Expected volumes of Gaussian polytopes, external angles, and multiple order statistics
HTML articles powered by AMS MathViewer
- by Zakhar Kabluchko and Dmitry Zaporozhets PDF
- Trans. Amer. Math. Soc. 372 (2019), 1709-1733 Request permission
Abstract:
Let $X_1$, …, $X_n$ be a standard normal sample in $\mathbb {R}^d$. We compute exactly the expected volume of the Gaussian polytope $\operatorname {conv} [X_1,\ldots ,X_n]$, the symmetric Gaussian polytope $\operatorname {conv} [\pm X_1,\ldots ,\pm X_n]$, and the Gaussian zonotope $[0,X_1]+\cdots +[0,X_n]$ by exploiting their connection to the regular simplex, the regular cross-polytope, and the cube with the aid of Tsirelson’s formula. The expected volumes of these random polytopes are given by essentially the same expressions as the intrinsic volumes and external angles of the regular polytopes. For all of these quantities, we obtain asymptotic formulae which are more precise than the results which were known before. More generally, we determine the expected volumes of some heteroscedastic random polytopes including $\operatorname {conv}[l_1X_1,\ldots ,l_nX_n]$ and $\operatorname {conv} [\pm l_1 X_1,\ldots , \pm l_n X_n]$, where $l_1$, …, $l_n\geq 0$ are parameters, and the intrinsic volumes of the corresponding deterministic polytopes. Finally, we relate the $k$th intrinsic volume of the regular simplex $\Delta ^{n-1}$ to the expected maximum of independent standard Gaussian random variables $\xi _1$, …, $\xi _n$ given that the maximum has multiplicity $k$. Namely, we show that \[ V_k(\Delta ^{n-1}) = \frac {(2\pi )^{\frac k2}} {k!} \cdot \lim _{\varepsilon \downarrow 0} \varepsilon ^{1-k} \mathbb {E} [\max \{\xi _1,\ldots ,\xi _n\} \mathbb {1}_{\{\xi _{(n)} - \xi _{(n-k+1)}\leq \varepsilon \}}],\] where $\xi _{(1)} \leq \cdots \leq \xi _{(n)}$ denote the order statistics. A similar result holds for the cross-polytope if we replace $\xi _1$, …, $\xi _n$ with their absolute values.References
- F. Affentranger, The expected volume of a random polytope in a ball, J. Microsc. 151 (1988), no. 3, 277–287.
- F. Affentranger, The convex hull of random points with spherically symmetric distributions, Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), no. 3, 359–383 (1993). MR 1231058
- Fernando Affentranger and Rolf Schneider, Random projections of regular simplices, Discrete Comput. Geom. 7 (1992), no. 3, 219–226. MR 1149653, DOI 10.1007/BF02187839
- Imre Bárány and Van Vu, Central limit theorems for Gaussian polytopes, Ann. Probab. 35 (2007), no. 4, 1593–1621. MR 2330981, DOI 10.1214/009117906000000791
- Yuliy M. Baryshnikov and Richard A. Vitale, Regular simplices and Gaussian samples, Discrete Comput. Geom. 11 (1994), no. 2, 141–147. MR 1254086, DOI 10.1007/BF02574000
- Ulrich Betke and Martin Henk, Intrinsic volumes and lattice points of crosspolytopes, Monatsh. Math. 115 (1993), no. 1-2, 27–33. MR 1223242, DOI 10.1007/BF01311208
- Johannes Böhm and Eike Hertel, Polyedergeometrie in $n$-dimensionalen Räumen konstanter Krümmung, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften (LMW). Mathematische Reihe [Textbooks and Monographs in the Exact Sciences. Mathematical Series], vol. 70, Birkhäuser Verlag, Basel-Boston, Mass., 1981 (German). MR 626823
- F. Thomas Bruss and Rudolf Grübel, On the multiplicity of the maximum in a discrete random sample, Ann. Appl. Probab. 13 (2003), no. 4, 1252–1263. MR 2023876, DOI 10.1214/aoap/1069786498
- Pierre Calka and J. E. Yukich, Variance asymptotics and scaling limits for Gaussian polytopes, Probab. Theory Related Fields 163 (2015), no. 1-2, 259–301. MR 3405618, DOI 10.1007/s00440-014-0592-6
- Simone Chevet, Processus Gaussiens et volumes mixtes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 1, 47–65 (French). MR 426120, DOI 10.1007/BF00533208
- Youri Davydov, On convex hull of Gaussian samples, Lith. Math. J. 51 (2011), no. 2, 171–179. MR 2805736, DOI 10.1007/s10986-011-9117-5
- Allan L. Edmonds, Mowaffaq Hajja, and Horst Martini, Orthocentric simplices and their centers, Results Math. 47 (2005), no. 3-4, 266–295. MR 2153497, DOI 10.1007/BF03323029
- Bradley Efron, The convex hull of a random set of points, Biometrika 52 (1965), 331–343. MR 207004, DOI 10.1093/biomet/52.3-4.331
- S. R. Finch, Mean width of a regular cross-polytope, http://arxiv.org/abs/1112.0499 (2011).
- S. R. Finch, Mean width of a regular simplex, http://arxiv.org/abs/1111.4976 (2011).
- Janos Galambos, The asymptotic theory of extreme order statistics, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1978. MR 489334
- Jean Geffroy, Localisation asymptotique du polyèdre d’appui d’un échantillon Laplacien à $k$ dimensions, Publ. Inst. Statist. Univ. Paris 10 (1961), 213–228 (French). MR 141148
- H. Hadwiger, Gitterpunktanzahl im Simplex und Wills’sche Vermutung, Math. Ann. 239 (1979), no. 3, 271–288 (German). MR 522784, DOI 10.1007/BF01351491
- Martin Henk and María A. Hernández Cifre, Intrinsic volumes and successive radii, J. Math. Anal. Appl. 343 (2008), no. 2, 733–742. MR 2401529, DOI 10.1016/j.jmaa.2008.01.091
- Martin Henk and María A. Hernández Cifre, Notes on the roots of Steiner polynomials, Rev. Mat. Iberoam. 24 (2008), no. 2, 631–644. MR 2459207, DOI 10.4171/RMI/550
- Daniel Hug, Götz Olaf Munsonius, and Matthias Reitzner, Asymptotic mean values of Gaussian polytopes, Beiträge Algebra Geom. 45 (2004), no. 2, 531–548. MR 2093024
- Daniel Hug and Matthias Reitzner, Gaussian polytopes: variances and limit theorems, Adv. in Appl. Probab. 37 (2005), no. 2, 297–320. MR 2144555, DOI 10.1239/aap/1118858627
- Z. Kabluchko, A. E. Litvak, and D. Zaporozhets, Mean width of regular polytopes and expected maxima of correlated Gaussian variables, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 442 (2015), no. Veroyatnost′i Statistika. 23, 75–96; English transl., J. Math. Sci. (N.Y.) 225 (2017), no. 5, 770–787. MR 3506845, DOI 10.1007/s10958-017-3492-3
- Zakhar Kabluchko and Dmitry Zaporozhets, Intrinsic volumes of Sobolev balls with applications to Brownian convex hulls, Trans. Amer. Math. Soc. 368 (2016), no. 12, 8873–8899. MR 3551592, DOI 10.1090/tran/6628
- Z. Kabluchko and D. Zaporozhets, Absorption probabilities for Gaussian polytopes, and regular spherical simplices, https://arxiv.org/abs/1704.04968 (2017).
- J. F. C. Kingman, Random secants of a convex body, J. Appl. Probability 6 (1969), 660–672. MR 254891, DOI 10.1017/s0021900200026693
- M. R. Leadbetter, Georg Lindgren, and Holger Rootzén, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer-Verlag, New York-Berlin, 1983. MR 691492
- Satya N. Majumdar, Alain Comtet, and Julien Randon-Furling, Random convex hulls and extreme value statistics, J. Stat. Phys. 138 (2010), no. 6, 955–1009. MR 2601420, DOI 10.1007/s10955-009-9905-z
- R. E. Miles, Isotropic random simplices, Advances in Appl. Probability 3 (1971), 353–382. MR 309164, DOI 10.2307/1426176
- Valery B. Nevzorov, Records: mathematical theory, Translations of Mathematical Monographs, vol. 194, American Mathematical Society, Providence, RI, 2001. Translated from the Russian manuscript by D. M. Chibisov. MR 1791071, DOI 10.1090/mmono/194
- James Pickands III, Moment convergence of sample extremes, Ann. Math. Statist. 39 (1968), 881–889. MR 224231, DOI 10.1214/aoms/1177698320
- H. Raynaud, Sur l’enveloppe convexe des nuages de points aléatoires dans $R^{n}$. I, J. Appl. Probability 7 (1970), 35–48 (French). MR 258089, DOI 10.2307/3212146
- A. Rényi and R. Sulanke, Über die konvexe Hülle von $n$ zufällig gewählten Punkten, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1963), 75–84 (1963) (German). MR 156262, DOI 10.1007/BF00535300
- H. Ruben, On the moments of order statistics in samples from normal populations, Biometrika 41 (1954), 200–227. MR 63620, DOI 10.1093/biomet/41.1-2.200
- Harold Ruben, On the geometrical moments of skew-regular simplices in hyperspherical space, with some applications in geometry and mathematical statistics, Acta Math. 103 (1960), 1–23. MR 121713, DOI 10.1007/BF02546523
- R. Schneider and W. Weil, Stochastic and integral geometry, Probability and its Applications, Springer-Verlag, Berlin, 2008.
- V. N. Sudakov, Geometric problems of the theory of infinite-dimensional probability distributions, Trudy Mat. Inst. Steklov. 141 (1976), 191 (Russian). MR 0431359
- B. S. Tsirelson, A geometric approach to maximum likelihood estimation for an infinite-dimensional Gaussian location. II, Teor. Veroyatnost. i Primenen. 30 (1985), no. 4, 772–779 (Russian). MR 816291
- A. M. Vershik and P. V. Sporyshev, An asymptotic estimate for the average number of steps in the parametric simplex method, Zh. Vychisl. Mat. i Mat. Fiz. 26 (1986), no. 6, 813–826, 958 (Russian). MR 850459
- Richard A. Vitale, Intrinsic volumes and Gaussian processes, Adv. in Appl. Probab. 33 (2001), no. 2, 354–364. MR 1842297, DOI 10.1239/aap/999188318
- R. A. Vitale, On the Gaussian representation of intrinsic volumes, Statist. Probab. Lett. 78 (2008), no. 10, 1246–1249. MR 2441470, DOI 10.1016/j.spl.2007.11.022
- Richard A. Vitale, Convex bodies and Gaussian processes, Image Anal. Stereol. 29 (2010), no. 1, 13–18. MR 2605803, DOI 10.5566/ias.v29.p13-18
Additional Information
- Zakhar Kabluchko
- Affiliation: Institut für Mathematische Stochastik, Westfälische Wilhelms-Universität Münster, Orléans–Ring 10, 48149 Münster, Germany
- MR Author ID: 696619
- ORCID: 0000-0001-8483-3373
- Email: zakhar.kabluchko@uni-muenster.de
- Dmitry Zaporozhets
- Affiliation: St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, 191011 St. Petersburg, Russia
- MR Author ID: 744268
- Email: zap1979@gmail.com
- Received by editor(s): August 14, 2017
- Received by editor(s) in revised form: May 15, 2018
- Published electronically: November 27, 2018
- © Copyright 2018 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 1709-1733
- MSC (2010): Primary 60D05; Secondary 52A22, 60G15, 52A23, 60G70, 51M20
- DOI: https://doi.org/10.1090/tran/7708
- MathSciNet review: 3976574