Combinatorial characterization of the weight monoids of smooth affine spherical varieties
Authors:
Guido Pezzini and Bart Van Steirteghem
Journal:
Trans. Amer. Math. Soc. 372 (2019), 2875-2919
MSC (2010):
Primary 14M27, 20G05
DOI:
https://doi.org/10.1090/tran/7785
Published electronically:
February 25, 2019
MathSciNet review:
3988597
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a connected reductive group, and let
be a smooth affine spherical
-variety, both defined over the complex numbers. A well-known theorem of I. Losev's says that
is uniquely determined by its weight monoid, which is the set of irreducible representations of
that occur in the coordinate ring of
. In this paper, we use the combinatorial theory of spherical varieties and a smoothness criterion of R. Camus to characterize the weight monoids of smooth affine spherical varieties.
- [AB05] Valery Alexeev and Michel Brion, Moduli of affine schemes with reductive group action, J. Algebraic Geom. 14 (2005), no. 1, 83–117. MR 2092127, https://doi.org/10.1090/S1056-3911-04-00377-7
- [ACF18a] Roman Avdeev and Stéphanie Cupit-Foutou, New and old results on spherical varieties via moduli theory, Adv. Math. 328 (2018), 1299–1352. MR 3771154, https://doi.org/10.1016/j.aim.2018.01.027
- [ACF18b] Roman Avdeev and Stéphanie Cupit-Foutou, On the irreducible components of moduli schemes for affine spherical varieties, Transform. Groups 23 (2018), no. 2, 299–327. MR 3805208, https://doi.org/10.1007/s00031-017-9443-8
- [Ahi83] Dmitry Ahiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), no. 1, 49–78. MR 739893, https://doi.org/10.1007/BF02329739
- [AHV98] Jeffrey Adams, Jing-Song Huang, and David A. Vogan Jr., Functions on the model orbit in 𝐸₈, Represent. Theory 2 (1998), 224–263. MR 1628031, https://doi.org/10.1090/S1088-4165-98-00048-X
- [AMM98] Anton Alekseev, Anton Malkin, and Eckhard Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998), no. 3, 445–495. MR 1638045
- [BGG81] I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Models of representations of Lie groups, Trudy Sem. Petrovsk. Vyp. 2 (1976), 3–21 (Russian). MR 0453927
- [BL11] P. Bravi and D. Luna, An introduction to wonderful varieties with many examples of type 𝐹₄, J. Algebra 329 (2011), 4–51. MR 2769314, https://doi.org/10.1016/j.jalgebra.2010.01.025
- [BM13] Victor Batyrev and Anne Moreau, The arc space of horospherical varieties and motivic integration, Compos. Math. 149 (2013), no. 8, 1327–1352. MR 3103067, https://doi.org/10.1112/S0010437X13007124
- [Bou68] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- [BP16] P. Bravi and G. Pezzini, Primitive wonderful varieties, Math. Z. 282 (2016), no. 3-4, 1067–1096. MR 3473657, https://doi.org/10.1007/s00209-015-1578-5
- [BR96] Chal Benson and Gail Ratcliff, A classification of multiplicity free actions, J. Algebra 181 (1996), no. 1, 152–186. MR 1382030, https://doi.org/10.1006/jabr.1996.0113
- [Bri85] M. Brion, Représentations exceptionnelles des groupes semi-simples, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 345–387 (French). MR 816368
- [Bri89] Michel Brion, On spherical varieties of rank one (after D. Ahiezer, A. Huckleberry, D. Snow), Group actions and invariant theory (Montreal, PQ, 1988) CMS Conf. Proc., vol. 10, Amer. Math. Soc., Providence, RI, 1989, pp. 31–41. MR 1021273
- [Bri90] Michel Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), no. 1, 115–143 (French). MR 1068418, https://doi.org/10.1016/0021-8693(90)90214-9
- [Bri91] Michel Brion, Sur la géométrie des variétés sphériques, Comment. Math. Helv. 66 (1991), no. 2, 237–262 (French). MR 1107840, https://doi.org/10.1007/BF02566646
- [Bri13] Michel Brion, Invariant Hilbert schemes, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 64–117. MR 3184162
- [BVS16] Paolo Bravi and Bart Van Steirteghem, The moduli scheme of affine spherical varieties with a free weight monoid, Int. Math. Res. Not. IMRN 15 (2016), 4544–4587. MR 3564620, https://doi.org/10.1093/imrn/rnv281
- [Cam01] Romain Camus, Variétés sphériques affines lisses, 2001. Thesis (Ph.D.)-Institut Fourier.
- [CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
- [Cup14] S. Cupit-Foutou, Wonderful varieties: A geometrical realization, arXiv:0907.2852v4 [math.AG] (2014).
- [Gag15] Giuliano Gagliardi, A combinatorial smoothness criterion for spherical varieties, Manuscripta Math. 146 (2015), no. 3-4, 445–461. MR 3312454, https://doi.org/10.1007/s00229-014-0713-7
- [Gan11] J. Gandini, Spherical orbit closures in simple projective spaces and their normalizations, Transform. Groups 16 (2011), no. 1, 109–136. MR 2785497, https://doi.org/10.1007/s00031-011-9120-2
- [GH16] Giuliano Gagliardi and Johannes Hofscheier, The generalized Mukai conjecture for symmetric varieties, Trans. Amer. Math. Soc. 369 (2017), no. 4, 2615–2649. MR 3592522, https://doi.org/10.1090/S0002-9947-2016-06738-0
- [GS84] Victor Guillemin and Shlomo Sternberg, Multiplicity-free spaces, J. Differential Geom. 19 (1984), no. 1, 31–56. MR 739781
- [GZ84] I. M. Gel′fand and A. V. Zelevinskiĭ, Models of representations of classical groups and their hidden symmetries, Funktsional. Anal. i Prilozhen. 18 (1984), no. 3, 14–31 (Russian). MR 757246
- [GZ85] I. M. Gel′fand and A. V. Zelevinsky, Representation models for classical groups and their higher symmetries, Astérisque Numéro Hors Série (1985), 117–128. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837197
- [Kac80] V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190–213. MR 575790, https://doi.org/10.1016/0021-8693(80)90141-6
- [Kim16] Won Geun Kim, On the free and G-saturated weight monoids of smooth affine spherical varieties for G = SL(n), ProQuest LLC, Ann Arbor, MI, 2016. Thesis (Ph.D.)–City University of New York. MR 3597754
- [Kno91] Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) Manoj Prakashan, Madras, 1991, pp. 225–249. MR 1131314
- [Kno94] Friedrich Knop, The asymptotic behavior of invariant collective motion, Invent. Math. 116 (1994), no. 1-3, 309–328. MR 1253195, https://doi.org/10.1007/BF01231563
- [Kno96] Friedrich Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174. MR 1311823, https://doi.org/10.1090/S0894-0347-96-00179-8
- [Kno98] Friedrich Knop, Some remarks on multiplicity free spaces, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 301–317. MR 1653036
- [Kno11] Friedrich Knop, Automorphisms of multiplicity free Hamiltonian manifolds, J. Amer. Math. Soc. 24 (2011), no. 2, 567–601. MR 2748401, https://doi.org/10.1090/S0894-0347-2010-00686-8
- [Kno16] Friedrich Knop, Multiplicity free quasi-Hamiltonian manifolds, arXiv:1612.03843v2 [math.SG] (2016).
- [KVS06] Friedrich Knop and Bart Van Steirteghem, Classification of smooth affine spherical varieties, Transform. Groups 11 (2006), no. 3, 495–516. MR 2264463, https://doi.org/10.1007/s00031-005-1116-3
- [Lea98] Andrew S. Leahy, A classification of multiplicity free representations, J. Lie Theory 8 (1998), no. 2, 367–391. MR 1650378
- [Los09a] Ivan V. Losev, Proof of the Knop conjecture, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 3, 1105–1134 (English, with English and French summaries). MR 2543664
- [Los09b] Ivan V. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), no. 2, 315–343. MR 2495078, https://doi.org/10.1215/00127094-2009-013
- [Lun01] D. Luna, Variétés sphériques de type 𝐴, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161–226 (French). MR 1896179, https://doi.org/10.1007/s10240-001-8194-0
- [Lun07] D. Luna, La variété magnifique modèle, J. Algebra 313 (2007), no. 1, 292–319 (French, with English and French summaries). MR 2326148, https://doi.org/10.1016/j.jalgebra.2006.10.042
- [Pez15] Guido Pezzini, On reductive automorphism groups of regular embeddings, Transform. Groups 20 (2015), no. 1, 247–289. MR 3317802, https://doi.org/10.1007/s00031-015-9304-2
- [PPVS18] Kay Paulus, Guido Pezzini, and Bart Van Steirteghem, On some families of smooth affine spherical varieties of full rank, Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 3, 563–596. MR 3763978, https://doi.org/10.1007/s10114-018-7244-1
- [Sum74] Hideyasu Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28. MR 337963, https://doi.org/10.1215/kjm/1250523277
- [Tim11] Dmitry A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, vol. 138, Springer, Heidelberg, 2011. Invariant Theory and Algebraic Transformation Groups, 8. MR 2797018
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14M27, 20G05
Retrieve articles in all journals with MSC (2010): 14M27, 20G05
Additional Information
Guido Pezzini
Affiliation:
Dipartimento di Matematica “Guido Castelnuovo”, “Sapienza” Università di Roma, Rome, Italy
Email:
pezzini@mat.uniroma1.it
Bart Van Steirteghem
Affiliation:
Department Mathematik, Emmy–Noether–Zentrum, FAU Erlangen-Nürnberg, Erlangen, Germany; and Department of Mathematics, Medgar Evers College—City University of New York, Brooklyn, New York
Email:
bartvs@mec.cuny.edu
DOI:
https://doi.org/10.1090/tran/7785
Received by editor(s):
April 4, 2017
Received by editor(s) in revised form:
August 7, 2018, and October 28, 2018
Published electronically:
February 25, 2019
Additional Notes:
The first author was partially supported by the DFG Schwerpunktprogramm 1388—Darstellungstheorie.
The second author received support from the City University of New York PSC-CUNY Research Award Program, and from the National Science Foundation through grant DMS 1407394. He also thanks Medgar Evers College for his 2016-17 Fellowship Award.
Article copyright:
© Copyright 2019
American Mathematical Society