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osp(1, 2) AND GENERALIZED BANNAI–ITO ALGEBRAS

VINCENT X. GENEST, LUC LAPOINTE, AND LUC VINET

Abstract. Generalizations of the (rank-1) Bannai–Ito algebra are obtained
from a refinement of the grade involution of the Lie superalgebra osp(1, 2). A
hyperoctahedral extension is derived by using a realization of osp(1, 2) in terms
of Dunkl operators associated with the Weyl group B3.

1. Introduction

The Bannai–Ito algebra BI3 is the associative algebra over C with three gener-
ators K12,K23,K13 that satisfy the relations

{K12,K23} = K13 + ω13, {K12,K13} = K23 + ω23, {K13,K23} = K12 + ω12,

(1.1)

where {A,B} = AB +BA is the anticommutator and where ω12, ω23, and ω13 are
structure constants. It is readily verified that the Casimir element

Q = K2
12 +K2

13 +K2
23(1.2)

belongs to the center of BI3.
The Bannai–Ito algebra was first presented in [1] as the algebra encoding the

bispectral properties of the Bannai–Ito polynomials [2]. Its connection to the Lie
superalgebra osp(1, 2) was understood soon after when (a central extension of)
BI3 was shown to be the centralizer of the coproduct embedding of osp(1, 2) in
the enveloping algebra of the threefold product of this superalgebra [3–5]. As a
consequence, the Bannai–Ito polynomials were seen [3] to be essentially the Racah
coefficients of osp(1, 2). In the following, we shall keep the notation BI3 when the
symbols ωij , ij = 12, 13, 23, are central elements instead of constants.

The Bannai–Ito algebra was further shown [6] to be isomorphic to the degenerate
double affine Hecke algebra of type (C∨

1 , C1).
This Bannai–Ito algebra proves relevant in a variety of contexts where realiza-

tions of osp(1, 2) arise. It intervenes in Dunkl harmonic analysis on the 2-sphere [7]
and is the symmetry algebra in three dimensions of a superintegrable model with
reflections [8] and of the Dirac–Dunkl equation [9]. These models are actually quite
useful in the identification of the higher rank extensions of BI3 that have been
obtained [10].
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In view of the fundamental features and various applications of the Bannai–Ito
algebra, it should be of interest to explore possible generalizations. When the Ban-
nai–Ito algebra is identified as the algebra of the intermediate Casimir operators
in the triple product of osp(1, 2) algebras, the reflection group Z3

2 formed by the
grade involutions of each factor in osp(1, 2)⊗3 is present. The purpose of this paper
is to show that the Bannai–Ito algebra admits the following generalization that
lies outside the setting of coproduct homomorphisms. For i, j, k ∈ {1, 2, 3} and all
distinct, the elements Ci and Cij generate the extended Bannai–Ito algebra defined
by the relations

(1.3) {Cij , Cjk} = Cik + {Cj , Cijk}+ {Ci, Ck}
and

(1.4) [Cij , Ck] + [Cjk, Ci] + [Cik, Cj ] = 0,

and where Cijk are central elements. Note that when Ci are constant multiples of
the identity, (1.4) is trivially satisfied, while (1.3) corresponds to a central extension
of (1.1). We should also stress that the algebra closes quadratically in terms of its
generators. We will show that the extended Bannai–Ito algebra appears when the
osp(1, 2) grade involution decomposes in a product of supplementary involutions
that leave the even part of the algebra invariant. The extended Bannai–Ito algebra
will be generated by the elements centralizing osp(1, 2) that can be found in this
situation. The results bear a connection to recent work on the symmetries of the
Dirac–Dunkl equation [11].

The paper will proceed as follows. The definition and basic features of the
Lie superalgebra osp(1, 2) will be recalled in Section 2, where the supplementary
involutions and their properties will be introduced. Only three such involutions will
be needed to extend the rank-1 Bannai–Ito algebra. The centralizing elements will
be constructed in Section 3, and the proof that they satisfy relations (1.3) and (1.4)
will be outlined.

Section 4 will explain how the standard Bannai–Ito algebra BI3 is recovered
when the framework is specialized to the threefold product of osp(1, 2). Section 5
will be dedicated to an interesting hyperoctahedral extension of the Bannai–Ito
algebra that results when osp(1, 2) is realized in terms of Dunkl operators associated
with the B3-Weyl group. Explicit expressions will be provided and an extension
of (1.1) involving elements of the signed permutation group on three objects will
be obtained. Section 6 will offer a discussion of the generalized Bannai–Ito algebra
that is found when the osp(1, 2) realization involves a Clifford algebra. The paper
will end with concluding remarks. Some details of the derivation of the structure
relations of the generalized algebra will be given in the appendix.

2. osp(1, 2) and involutions

The Lie superalgebra osp(1, 2) can be presented by adjoining to the three gen-
erators A0, A+ A− the grade involution P that accounts for the Z2-grading of the
algebra. That A0 and A± are, respectively, even and odd generators is enforced by
taking

(2.1) P 2 = 1, [P,A0] = 0, {P,A±} = 0,

with [A,B] = AB −BA. This is then supplemented by the relations

(2.2) [A0, A±] = ±A±, {A+, A−} = 2A0
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to complete the definition of osp(1, 2). The Casimir element

(2.3) S =
1

2

(
[A−, A+]− 1

)
enjoys the same relations that P does with A0 and A±, and thus Γ = SP commutes
with all generators:

(2.4) [Γ, A±] = [Γ, A0] = [Γ, P ] = 0.

Recalling that [A,BC] = {A,B}C −B{A,C}, it is useful to record that

(2.5) [A∓, A
2
±] = 2[A0, A±] = ±2A±.

The three even generators

(2.6) B± = A2
± and A0

are readily seen to close onto the su(1, 1) commutation relations and to commute
with P :

(2.7) [B+, B−] = −4A0, [A0, B±] = ±2B±, [P,B±] = [P,A0] = 0.

The su(1, 1) Casimir element

(2.8) C =
1

4

(
A2

0 −B+B− − 2A0

)
is related as follows with the Casimir element S = ΓP :

(2.9) Γ2 − ΓP = 4C +
3

2
.

Let us now introduce supplementary involutions Pi, i = 1, . . . , n such that

(2.10) P = P1P2 · · ·Pn

and

(2.11) P 2
i = 1, [Pi, Pj ] = 0, i �= j.

We shall make two additional assumptions on the relations that these involutions
have with the osp(1, 2) generators:

i. We will suppose that they all commute with the su(1, 1) generators:

(2.12) [Pi, A0] = [Pi, B±] = 0 ∀i.
ii. We shall impose an additivity or decomposition property of the form

(2.13)
[
Pi, [Pj , A±]

]
= 0, i �= j,

stating that the commutator of the odd generators with any involution is
even with respect to all the others.

The last property entails the following lemma that will prove quite useful.

Lemma 2.1. Subject to the above definitions and hypotheses, together with the
osp(1, 2) generators A+ and A−, the involutions Pi, i = 1, . . . , n satisfy the follow-
ing relations:

(2.14) PiA±Pj + PjA±Pi = PiPjA± +A±PiPj , i �= j,

and
(2.15)

PiA±A∓A±Pj + PjA±A∓A±Pi = PiPjA±A∓A± +A±A∓A±PiPj , i �= j.
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Proof. Formula (2.14) straightforwardly results from expanding (2.13). To prove
(2.15), consider first the upper signs. From the commutation relation (2.2), one has

(2.16) A+A−A+ = −A−A
2
+ + 2A0A+.

It hence follows that

PiA+A−A+Pj + (i ↔ j) = Pi(−A−A
2
+ + 2A0A+)Pj + (i ↔ j)

= −PiA−PjA
2
+ + 2A0PiA+Pj + (i ↔ j)

= −(PiPjA− +A−PiPj)A
2
+ + 2A0(PiPjA+ +A+PiPj)

= PiPj(−A−A
2
+ + 2A0A+) + (−A−A

2
+ + 2A0A+)PiPj

= PiPjA+A−A+ +A+A−A+PiPj ,

(2.17)

where we have used [Pi, A
2
+] = [Pi, A0] = 0, (2.14), and (2.16).

The proof of (2.15) with lower signs proceeds in the same way. �

3. Centralizing elements and a realization of the generalized

Bannai–Ito algebra

Denote by [n] = {1, . . . , n} the set of the first n positive integers. Let S =
{s1, . . . , sk} be an ordered k-subset of [n]. Write

(3.1) PS = Ps1Ps2 · · ·Psk .

We shall now introduce elements involving the supplementary involutions that
will form a centralizer of osp(1, 2). In the special cases of cardinality 1, 2, and 3,
they will provide a realization of the extended Bannai–Ito algebras (1.3) and (1.4).
Note that we will use the same notation to denote the realization that follows and
the abstract definition.

Proposition 3.1. The elements

CS =
1

4

{
A−, [A+, PS ]

}
− 1

2
PS(3.2a)

or equivalently

CS =
1

4

{
[PS , A−], A+

}
− 1

2
PS(3.2b)

associated with the set S centralize osp(1, 2); that is, they satisfy

(3.3) [CS , A0] = [CS , A±] = [CS , P ] = 0.

Proof. The equality of the formulas (3.2a) and (3.2b) for CS is immediately obtained
by expanding both expressions and using {A+, A−} = 2A0 and [PS , A0] = 0. The
relations [CS , A0] = 0 and [CS , P ] = 0 follow from the fact that CS is bilinear in
A+ and A−, that A0 commutes with PS , and that {P,A±} = 0. Let us now show
that [CS , A−] = 0. First, one observes that

[CS , A−] =

[
1

4
A−[A+, PS ] +

1

4
[A+, PS]A− − 1

2
PS, A−

]

=
1

4

[
[A+, PS ], A

2
−
]
− 1

2
[PS , A−].

(3.4)
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Using the Jacobi identity and the fact that the involutions commute with the
su(1, 1) generators B± = A2

±, one completes the proof by observing that

(3.5) [CS , A−] = −1

4

[
[A2

−, A+], PS

]
− 1

2
[PS , A−] = 0,

with the help of (2.5). The demonstration that [CS , A+] = 0 proceeds in exactly
the same way when the expression (3.2b) for CS is used. �
Remark 3.2. Owing to the fact that the involutions commute, CS is symmetric
under the permutations of the elements of S. For example, in the case of subsets
S of cardinality 2, the 2-indices Cij , i, j = 1, . . . , n, satisfy

(3.6) Cij = Cji, i �= j.

Remark 3.3. For S = [n], P[n] = P by hypothesis and since PA± = −A±P ,

(3.7) C[n] =
1

4

{
A−, [A+, P ]

}
− 1

2
P =

1

2

(
[A−, A+]− 1

)
P = Γ.

The following corollary is immediate given that [CS , A±] = 0 and [CS , P ] = 0 by
Proposition 3.1.

Corollary 3.4. The elements CS defined in Proposition 3.1 also have the property
of commuting with C[n] = Γ:

(3.8) [CS , C[n]] = 0.

The next two lemmas provide relations between the 1-index Ci, i = 1, . . . , n, and
the involutions.

Lemma 3.5. The 1-index elements

Ci =
1

4

{
A−, [A+, Pi]

}
− 1

2
Pi(3.8a)

or equivalently

Ci =
1

4

{
[Pi, A−], A+

}
− 1

2
Pi(3.8b)

satisfy

(3.9) CiPj + CjPi = PiCj + PjCi

for all i �= j.

Proof. Take i �= j. Beginning with (3.8a) and using (2.13), one finds that

[Ci, Pj ] =
1

4

[
A−[A+, Pi] + [A+, Pi]A−, Pj

]
=

1

4

(
[A−, Pj ][A+, Pi] + [A+, Pi][A−, Pj ]

)
.

(3.10)

Similarly, starting with (3.8b), one obtains

[Cj , Pi] =
1

4

[
[Pj , A−]A+ + A+[Pj , A−], Pi

]
=

1

4

(
[Pj , A−][A+, Pi] + [A+, Pi][Pj , A−]

)
.

(3.11)

One then sees that

(3.12) [Ci, Pj ] = −[Cj , Pi], i �= j,

from which the relation (3.9) follows. �
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In view of the expression (3.10) (or (3.11)) and given (2.13), it follows that

(3.13)
[
Pi, [Pj , Ck]

]
= 0 for i, j, k distinct.

Lemma 3.5 admits a multi-index generalization.

Lemma 3.6. Let S = {s1, . . . , sk} be an ordered k-subset of [n], and write

(3.14) PS =

k∏
�=1

Ps� .

One has

(3.15) PS

(
k∑

i=1

PsiCsi

)
=

(
k∑

i=1

CsiPsi

)
PS.

Proof. The above relation can be written in the form

(3.16)

k∑
i=1

[PS\{si}, Csi ] = 0.

Use induction. We know that (3.15) is true for k = 2, from Lemma 3.5. Assume
that (3.15), or equivalently (3.16), is valid if the cardinality of S is k − 1. This
means that for some j between 1 and k,

(3.17)
k∑

i=1;i �=j

[PS\{si,sj}, Csi ] = 0.

Note that

(3.18) PS\{si} = PS\{si,sj}Psj , j �= i.

Use (3.18) to write

(3.19)

k∑
i=1

[PS\{si}, Csi ] =
1

k

k∑
�=1

⎛
⎝[PS\{s�}, Cs� ] +

k∑
j=1; j �=�

[PS\{s�,sj}Psj , Cs� ]

⎞
⎠ .

Some commutator algebra thus gives
(3.20)(

k − 1

k

) k∑
i=1

[PS\{si}, Csi ] =
1

k

k∑
j,�=1
j �=�

(
[PS\{s�,sj}, Cs� ]Psj + PS\{s�,sj}[Psj , Cs� ]

)
.

Since [Psj , Cs� ] = −[Ps� , Csj ] per (3.12), the terms PS\{s�,sj}[Psj , Cs� ] cancel out 2
by 2 in the sums, and we are left with

(3.21)
k∑

i=1

[PS\{si}, Csi ] =
1

k − 1

k∑
j=1

⎛
⎝ k∑

�=1; � �=j

[PS\{s�,sj}, Cs� ]

⎞
⎠Psj ,

which is 0 according to the induction hypothesis (3.17). �
Proposition 3.1 shows that when the supplementary involutions Pi, i = 1, . . . , n,

are present, a centralizer of osp(1, 2) is generated by the elements CS corresponding
to all subsets of [n] with k ordered elements for k = 1, . . . , n − 1. Since we wish
to extend the rank-1 Bannai–Ito algebra, we shall take n = 3. A centralizer of
osp(1, 2) will then be generated by the 1- and 2-index elements C1, C2, C3 and C12,
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C23, C13 to which the Casimir element C123 can be added. Remember that C123

commutes with Ci, Cij , i, j = 1, 2, 3, but does not commute with the involutions
Pi, i = 1, 2, 3. It shall be seen that the elements Ci, i = 1, 2, 3, together with
Cijk take the place of the structure constants and complement the elements Cij ,
ij = 12, 13, 23, that generalize the generators Kij of the Bannai–Ito algebra. The
task is now to obtain the relations that these elements obey.

It is useful to record the special form that some relations take when the indices
are restricted to the set {1, 2, 3}. Take the indices i, j, k ∈ {1, 2, 3} to all be distinct,
thus forming a permutation of (1, 2, 3). Clearly,

(3.22) P = PiPjPk, i, j, k ∈ {1, 2, 3} all distinct.

Given that PA± = −A±P , formulas of the type

(3.23) PiPjA±Pk = −PkA±PiPj

follow immediately. The result of Lemma 3.6 will specialize to

(3.24) [PiPj , Ck] + [PjPk, Ci] + [PiPk, Cj ] = 0.

Moreover,

(3.25) Cijk = C123 = Γ.

It is in fact possible to show that this Casimir operator can be written as a combi-
nation of the 1- and 2-index elements Ci and Cij together with the involutions Pi.

Proposition 3.7. When n = 3 and i, j, k ∈ {1, 2, 3} are all distinct, the Casimir
element Cijk has the following expression:

(3.26) Cijk = CijPk + CjkPi + CikPj − CkPiPj − CiPjPk − CjPiPk −
1

2
PiPjPk.

Proof. Using the definition (3.2a) and (3.23), one sees that

(3.27) CijPk − CkPiPj =
1

2

(
A−PkA+PiPj −A+PkA−PiPj

)
.

Now

1

2
A−PkA+PiPj + cyclic permutations =

1

4

(
A−PkA+PiPj +A−PiA+PjPk

)
+

1

4

(
A−PiA+PjPk +A−PjA+PiPk

)
+

1

4

(
A−PjA+PiPk +A−PkA+PiPj

)
.

(3.28)

With the help of (2.14) and of (3.23) again, one finds that

1

2
A−PkA+PiPj + cyclic permutations

=
3

4
A−A+P −

(
1

4
A−PkA+PiPj + cyclic permutations

)
,

(3.29)

from which one obtains that

(3.30) A−PkA+PiPj + cyclic permutations = A−A+P.

Similarly, one gets

(3.31) A+PkA−PiPj + cyclic permutations = A+A−P.
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One thus sees that
(3.32)(
CijPk−CkPij+ cyclic permutations

)
− 1

2
PiPjPk =

1

2

(
A−A+−A+A−−1

)
P = Γ,

which completes the proof. �

We are now ready to state our main result, which shows that the elements Ci and
Cij , i, j = 1, 2, 3, satisfy the relations (1.3) and (1.4) of the extended Bannai–Ito
algebra.

Theorem 3.8. For i, j, k ∈ {1, 2, 3} and all distinct, the elements Ci and Cij

satisfy the relations of the extended Bannai–Ito algebra:

(3.33) {Cij , Cjk} = Cik + {Cj , Cijk}+ {Ci, Ck}

and

(3.34) [Cij , Ck] + [Cjk, Ci] + [Cik, Cj ] = 0.

Although a bit involved, the proofs proceed straightforwardly. The basic strategy
is to separately expand and simplify the expressions on the left- and right-hand sides
to show that they coincide. From the definitions of Ci, Cij , and Cijk, we see that
(3.33) and (3.34) will amount to equalities between expressions that involve terms
that are quartic, quadratic, and of degree 0 in the osp(1, 2) generators A− and A+,
which always occur in pairs (so as to commute with A0). Expand those expressions
in full. It is practical to focus on each of these categories of terms and to verify that
they are identically equal on their own upon comparing the left- and right-hand
sides. Furthermore, when dealing with the quartic component, it is also possible
to concentrate in turn on terms of definite type with respect to the ordering, e.g.,
terms having the structure A+A

2
−A+, A−A

2
+A− or A+A−A+A− and A−A+A−A+

together, for instance. In order to not overly clutter the flow of the presentation,
we shall relegate further discussion of the proofs to the appendix, where examples
of the computations that are needed will be given.

Remark 3.9. In view of Corollary 3.4, we have in addition

(3.35) [Ci, Cijk] = [Cij , Cijk] = 0, i, j, k distinct.

It follows that the term {Cj , Cijk} in (3.33) can also be written as 2CjCijk. The
relations (3.33) and (3.34) thus bear a kinship to those of the Bannai–Ito algebra.
In a situation where the Ci are constants, (3.34) trivializes and one recovers the
relations (1.1) with ωij elements of the center of the algebra generated by Cij . We
shall discuss in the next section an instance in which this happens.

4. Embeddings of osp(1, 2) into osp(1, 2)⊗3

A situation in which three involutions naturally arise is when one considers the
coproduct embedding of osp(1, 2) into its threefold tensor product osp(1, 2)⊗3. We
shall now indicate how this fits within the framework that has been developed and
how previously known results appear. Let us recall the definition of the osp(1, 2)
coproduct: it is a coassociative homomorphism

(4.1) Δ : osp(1, 2) → osp(1, 2)⊗ osp(1, 2)



osp(1, 2) AND GENERALIZED BANNAI–ITO ALGEBRAS 4135

such that

Δ(A±) = A± ⊗ P + 1⊗A±,

Δ(A0) = A0 ⊗ 1 + 1⊗A0,

Δ(P ) = P ⊗ P.

(4.2)

Upon letting

(4.3) Δ(2) = (Δ⊗ 1) ◦Δ,

one has a homomorphism Δ(2) : osp(1, 2) → osp(1, 2)⊗3. Introduce the three
involutions

(4.4) P (1) = P ⊗ 1⊗ 1, P (2) = 1⊗ P ⊗ 1, P (3) = 1⊗ 1⊗ P.

We have

A0 = Δ(2)(A0) = A
(1)
0 +A

(2)
0 +A

(3)
0 ,

A± = Δ(2)(A±) = A
(1)
± P (2)P (3) +A

(2)
± P (3) +A

(3)
± ,

P = Δ(2)(P ) = P (1)P (2)P (3),

(4.5)

where the suffix designates to which factor the element belongs. Since Δ(2) is a
homomorphism, we have a version of osp(1, 2) generated by A0, A±, and P with
three involutions P (i), i = 1, 2, 3, that satisfy the requirements of our setup, namely,

(4.6) P (1)P (2)P (3) = P

and

(4.7) [P (i),A0] = 0,
[
P (i), [P (j),A±]

]
= 0, i, j = 1, 2, 3, i �= j.

The second relation of (4.7) is verified since

[A±, P
(1)] = 2A

(1)
± P (1)P (2)P (3),

[A±, P
(2)] = 2A

(2)
± P (2)P (3),

[A±, P
(3)] = 2A

(3)
± P (3).

(4.8)

Let us then examine what our construction entails in this case. Consider first the
1-index elements Ci, and take i = 1; for instance,

C1 =
1

4

{
A−, [A+, P

(1)]
}
− 1

2
P (1) =

1

2
[A−, A

(1)
+ ]P − 1

2
P (1)

=
1

2

(
[A

(1)
− , A

(1)
+ ]− 1

)
P (1) = Γ(1),

(4.9)

where Γ(1) stands for the Casimir operator of the first factor in osp(1, 2)⊗3. Simi-
larly, we find that in fact

(4.10) Ci = Γ(i), i = 1, 2, 3.

The various Ci manifestly all commute. In this case, one refers to the simple em-
beddings of osp(1, 2) into osp(1, 2)⊗3 as one of the factors. In addition to those and
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to Δ(2), there are other embeddings labeled by two indices for which the generators
are

A(ij)
0 = A

(i)
0 +A

(j)
0 , i, j = 1, 2, 3

A(12)
± = A

(1)
± P (2) +A

(2)
± , A(23)

± = A
(2)
± P (3) +A

(3)
± , A(13)

± = A
(1)
± P (2)P (3) +A

(3)
±

P(12) = P (1)P (2), P(23) = P (2)P (3), P(13) = P (1)P (3).

(4.11)

To these embeddings correspond the Casimirs

(4.12) Γ(ij) =
1

2

(
[A(ij)

− ,A(ij)
+ ]− 1

)
P(ij).

It is immediate to observe that the Casimir operators Ci = Γ(i) of each of the factors
commute with all of the generators in (4.11), and hence with the intermediate
Casimirs, namely,

(4.13) [Γ(i),Γ(jk)] = 0 ∀ i, j, k (j �= k).

Let us now come to the 2-index elements and consider, for instance,

(4.14) C13 =
1

4

{
A−, [A+, P

(1)P (3)]
}
− 1

2
P(13).

With the help of (4.8), we see that

C13 =
1

4

{
A−, [A+, P

(1)]P (3) + P (1)[A+, P
(3)]

}
− 1

2
P(13)

=
1

2

{
A−, A

(1)
+ P (1)P (2) +A

(3)
+ P (1)P (3)

}
− 1

2
P(13)

=
1

2

{
A−,A(13)

+ P (1)P (3)
}
− 1

2
P(13).

(4.15)

Now A− = A(13)
− +A

(2)
− P (3) and

(4.16) {A(2)
− P (3),A(13)

+ P (1)P (3)} = {A(2)
− P (3), A

(1)
+ P (1)P (2) +A

(3)
+ P (1)P (3)} = 0.

Hence

(4.17) C13 =
1

2

(
[A(13)

− ,A(13)
+ ]− 1

)
P(13) = Γ(13),

and we observe that C13 is the intermediate Casimir element associated with the
embedding (ij) = (13) of (4.11). In general, we find that

(4.18) Cij = Γ(ij).

As always,

(4.19) Cijk =
1

2

(
[A−,A+]− 1

)
P

is the Casimir element of the main osp(1, 2) of the construction, here Δ(2)
(
osp(1, 2)

)
.

The centralizer of Δ(2)
(
osp(1, 2)

)
is therefore the algebra generated by the var-

ious Casimir operators: Ci = Γ(i), Cij = Γ(ij), and Cijk = Γ. Equation (3.34) is

hence trivially satisfied and {Cj , Cijk} = 2Γ(j)Γ, while {Ci, Ck} = 2Γ(i)Γ(k). It thus
follows that the relations of Theorem 3.8 reduce to those of the Bannai–Ito algebra,
with ωij central in this embedding situation. Furthermore, if we were to consider

products of three irreducible representations, the Casimirs Γ(i) would be constants.
This confirms that the defining relations (3.33) and (3.34) generalize those of the
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Bannai–Ito algebra, whose appearance in the Racah problem for osp(1, 2) is here
seen as a special case in our framework.

5. A hyperoctahedral extension of the Bannai–Ito algebra

We shall obtain in this section a generalization of the Bannai–Ito algebra that
involves the signed symmetric group in three objects. This will be achieved by
considering a generalization of osp(1, 2) built from Dunkl operators [12]. Let xi, i =
1, 2, . . . , n, be the variables; we shall keep their number arbitrary for the moment.
We wish to realize the involutions Pi by the reflections Ri in the plane xi = 0, i.e.,

(5.1) Rif(. . . , xi, . . .) = f(. . . ,−xi, . . .).

It is hence natural to consider the Dunkl operators associated with the Weyl group
of type Bn which contains the reflections Ri and the permutations πij :

(5.2) πijf(. . . , xi, . . . , xj , . . .) = f(. . . , xj , . . . , xi, . . .).

These Bn-Dunkl operators depend on two parameters, a and b, and are defined
by [13, 14]

(5.3) Di =
∂

∂xi
+

b

xi
(1−Ri)+a

∑
j �=i

(
1

xi − xj
(1− πij) +

1

xi + xj
(1−RiRjπij)

)
.

Remarkably, they form a commuting set:

(5.4) [Di, Dj ] = 0 ∀i, j.

Their commutation relations with the coordinates are found to be

(5.5) [Di, xj ] = δij

⎛
⎝1 + a

∑
k �=i

(1 +RiRk)πik + 2bRi

⎞
⎠− (1− δij)a(1−RiRj)πij .

A special feature of the Dunkl operators of type Bn is their behavior under reflec-
tions. Indeed, using Riπij = πijRj , it is easy to see that

(5.6) {Ri, Di} = 0, [Ri, Dj ] = 0, i �= j.

These relations are also valid of course when Di is replaced by the coordinate xi.
Property (5.6) is key. Let us now restrict ourselves to the situation with three
variables x1, x2, x3 and the corresponding B3-Dunkl operators D1, D2, D3. Take

Â− = D1R2R3 +D2R3 +D3,

Â+ = x1R2R3 + x2R3 + x3.
(5.7)

In view of the reflection properties (5.6) and given (5.4), one sees that

B̂− = A2
− = D2

1 +D2
2 +D2

3 ,

B̂+ = A2
+ = x2

1 + x2
2 + x2

3.
(5.8)

It is known [15, 16] that such operators B̂± provide a realization of the su(1, 1)
commutation relations (2.7), with the Euler operator

(5.9) Â0 = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ 3

(
2a+ b+

1

2

)
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playing the role of A0. It is in fact not too difficult to see moreover that Â± close
onto the osp(1, 2) relations:

(5.10) {Â−, Â+} = 2Â0, [Â0, Â±] = ±Â±.

Let us remark that the form of Â− and Â+ in (5.7) is reminiscent of the expressions
we had for A− and A+ in Section 4 as a result of the coproduct action. The key

difference though is that we no longer have the analogy of [A
(i)
− , A

(j)
+ ] = 0, i �= j, as

is seen from (5.5).
The reader might also think that the Dunkl operators

(5.11) ∇i =
∂

∂xi
+

μi

xi
(1−Ri), i = 1, 2, 3,

associated with the reflection group Z3
2 and with μ1, μ2, μ3 constants, could prove

pertinent to introduce the reflections Ri as involutions. This is true and has in fact
been considered already [7, 8]; note however that

(5.12) [∇i, xj ] = 0, i �= j,

in this case, which leads to a realization of the embedding situation of Section 4.
The uniform specialization μ1 = μ2 = μ3 = b arises with the B3-operators when
a = 0.

Before going further, we should confirm that the requirements on the involutions
are satisfied. This is so because P is realized as R = R1R2R3; indeed,

(5.13) [R, Â0] = 0, {R, Â±} = 0.

Moreover, owing to (5.7), we see that

(5.14)
[
Ri, [Rj , Â±]

]
= 0, i �= j.

We can thus apply our formalism to get the explicit expressions of the centralizing
elements in this concrete realization of osp(1, 2) and to determine as well the defining
relations of the particular generalized Bannai–Ito algebra that emerges.

Let

(5.15) Sij = [Di, xj ].

We see from (5.5) that Sij = Sji, namely, that [Di, xj ] = [Dj , xi]. It is useful to
record for reference the explicit expressions for Sij for i ≤ j, i, j = 1, 2, 3:

S11 = 1 + a(1 +R1R2)π12 + a(1 +R1R3)π13 + 2bR1,

S22 = 1 + a(1 +R1R2)π12 + a(1 +R2R3)π23 + 2bR2,

S33 = 1 + a(1 +R1R3)π13 + a(1 +R2R3)π23 + 2bR3,

S12 = −a(1−R1R2)π12,

S13 = −a(1−R1R3)π13,

S23 = −a(1−R2R3)π23.

(5.16)

Let

(5.17) Mij = xiDj − xjDi, i, j = 1, 2, 3.
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The commutation relation of these Dunkl angular momentum operators have been
given in [17] and read

[Mij ,Mk�] = Mi�Sjk +MjkSi� −MikS�j −Mj�Sik

= SjkMi� + Si�Mjk − S�jMik − SikMj�.
(5.18)

Using Cij =
{
Â−, [Â+, RiRj ]

}
/4 − RiRj/2, it is straightforward to arrive at the

following result.

Proposition 5.1. The 2-index elements that commute with Â− and Â+ are

C12 = M12R1 +
1

2
(S11 + S22 − 1)R1R2 −

1

2
(S13 + S23R1),

C23 = M23R2 +
1

2
(S22 + S33 − 1)R2R3 −

1

2
(S12R3 + S13),

C13 = M13R1R2 +
1

2
(S11 + S33 − 1)R1R3 −

1

2
(S12R3 + S23R1).

(5.19)

We note that in obtaining the final form of the formulas (5.19), one uses

(5.20) SijRiRj = −Sij , i �= j.

Introduce now the quantities Qij = Qji in the group algebra of B3, which are
defined as follows:

Q12 =
1

2
(1 +R1 +R2 −R1R2)π12,

Q13 =
1

2
(R1 +R2 +R3 −R1R2R3)π13,

Q23 =
1

2
(1 +R2 +R3 −R2R3)π23.

(5.21)

One first observes that these Qij are involutions:

(5.22) Q2
ij = 1.

Furthermore, one finds that the algebra they form is isomorphic to the algebra of
the permutation operators π12, π13, and π23 of the symmetric group S3. Indeed,
one checks that

(5.23) Q12Q13 = Q23Q12 = Q13Q23, Q12Q23 = Q23Q13 = Q13Q12

together with QijRj = RiQij . One discovers also that

(5.24) [Qij , Cij ] = 0,

and that

Q12C13 = C23Q12, Q12C23 = C13Q12, Q13C12 = C23Q13,

Q13C23 = C12Q13, Q23C12 = C13Q23, Q23C13 = C12Q23.
(5.25)

Consider now the 1-index elements Ci =
{
Â−, [Â+, Ri]

}
/4 − Ri/2. One readily

finds that

C1 =
1

2
(S11R1 + S12R1R2 + S13R1R2R3 −R1),

C2 =
1

2
(−S12 + S22R2 − S23 −R2),

C3 =
1

2
(−S13R2 − S23 + S33R3 −R3).

(5.26)
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These expressions can be rewritten in terms of the involutions Qij , i, j = 1, 2, 3.
The results read as follows.

Proposition 5.2. The centralizing 1-index elements Ci, i = 1, 2, 3, are given by

(5.27) Ci = a(Qij +Qik) + b,

with i, j, k ∈ {1, 2, 3} and all distinct.

Remark 5.3. Since

(5.28) Ci + Cj − Ck = 2aQij + b,

it follows that the quantities Qij commute also with Â±. We thus see that these
involutions enlarge the set of symmetries formed by the operators Cij .

Remark 5.4. One can now verify that

(5.29) Cij = MijRiRj−1 + CiRj + CjRi +
1

2
RiRj ,

where RiRj−1 = Ri if i = j − 1.

Proposition 5.5. In the realization (5.7), (5.9) of osp(1, 2) with the B3-Dunkl

operators, the Casimir element Γ = 1
2

(
[Â−, Â+]− 1

)
R, R = R1R2R3, is given by

(5.30) Γ = M12R1R3 +M13R1 +M23R1R2 +
1

2
(S11 + S22 + S33 − 1)R.

Proof. This is obtained by a direct computation. �
Remark 5.6. Using (5.19) and (5.26) and invoking property (5.20) again, one can
see that (5.30) matches with formula (3.26). Given (3.26), if one simplifies the part
CiRjRk + CjRiRk + CkRiRj =

1
2 (S11 + S22 + S33 − 3)R, one may also write Γ in

the form
Γ = C12R3 + C13R2 + C23R1

−
(
a
(
(1 +R1R2)π12 + (1 +R1R3)π13 + (1 +R2R3)π23

)
+b(R1 +R2 +R3) +

1

2

)
R.

(5.31)

The Jucys–Murphy elements [18,19] of Bn have been given in [20]. For B3, they
are
(5.32)
R1, R2, R3, m2 = (1 +R1R2)π12, m3 = (1 +R1R3)π13 + (1 +R2R3)π23.

It can be checked that all of these elements commute with each other. The sym-
metric polynomials in these entities are known to generate the center of the group
algebra of B3. It is thus not surprising that the above Jucys–Murphy elements
appear in the expression (5.31) of the central Casimir operator Γ.

We are now ready to determine the specific form that the commutation rela-
tions (3.33) and (3.34) take.

Proposition 5.7. Let i, j, k ∈ {1, 2, 3} be distinct. The defining relation (3.33) of
the algebra generated by the operators Ci, Cij, and Cijk respectively given by (5.27),
(5.29), and (5.31), for instance, takes the form

{Cij , Cjk} = Cik + 2Γ
(
a(Qij +Qjk) + b

)
+ a2

(
3{Qij , Qjk}+ 2

)
+ 2ab(Qij +Qjk + 2Qik) + 2b2.

(5.33)
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Proof. This simply follows from (3.33) and the expression of the 1-index elements
Ci. Given (5.31), one may directly verify that {Γ, Cj} = 2ΓCj . One shall note that

(5.34) {Qij +Qik, Qik +Qjk} = 3{Qij , Qjk}+ 2,

a relation easily derived from (5.23). �

Remark 5.8. The relation (3.34) is readily seen to be identically satisfied in the
present realization. Indeed, we have
(5.35)
[C12, C3]+[C23, C1]+[C13, C2] = [C12, Q13+Q23]+[C23, Q12+Q13]+[C13, Q12+Q23],

and one shows that these terms add up to 0 with the help of relations (5.25).

Remark 5.9. We observe that when a = 0, the relations (5.33) correspond to the
relations (1.1) of the Bannai–Ito algebra, with central structure constants given by
ω12 = ω13 = ω23 = 2Γb + 2b2. When a �= 0, we have a remarkable generalization
that involves the generators πij and Ri, i, j ∈ {1, 2, 3} of the signed permutation
group on three objects. This hyperoctahedral extension of the Bannai–Ito algebra
has Cij and Qij as generators, with relations given by (5.22)–(5.25) and (5.33),
where Cijk is central.

Proposition 5.10. The generalized Bannai–Ito algebra defined by (5.33) admits a
Casimir operator C such that

(5.36) [C,Cij ] = [C,Ci] = 0,

which is given by

(5.37) C = C2
12 + C2

13 + C2
23 − a2Q2 − 4abQ,

with

(5.38) Q = Q12 +Q13 +Q23.

Proof. A direct calculation shows on the one hand that

(5.39) [C2
12 + C2

13 + C2
23, C12] = 3a2

[
{Q12, Q23}, C12

]
+ 4ab[Q,C12].

It is seen on the other hand that

(5.40) {Q12, Q13} = {Q13, Q23} = {Q12, Q23},
and therefore that

(5.41) Q2 = 3 + 3{Q12, Q13}.
This confirms that C commutes with C12. The same goes for C13 and C23. Consider
now the commutator [C,C1]. Note that

[C2
12 + C2

13 + C2
23, C1] = a[C2

12 + C2
13 + C2

23, Q12 +Q13]

= a[C2
13 + C2

23, Q12] + a[C2
12 + C2

23, Q13],
(5.42)

and check that each commutator in the last line vanishes because of (5.25). Observe
moreover that

(5.43) [Q,C1] = a[Q13, Q12 +Q23] = 0.

It follows that [C,C1] = 0. One shows similarly that [C,C2] = [C,C3] = 0. �
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Remark 5.11. We may expect the invariant C to be related to the Casimir operator
of osp(1, 2), and indeed one finds that

(5.44) C = Γ2 + 3(a2 + b2)− 1

4
.

6. osp(1, 2) realizations with Clifford algebras

It is known that osp(1, 2) can be realized using Dunkl operators and generators
of Clifford algebras [16]. The centralizer of the superalgebra is then identified with
the symmetries of the corresponding Dirac–Dunkl (massless) equation. We now
wish to indicate how the formalism developed in this paper applies in the Clifford
algebra context and to give the expressions of the operators that then form the
generalized Bannai–Ito algebra.

Consider a set of n generators ei, i = 1, . . . , n, of a Clifford algebra which verify

(6.1) {ei, ej} = 2δij .

These ei are taken to commute with operators acting on functions of the coordinates
xi, i = 1, . . . , n, and in particular with permutation operators. Let Di be Dunkl
operators associated with some arbitrary reflection group, and take

(6.2) Ã− =

n∑
i=1

Diei

and

(6.3) Ã+ =
n∑

i=1

xiei.

Given that [Di,Dj ] = 0, it is manifest that

(6.4) B̃− = Ã2
− =

n∑
i=1

D2
i

and

(6.5) B̃+ = Ã2
+ =

n∑
i=1

x2
i .

B̃2
− and Ã− are, respectively, the Laplace–Dunkl and Dirac–Dunkl operators. It can

be checked [16] that the operators Ã± realize the osp(1, 2) commutation relations

{Ã−, Ã+} = 2Ã0, [Ã0, Ã±] = ±Ã± when Ã0 is taken to be the Euler operator,

(6.6) Ã0 =
1

2

n∑
i=1

{xi,Di}.

Provided that {Ri,Di} = 0, [Ri,Dj ] = 0, i �= j, the grade involution can again be
realized by R =

∏n
i=1 Ri. As already observed, the last equation is enforced for the

Dunkl operators associated with the reflection groups Zn
2 and Bn. In the case of Zn

2 ,
albeit in a model with Clifford generators, the coproduct embedding of osp(1, 2)
into osp(1, 2)⊗3 is realized, and the centralizer will in general be the higher rank
Bannai–Ito algebra [10]. We shall therefore focus anew on the Bn-Dunkl operators
Di given in (5.3) and take n = 3. Replacing Di with Di in (6.2) and (6.3), we now
observe that

(6.7) [Ã−, Ri] = 2DieiRi, [Ã+, Ri] = 2xieiRi.
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The requirement
[
Ri, [Rj , Ã±]

]
= 0, i �= j, is thus satisfied. We can therefore apply

our formalism here also to compute the generators of the corresponding centralizer
in this model of osp(1, 2).

Proposition 6.1. Given the realization (6.2), (6.3), and (6.6), for n = 3, the
elements Ci, Cij and the Casimir operator Cijk = Γ that satisfy the relations (3.33)
and (3.34) of the generalized Bannai–Ito algebra are given by

(6.8) Ci =
1

2

(
Sii − Sijeiej − Sikeiek − 1

)
Ri,

(6.9) Cij = −MijeiejRiRj +
1

2

(
Sii + Sjj − Sikeiek − Sjkejek − 1

)
RiRj ,

and

(6.10) Γ =

(
−M12e1e2 −M13e1e3 −M23e2e3 +

1

2

(
S11 + S22 + S33 − 1

))
R,

with R = R1R2R3, and i, j, k ∈ {1, 2, 3} all distinct.

Proof. These formulas are obtained by an explicit evaluation of

CS =
1

4

{
Ã−, [Ã+, RS ]

}
− 1

2
RS

for S = {i}, {i, j}, {i, j, k}. �

Remark 6.2. It is readily seen that the expression for Γ = C123 is in keeping
with (3.26) and that we have

(6.11) Γ = C12R3 +C13R2 +C23R1 −C1R2R3 −C2R1R3 −C3R1R2 −
1

2
R1R2R3.

Remark 6.3. When a = 0, the generators become

(6.12) Cij =
(
−Mijeiej+b(Ri+Rj)+

1

2

)
RiRj , Ci = b, Di =

∂

∂xi
+

b

xi
(1−Ri).

We then recover the symmetries of the Dirac–Dunkl equation found in [9] with the
parameters of the Z3

2-Dunkl operators all equal to b.

Let us record another expression for Ci.

Proposition 6.4. The 1-index elements Ci can be given as follows:

(6.13) Ci = a(Wij +Wik)eiRi + b, i, j, k ∈ {1, 2, 3} all distinct,

with

(6.14) Wij =
1

2

(
(ei − ej)πij + (ei + ej)RiRjπij

)
.

Proof. This result follows from (6.8) and the definition (5.16). It is the analogue
of (5.27). Notice that Wij has mixed symmetry. �

We now wish to discuss the relation that the results of this section have with
the study of the symmetries of the Dirac–Dunkl equations carried out in [11]. Let
us stress that the grade involution P and its decomposition into P =

∏n
i=1 Pi are

central in our abstract framework. In contradistinction, working exclusively in the
realm of Clifford algebras, De Bie, Oste, and Van der Jeugt [11] have designed an
alternative method to obtain symmetries of Dirac–Dunkl equations specifically. Let
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us briefly review their approach, which has the merit of applying to any reflection
group.

Take [n] = {1, . . . , n} and S = {s1, . . . , sk} ⊆ [n]. In the notation of Section 3,

let xS =
∑k

i=1 xsiesi , DS =
∑k

i=1 Dsiesi , and eS =
∏k

i=1 esi . Script letters will
be used in the following to identify quantities that pertain to the generic Dunkl
operator Di. As shown in [11], the quantities

(6.15) OS =
1

2

(
D[n]xSeS − eSxSD[n] − eS

)
either commute or anticommute with D[n] and x[n] for all S, depending on the
cardinality |S| of S; namely,

(6.16) D[n]OS = (−1)|S|OSD[n] and x[n]OS = (−1)|S|OS x[n].

The quantities OS and the algebra they form are the objects of consideration in [11].
Our CS and their algebraic properties are a priori distinct.

Now, for n = 3, i, j, k ∈ {1, 2, 3} and unequal, a simple application of for-
mula (6.16) gives

(6.17) Oij = Mij +
1

2

(
Sii + Sjj

)
eiej −

1

2
Sikejek +

1

2
Sjkeiek − 1

2
eiej

with

(6.18) Mij = xiDj − xjDi and Sij = [xi,Dj ].

This operator Oij , according to (6.16), will commute with Ã− = D[n] and Ã+ =
x[n]. As it happens, when the Di are the B3-Dunkl operators Di, this would
seemingly give centralizing elements that differ from those that we have already
found and have given in Proposition 6.1. This is reconciled by remarking that
there are additional centralizing elements or symmetries when the Dunkl operators
at hand transform like derivatives under the reflections, a case in point for the
Bn-Dunkl operators. When this is so, it is readily verified [9] that the operators

(6.19) Zi = eiRi

will obey

(6.20) {Ã±, Zi} = 0.

Products ZiZj will hence be symmetries. Focus now on quantities OS associated
with the B3-Dunkl operators Di. In light of the previous observation, upon com-
paring (6.9) and (6.17), we find that

(6.21) Cij = OijeiejRiRj ;

in other words, we see that Cij and Oij differ by a factor which is itself a symmetry
given that the B3-Dunkl operators satisfy (5.6).

Similarly, we can show that

(6.22) Ci = OieiRi.

Therefore, by multiplying two quantities Oi and eiRi that anticommute with Ã±,
we find the centralizing Ci. This explains the relation between the two approaches
when our formalism is applied to osp(1, 2) realizations with Clifford algebras.
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7. Conclusion

This paper has introduced generalizations of the Bannai–Ito algebra that are
of rank 1. They are intimately connected to the Lie superalgebra osp(1, 2). It has
been shown that whenever the grade involution P of osp(1, 2) factors into a product
of appropriate involutions, elements that centralize osp(1, 2) appear.

When P admits three such factors, P = P1P2P2, the centralizer thus formed
generalizes the Bannai–Ito algebra. Realizations of osp(1, 2) in terms of Dunkl
operators have been considered to obtain concrete models of generalized Bannai–Ito
algebras. This has produced in particular an hyperoctahedral extension of the
Bannai–Ito algebra that exhibits an interesting structure.

This study brings up many questions. Determining which generalized Bannai–Ito
algebras other realizations of osp(1, 2) would entail naturally comes to mind. Also
among those questions is, what would the approach bring when applied to other
superalgebras or more complicated structures? The number of supplementary in-
volutions has been restricted to 3 in order to obtain centralizers of rank 1. Higher
rank cases will result upon lifting this constraint. As a matter of fact, the hyperoc-
tahedral generalization of arbitrary rank will be presented in a forthcoming publi-
cation [21] from the perspective of the rational Bn-Calogero model for nonidentical
particles. Developing the representation theory of this Bn-extended Bannai–Ito
algebra would be instructive. One expects relations with special functions in one
and many variables extending the connection that the Bannai–Ito polynomials have
with the eponym algebra.

We look forward to exploring these avenues in the near future.

Appendix A

We here give more details on how Theorem 3.8 is proven along with the strat-
egy described in Section 3 after the statement of the theorem. Generally, as one
proceeds with the proofs, it is appropriate to use the following expanded form,

(A.1) CS =
1

4

(
A−A+PS −A−PSA+ +A+PSA− − PSA+A−

)
− 1

2
PS ,

for the centralizing elements.

Sketch of proof of (3.33). Consider the left-hand side (l.h.s.) of (3.33). In expand-
ing {Cij , Cjk}, the first thing to do is to eliminate the involutions Pj with index
j by using formulas such as (3.23) to bring the two Pj factors together and make
them disappear, given that P 2

j = 1. It is immediate to check that in (3.33), the
terms without A± involving only PiPk match on both sides.

Let us now focus on the terms that are bilinear in A+ and A−. In the anti-
commutators, these occur in the cross terms with the pure involution part of the
relevant CS as a factor. Start with the right-hand side (r.h.s.). Using {P,A±} = 0
and formula (3.23) repeatedly, one finds that the bilinear terms in Cik+{Cj , Cijk}+
{Ci, Ck} simplify to

bilinears on r.h.s. =
3

8

[
PiPk, A−A+

]
− 1

8

[
PiPk, A+A−

]
+

1

4
A+PiPkA−

− 1

4
A−PiPkA+ +

1

8
Pi[A+, A−]Pk +

1

8
Pk[A+, A−]Pi.

(A.2)
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This is seen to coincide with what is found after reducing with the same tools the
sum of the bilinears in {Cij , Cjk}, the l.h.s. Remaining is the part that is quartic
in the odd generators. Let us describe for example how one deals with the terms
of the form A+A

2
−A+. Recall that [Pi, A

2
−] = [Pj , A

2
−] = [Pk, A

2
−] = 0. After the

elimination of Pj , the terms featuring A2
− in {Cij , Cjk} are found to be

(A.3)

− 1

16

(
A+A

2
−PiA+Pk+A+A

2
−PiPkA++PiA+A

2
−A+Pk+PiA+A

2
−PkA++(i ↔ j)

)
.

The terms in A2
− in {Ci, Ck} are easily read off and found to coincide with those of

{Cij , Cjk} given in (A.3) except that the first and last have opposite signs. This is
nicely compensated for by the corresponding terms in {Cj , Cijk}. Indeed, collecting
the terms in A2

− in

{Cj , Cijk}

=

{
1

4

(
A−A+Pj −A−PjA+ +A+PjA− − PjA+A−

)
−1

2
Pj ,

1

2

(
A−A+ −A+A−

)
P − 1

2
P

}(A.4)

yields

1

8

(
−A+PiPkA

2
−A+ − PiPkA+A

2
−A+ −A+A

2
−A+PiPk − A+A

2
−PiPkA+

)
= −1

8

(
A+A

2
−PiA+Pk + PiA+PkA

2
−A+ + (i ↔ j)

)
.

(A.5)

It thus follows that the terms in A2
− in {Cj , Cijk}+ {Ci, Ck} are equal to those of

{Cij , Cjk}.
One then follows the same approach with the other types in the quartic part to

complete the proof of relation (3.33). Note that when dealing with the (A−A+)
2

and (A+A−)
2 terms jointly, the ones found in {Cj , Cijk} read

1

8

(
A−A+PiPkA−A++A−A+A−PiPkA++A−PiPkA+A−A++A−A+A−A+PiPk

)
+

1

8
(A+PiPkA−A+A− +A+A−PiPkA+A− + PiPkA+A−A+A−

+A+A−A+PiPkA−) .

(A.6)

The identity (2.15), as well as (2.14), is here needed to rewrite those terms in the
form

1

8
(A−A+PiA−PkA+ +A−PiA+A−A+Pk +A+PiA−PkA+A−

+PiA+A−A+PkA− + (i ↔ k)) .
(A.7)

They are then seen to perfectly combine with the analogous terms in {Ci, Ck} to
equal what is found in {Cij , Cjk}. �

Sketch of proof of (3.34). It is immediate to see that the terms involving only the
involutions trivially vanish. Recall that Cij = 1

4

{
A−, [A+, PiPj ]

}
− 1

2PiPj . From
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Lemma 3.6 and its specialization as formula (3.24) for n = 3, we see that the
bilinear part in A− and A+ of (3.34) reduces to
(A.8)

−1

8

[
A−A+PiPj−A−PiPjA++A+PiPjA−−PiPjA+A−, Pk

]
+ cyclic permutations.

Expanding over the cyclic permutations and combining terms to use (2.14), one
arrives at
(A.9)

−1

8

[
3A−A+P+3PA+A−−PiPj{A+, A−}Pk−PjPk{A+, A−}Pi−PiPk{A+, A−}Pj

]
,

which adds up to 0 since the involutions commute with {A+, A−} = 2A0. �

The quartic part is dealt with as in the proof of (3.33) by looking separately at
the various orderings. One regroups terms arising from the different permutations
and uses formula (2.14) to shift the involutions and observe that all terms cancel.
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[16] H. De Bie, B. Ørsted, P. Somberg, and V. Souček, Dunkl operators and a family of realizations

of osp(1|2), Trans. Amer. Math. Soc. 364 (2012), no. 7, 3875–3902, DOI 10.1090/S0002-9947-
2012-05608-X. MR2901238

[17] M. Feigin and T. Hakobyan, On Dunkl angular momenta algebra, J. High Energy Phys. 11
(2015), 107, front matter+22, DOI 10.1007/JHEP11(2015)107. MR3454988

[18] A.-A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring,
Rep. Mathematical Phys. 5 (1974), no. 1, 107–112, DOI 10.1016/0034-4877(74)90019-6.
MR0419576

[19] G. E. Murphy, A new construction of Young’s seminormal representation of the symmetric
groups, J. Algebra 69 (1981), no. 2, 287–297, DOI 10.1016/0021-8693(81)90205-2. MR617079

[20] A. Ram, Seminormal representations of Weyl groups and Iwahori-Hecke algebras, Proc. Lon-
don Math. Soc. (3) 75 (1997), no. 1, 99–133, DOI 10.1112/S0024611597000282. MR1444315

[21] V. X. Genest, L. Lapointe, and L. Vinet, Supersymmetries of the rational BN -Calogero model
for non-identical particles (in preparation).

Department of Mathematics, Massachussetts Institute of Technology, Cambridge,

Massachusetts 02139

Email address: vxgenest@mit.edu
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