Integration of $2$-term representations up to homotopy via $2$-functors
HTML articles powered by AMS MathViewer
- by Olivier Brahic and Cristian Ortiz PDF
- Trans. Amer. Math. Soc. 372 (2019), 503-543 Request permission
Abstract:
Given a representation up to homotopy of a Lie algebroid on a $2$-term complex of vector bundles, we define the corresponding holonomy as a strict $2$-functor from a Weinstein path $2$-groupoid to the gauge $2$-groupoid of the underlying $2$-term complex. We construct a corresponding transformation $2$-groupoid, and we prove that the $1$-truncation of this $2$-groupoid is isomorphic to the Weinstein groupoid of the $\mathcal {VB}$-algebroid associated with a representation up to homotopy.References
- Camilo Arias Abad and Marius Crainic, Representations up to homotopy of Lie algebroids, J. Reine Angew. Math. 663 (2012), 91–126. MR 2889707, DOI 10.1515/CRELLE.2011.095
- Camilo Arias Abad and Marius Crainic, Representations up to homotopy and Bott’s spectral sequence for Lie groupoids, Adv. Math. 248 (2013), 416–452. MR 3107517, DOI 10.1016/j.aim.2012.12.022
- Camilo Arias Abad and Florian Schätz, Deformations of Lie brackets and representations up to homotopy, Indag. Math. (N.S.) 22 (2011), no. 1-2, 27–54. MR 2853613, DOI 10.1016/j.indag.2011.07.003
- Camilo Arias Abad and Florian Schätz, The $\mathsf {A}_\infty$ de Rham theorem and integration of representations up to homotopy, Int. Math. Res. Not. IMRN 16 (2013), 3790–3855. MR 3090711, DOI 10.1093/imrn/rns166
- Camilo Arias Abad and Florian Schätz, Higher holonomies: comparing two constructions, Differential Geom. Appl. 40 (2015), 14–42. MR 3333093, DOI 10.1016/j.difgeo.2015.02.003
- John C. Baez and Alissa S. Crans, Higher-dimensional algebra. VI. Lie 2-algebras, Theory Appl. Categ. 12 (2004), 492–538. MR 2068522
- Marcel Berger, A panoramic view of Riemannian geometry, Springer-Verlag, Berlin, 2003. MR 2002701, DOI 10.1007/978-3-642-18245-7
- Olivier Brahic, Extensions of Lie brackets, J. Geom. Phys. 60 (2010), no. 2, 352–374. MR 2587399, DOI 10.1016/j.geomphys.2009.10.006
- Olivier Brahic and Chenchang Zhu, Lie algebroid fibrations, Adv. Math. 226 (2011), no. 4, 3105–3135. MR 2764883, DOI 10.1016/j.aim.2010.10.006
- O. Brahic, A. Cabrera, and C. Ortiz, Obstructions to the integrability of $\mathcal {VB}$-algebroids, arXiv:1403.1990 (2014).
- Henrique Bursztyn, Alejandro Cabrera, and Matias del Hoyo, Vector bundles over Lie groupoids and algebroids, Adv. Math. 290 (2016), 163–207. MR 3451921, DOI 10.1016/j.aim.2015.11.044
- A. Coste, P. Dazord, and A. Weinstein, Groupoïdes symplectiques, Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Publ. Dép. Math. Nouvelle Sér. A, vol. 87, Univ. Claude-Bernard, Lyon, 1987, pp. i–ii, 1–62 (French). MR 996653
- Marius Crainic, Prequantization and Lie brackets, J. Symplectic Geom. 2 (2004), no. 4, 579–602. MR 2197220
- Marius Crainic and Rui Loja Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), no. 2, 575–620. MR 1973056, DOI 10.4007/annals.2003.157.575
- Marius Crainic and Chenchang Zhu, Integrability of Jacobi and Poisson structures, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 4, 1181–1216 (English, with English and French summaries). MR 2339329
- T. Drummond, M. Jotz Lean, and C. Ortiz, ${\mathcal {VB}}$-algebroid morphisms and representations up to homotopy, Differential Geom. Appl. 40 (2015), 332–357. MR 3333112, DOI 10.1016/j.difgeo.2015.03.005
- Alfonso Gracia-Saz and Rajan Amit Mehta, Lie algebroid structures on double vector bundles and representation theory of Lie algebroids, Adv. Math. 223 (2010), no. 4, 1236–1275. MR 2581370, DOI 10.1016/j.aim.2009.09.010
- Alfonso Gracia-Saz and Rajan Amit Mehta, $\mathcal {VB}$-groupoids and representation theory of Lie groupoids, J. Symplectic Geom. 15 (2017), no. 3, 741–783. MR 3696590, DOI 10.4310/JSG.2017.v15.n3.a5
- K. A. Hardie, K. H. Kamps, and R. W. Kieboom, A homotopy 2-groupoid of a Hausdorff space, Appl. Categ. Structures 8 (2000), no. 1-2, 209–234. Papers in honour of Bernhard Banaschewski (Cape Town, 1996). MR 1785844, DOI 10.1023/A:1008758412196
- Katarzyna Konieczna and PawełUrbański, Double vector bundles and duality, Arch. Math. (Brno) 35 (1999), no. 1, 59–95. MR 1684522
- Kirill C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, vol. 213, Cambridge University Press, Cambridge, 2005. MR 2157566, DOI 10.1017/CBO9781107325883
- J. F. Martins and R. F. Picken, On two-dimensional holonomy, Trans. Amer. Math. Soc. 362 (2010), 5657–5695.
- Albert Nijenhuis, On the holonomy groups of linear connections. IA, IB. General properties of affine connections, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15 (1953), 233–240, 241–249. MR 0063737
- Jean Pradines, Représentation des jets non holonomes par des morphismes vectoriels doubles soudés, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1523–1526 (French). MR 388432
- Yunhe Sheng and Chenchang Zhu, Semidirect products of representations up to homotopy, Pacific J. Math. 249 (2011), no. 1, 211–236. MR 2764948, DOI 10.2140/pjm.2011.249.211
- Yunhe Sheng and Chenchang Zhu, Integration of semidirect product Lie 2-algebras, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 5, 1250043, 31. MR 2948862, DOI 10.1142/S0219887812500430
- Yunhe Sheng and Chenchang Zhu, Integration of Lie 2-algebras and their morphisms, Lett. Math. Phys. 102 (2012), no. 2, 223–244. MR 2984165, DOI 10.1007/s11005-012-0578-1
- Urs Schreiber and Konrad Waldorf, Smooth functors vs. differential forms, Homology Homotopy Appl. 13 (2011), no. 1, 143–203. MR 2803871, DOI 10.4310/HHA.2011.v13.n1.a7
- Urs Schreiber and Konrad Waldorf, Local theory for 2-functors on path 2-groupoids, J. Homotopy Relat. Struct. 12 (2017), no. 3, 617–658. MR 3691299, DOI 10.1007/s40062-016-0140-4
Additional Information
- Olivier Brahic
- Affiliation: Departamento de Matemática, Universidade Federal do Paraná, Setor de Ciências Exatas, Centro Politêcnico, 81531-990 Curitiba, Brasil
- MR Author ID: 743169
- Email: olivier@ufpr.br
- Cristian Ortiz
- Affiliation: Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090 São Paulo, Brasil
- MR Author ID: 858088
- Email: cortiz@ime.usp.br
- Received by editor(s): March 16, 2017
- Received by editor(s) in revised form: March 20, 2018
- Published electronically: March 19, 2019
- Additional Notes: The first author was supported in part by CNPq grant 401253/2012-0.
The second author was supported by CAPES-COFECUB (grant 763/13) and CNPq (grant 4827967/2013-8). - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 503-543
- MSC (2010): Primary 58H05, 22A22; Secondary 53D17
- DOI: https://doi.org/10.1090/tran/7586
- MathSciNet review: 3968778