## On the quadratic dual of the Fomin–Kirillov algebras

HTML articles powered by AMS MathViewer

- by Chelsea Walton and James J. Zhang PDF
- Trans. Amer. Math. Soc.
**372**(2019), 3921-3945 Request permission

## Abstract:

We study ring-theoretic and homological properties of the quadratic dual (or Koszul dual) $\mathcal {E}_n^!$ of the Fomin–Kirillov algebras $\mathcal {E}_n$; these algebras are connected $\mathbb {N}$-graded and are defined for $n \geq 2$. We establish that the algebra $\mathcal {E}_n^!$ is module finite over its center (and thus satisfies a polynomial identity), is Noetherian, and has Gelfand–Kirillov dimension $\lfloor n/2 \rfloor$ for each $n \geq 2$. We also observe that $\mathcal {E}_n^!$ is not prime for $n \geq 3$. By a result of Roos, $\mathcal {E}_n$ is not Koszul for $n \geq 3$, so neither is $\mathcal {E}_n^!$ for $n \geq 3$. Nevertheless, we prove that $\mathcal {E}_n^!$ is Artin–Schelter (AS-)regular if and only if $n=2$, and that $\mathcal {E}_n^!$ is both AS-Gorenstein and AS-Cohen–Macaulay if and only if $n=2,3$. We also show that the depth of $\mathcal {E}_n^!$ is $\leq 1$ for each $n \geq 2$, conjecture that we have equality, and show that this claim holds for $n =2,3$. Several other directions for further examination of $\mathcal {E}_n^!$ are suggested at the end of this article.## References

- Nicolás Andruskiewitsch and Matías Graña,
*From racks to pointed Hopf algebras*, Adv. Math.**178**(2003), no. 2, 177–243. MR**1994219**, DOI 10.1016/S0001-8708(02)00071-3 - Michael Artin and William F. Schelter,
*Graded algebras of global dimension $3$*, Adv. in Math.**66**(1987), no. 2, 171–216. MR**917738**, DOI 10.1016/0001-8708(87)90034-X - Laurent Bartholdi, Benjamin Enriquez, Pavel Etingof, and Eric Rains,
*Groups and Lie algebras corresponding to the Yang-Baxter equations*, J. Algebra**305**(2006), no. 2, 742–764. MR**2266850**, DOI 10.1016/j.jalgebra.2005.12.006 - Hyman Bass,
*On the ubiquity of Gorenstein rings*, Math. Z.**82**(1963), 8–28. MR**153708**, DOI 10.1007/BF01112819 - Yuri Bazlov,
*Nichols-Woronowicz algebra model for Schubert calculus on Coxeter groups*, J. Algebra**297**(2006), no. 2, 372–399. MR**2209265**, DOI 10.1016/j.jalgebra.2006.01.037 - George M. Bergman,
*The diamond lemma for ring theory*, Adv. in Math.**29**(1978), no. 2, 178–218. MR**506890**, DOI 10.1016/0001-8708(78)90010-5 - Jonah Blasiak, Ricky Ini Liu, and Karola Mészáros,
*Subalgebras of the Fomin-Kirillov algebra*, J. Algebraic Combin.**44**(2016), no. 3, 785–829. MR**3552907**, DOI 10.1007/s10801-016-0688-4 - Ken A. Brown and Ken R. Goodearl,
*Lectures on algebraic quantum groups*, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002. MR**1898492**, DOI 10.1007/978-3-0348-8205-7 - Winfried Bruns and Jürgen Herzog,
*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956** - Thomas Cassidy and Michaela Vancliff,
*Generalizations of graded Clifford algebras and of complete intersections*, J. Lond. Math. Soc. (2)**81**(2010), no. 1, 91–112. MR**2580455**, DOI 10.1112/jlms/jdp057 - A. Cohen and J. Knopper,
*GAP package GBNP: Computing Gröbner bases of noncommutative polynomials*, http://www.gap-system.org/Packages/gbnp.html. - Eva Kristina Ekström,
*The Auslander condition on graded and filtered Noetherian rings*, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989, pp. 220–245. MR**1035227**, DOI 10.1007/BFb0084078 - J. S. Ellenberg, T. Tran, and C. Westerlan,
*Fox-Neuwirth-Fuks cells, quantum shuffle algebras, and Malle’s conjecture for function fields*, https://arxiv.org/pdf/1701.04541.pdf (2017). - Sergey Fomin and Anatol N. Kirillov,
*Quadratic algebras, Dunkl elements, and Schubert calculus*, Advances in geometry, Progr. Math., vol. 172, Birkhäuser Boston, Boston, MA, 1999, pp. 147–182. MR**1667680** - Sergey Fomin and Claudio Procesi,
*Fibered quadratic Hopf algebras related to Schubert calculus*, J. Algebra**230**(2000), no. 1, 174–183. MR**1774762**, DOI 10.1006/jabr.1999.7957 - I. Gelfand and V. Retakh,
*Quasideterminants. I*, Selecta Math. (N.S.)**3**(1997), no. 4, 517–546. MR**1613523**, DOI 10.1007/s000290050019 - K. R. Goodearl and R. B. Warfield Jr.,
*An introduction to noncommutative Noetherian rings*, 2nd ed., London Mathematical Society Student Texts, vol. 61, Cambridge University Press, Cambridge, 2004. MR**2080008**, DOI 10.1017/CBO9780511841699 - I. Heckenberger and L. Vendramin,
*PBW deformations of a Fomin-Kirillov algebra and other examples*, https://arxiv.org/abs/1703.10632.pdf (2017). - Peter Jørgensen,
*Local cohomology for non-commutative graded algebras*, Comm. Algebra**25**(1997), no. 2, 575–591. MR**1428799**, DOI 10.1080/00927879708825875 - Peter Jørgensen,
*Properties of AS-Cohen-Macaulay algebras*, J. Pure Appl. Algebra**138**(1999), no. 3, 239–249. MR**1691464**, DOI 10.1016/S0022-4049(98)00086-3 - Peter Jørgensen and James J. Zhang,
*Gourmet’s guide to Gorensteinness*, Adv. Math.**151**(2000), no. 2, 313–345. MR**1758250**, DOI 10.1006/aima.1999.1897 - Gregory Karpilovsky,
*Group representations. Vol. 2*, North-Holland Mathematics Studies, vol. 177, North-Holland Publishing Co., Amsterdam, 1993. MR**1215935** - A. N. Kirillov and T. Maeno,
*Extended quadratic algebra and a model of the equivariant cohomology ring of flag varieties*, Algebra i Analiz**22**(2010), no. 3, 155–176; English transl., St. Petersburg Math. J.**22**(2011), no. 3, 447–462. MR**2729944**, DOI 10.1090/S1061-0022-2011-01151-3 - E. Kirkman, J. Kuzmanovich, and J. J. Zhang,
*Noncommutative complete intersections*, J. Algebra**429**(2015), 253–286. MR**3320624**, DOI 10.1016/j.jalgebra.2014.12.046 - Günter R. Krause and Thomas H. Lenagan,
*Growth of algebras and Gelfand-Kirillov dimension*, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR**1721834**, DOI 10.1090/gsm/022 - Robert Laugwitz,
*On Fomin-Kirillov algebras for complex reflection groups*, Comm. Algebra**45**(2017), no. 8, 3653–3666. MR**3609369**, DOI 10.1080/00927872.2016.1243698 - Cristian Lenart,
*The $K$-theory of the flag variety and the Fomin-Kirillov quadratic algebra*, J. Algebra**285**(2005), no. 1, 120–135. MR**2119107**, DOI 10.1016/j.jalgebra.2004.10.015 - Thierry Levasseur,
*Some properties of noncommutative regular graded rings*, Glasgow Math. J.**34**(1992), no. 3, 277–300. MR**1181768**, DOI 10.1017/S0017089500008843 - T. Levasseur and J. T. Stafford,
*The quantum coordinate ring of the special linear group*, J. Pure Appl. Algebra**86**(1993), no. 2, 181–186. MR**1215645**, DOI 10.1016/0022-4049(93)90102-Y - Di Ming Lu, John H. Palmieri, Quan Shui Wu, and James J. Zhang,
*Koszul equivalences in $A_\infty$-algebras*, New York J. Math.**14**(2008), 325–378. MR**2430869** - Shahn Majid,
*Noncommutative differentials and Yang-Mills on permutation groups $S_n$*, Hopf algebras in noncommutative geometry and physics, Lecture Notes in Pure and Appl. Math., vol. 239, Dekker, New York, 2005, pp. 189–213. MR**2106930** - Shahn Majid,
*Hodge star as braided Fourier transform*, Algebr. Represent. Theory**20**(2017), no. 3, 695–733. MR**3651074**, DOI 10.1007/s10468-016-9661-0 - Shahn Majid and Ivan Tomašić,
*On braided zeta functions*, Bull. Math. Sci.**1**(2011), no. 2, 379–396. MR**2901005**, DOI 10.1007/s13373-011-0006-3 - J. C. McConnell and J. C. Robson,
*Noncommutative Noetherian rings*, Revised edition, Graduate Studies in Mathematics, vol. 30, American Mathematical Society, Providence, RI, 2001. With the cooperation of L. W. Small. MR**1811901**, DOI 10.1090/gsm/030 - Karola Mészáros, Greta Panova, and Alexander Postnikov,
*Schur times Schubert via the Fomin-Kirillov algebra*, Electron. J. Combin.**21**(2014), no. 1, Paper 1.39, 22. MR**3177534**, DOI 10.37236/3659 - Alexander Milinski and Hans-Jürgen Schneider,
*Pointed indecomposable Hopf algebras over Coxeter groups*, New trends in Hopf algebra theory (La Falda, 1999) Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 215–236. MR**1800714**, DOI 10.1090/conm/267/04272 - Alexander Polishchuk and Leonid Positselski,
*Quadratic algebras*, University Lecture Series, vol. 37, American Mathematical Society, Providence, RI, 2005. MR**2177131**, DOI 10.1090/ulect/037 - A. Postnikov,
*On a quantum version of Pieri’s formula*, Advances in geometry, Progress in Mathematics, vol. 172, Birkhäuser Boston, Boston, MA, 1999, pp. 371–383. - Jan-Erik Roos,
*Some non-Koszul algebras*, Advances in geometry, Progr. Math., vol. 172, Birkhäuser Boston, Boston, MA, 1999, pp. 385–389. MR**1667688** - Joseph J. Rotman,
*An introduction to homological algebra*, Pure and Applied Mathematics, vol. 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR**538169** - Louis H. Rowen,
*Ring theory. Vol. II*, Pure and Applied Mathematics, vol. 128, Academic Press, Inc., Boston, MA, 1988. MR**945718** - J. T. Stafford and J. J. Zhang,
*Homological properties of (graded) Noetherian $\textrm {PI}$ rings*, J. Algebra**168**(1994), no. 3, 988–1026. MR**1293638**, DOI 10.1006/jabr.1994.1267 - Dragoş Ştefan and Cristian Vay,
*The cohomology ring of the 12-dimensional Fomin-Kirillov algebra*, Adv. Math.**291**(2016), 584–620. MR**3459024**, DOI 10.1016/j.aim.2016.01.001 - Michel van den Bergh,
*Existence theorems for dualizing complexes over non-commutative graded and filtered rings*, J. Algebra**195**(1997), no. 2, 662–679. MR**1469646**, DOI 10.1006/jabr.1997.7052 - J. J. Zhang,
*Twisted graded algebras and equivalences of graded categories*, Proc. London Math. Soc. (3)**72**(1996), no. 2, 281–311. MR**1367080**, DOI 10.1112/plms/s3-72.2.281

## Additional Information

**Chelsea Walton**- Affiliation: Department of Mathematics, The University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
- MR Author ID: 879649
- Email: notlaw@illinois.edu
**James J. Zhang**- Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
- MR Author ID: 314509
- Email: zhang@math.washington.edu
- Received by editor(s): July 6, 2018
- Published electronically: February 11, 2019
- Additional Notes: The first author was partially supported by a research fellowship from the Alfred P. Sloan foundation, and by the U.S. National Science Foundation grants #DMS-1663775, 1903192. This work was completed during her visits to the University of Washington–Seattle.

The second author was partially supported by U.S. National Science Foundation grant #DMS-1700825.

Part of this work was completed during the authors’ attendance at the “Quantum Homogeneous Spaces” workshop at the International Centre for Mathematical Sciences in Edinburgh, Scotland; the authors appreciate the institution staff for their hospitality and assistance during these stays. - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**372**(2019), 3921-3945 - MSC (2010): Primary 16W50, 16P40, 16P90, 16E65
- DOI: https://doi.org/10.1090/tran/7781
- MathSciNet review: 4009423