Note that by orientation convention of

Σ̃(F), when d = −1 the homology class represented by a multifork F = (F1, . . . , Fm)
is independent of a choice of indices of forks. Namely, a fork Fτ = (Fτ(1), . . . , Fτ(m))
obtained by permuting its coordinate by a permutation τ ∈ Sm is equal to the
original fork F. Therefore, the correspondence between multifork F = (F1, . . . , Fm)
that represents an element of Hn,m and a family of m forks {F1, . . . , Fk} that
represents an element of Symm Hn,1 gives rise to the desired isomorphism Hn,m →
Symm Hn,1.
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