
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 372, Number 6, 15 September 2019, Pages 4293–4311
https://doi.org/10.1090/tran/7782

Article electronically published on April 4, 2019

CONJUGACY CLASSES OF COMMUTING NILPOTENTS

WILLIAM J. HABOUSH AND DONGHOON HYEON

Abstract. We consider the space Mq,n of regular q-tuples of commuting
nilpotent endomorphisms of kn modulo simultaneous conjugation. We show
that Mq,n admits a natural homogeneous space structure, and that it is an
affine space bundle over Pq−1. A closer look at the homogeneous structure re-
veals that, over C and with respect to the complex topology, Mq,n is a smooth
vector bundle over Pq−1. We prove that, in this case, Mq,n is diffeomorphic to
a direct sum of twisted tangent bundles. We also prove that Mq,n possesses a
universal property and represents a functor of ideals, and we use it to identify
Mq,n with an open subscheme of a punctual Hilbert scheme. Using a result
of A. Iarrobino’s, we show that Mq,n → Pq−1 is not a vector bundle, hence
giving a family of affine space bundles that are not vector bundles.

1. Introduction

The space of commuting matrices {(A,B) ∈ gln ⊕ gln | [AB] = 0}, oft called the
commuting variety, has received a fair amount of attention, especially in regard to
the irreducibility question [MT52,MT55,Ger61,GS00]. The nilpotent commuting
variety is the closed subvariety consisting of commuting nilpotent pairs, which has
also been researched extensively by several authors: Baranovsky [Bar01] (char(k) =
0 or char(k) > n), Basili [Bas03] (char(k) = 0 or char(k) ≥ n/2) and Premet [Pre03]
(for all characteristics) showed that the space is irreducible and has dimension
n2 − 1. Baranovsky went on to conjecture that the corresponding variety for any
complex semisimple Lie algebra g is equidimensional of dimension dim g. Indeed, a
more general statement is proven in the aforementioned article by Premet: When
the characteristic of the algebraically closed base field k is good for a connected
reductive group G over k and the derived group of G is simply connected, each
irreducible component of

{(X,Y ) ∈ g | [XY ] = 0, X, Y nilpotent}
has dimension equal to that of the derived group [G,G].

In this article, we shall be concerned with the space Mq,n of regular q-tuples
of commuting nilpotents N1, . . . , Nq ∈ End(V ) up to simultaneous conjugation,
where k is an algebraically closed field and V is a k-vector space of dimension
n. A q-tuple (N1, . . . , Nq) is said to be regular if Nn−1

i �= 0 for some i. It is
rather surprising that this natural space, with a definite moduli theory flavor, has
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completely evaded any research activity. Indeed, it turns out that Mq,n exhibits a
rich and interesting geometry which will be revealed throughout the paper. In the
rest of the introduction, we shall give a detailed overview of our results and a road
map for the paper.

We begin by associating with a q-tuple (N1, . . . , Nq) of commuting nilpotents in
End(V ), a k-algebra homomorphism

ρ : k[x1, . . . , xq] → End(V ),
xi → Ni.

That is, we have an associated representation of Aq,n = k[x1, . . . , xq]/〈x1, . . . , xq〉n.
In Section 2, we shall prove that two cyclic representations ρ, ρ′ are isomorphic if
and only if ker(ρ) = ker(ρ′) (Proposition 2.4). Moreover, an annihilator ker(ρ) of
a regular representation is of the form α(q1) for some automorphism α of Aq,n,
where q1 = 〈x2, x3, . . . , xq〉 (Lemma 2.9). Hence the space Mq,n of regular q-
tuples of commuting nilpotents modulo conjugation can be realized as the orbit
space Aut(Aq,n)/G1, where G1 is the stabilizer of q1. The subsequent sections are
devoted to the study of the structure of this orbit space.

In Section 3, we define relevant algebraic groups and gather some basic properties
which will be employed in the study of Mq,n. The parabolic group P1 = GLq(k)∩
G1, the group Iq,n = ker(Aut(Aq,n) → GLq(k)) of linearly trivial automorphisms,
and the quotient group Iq,n/(Iq,n ∩G1) play especially important roles. These are
affine group schemes, and we compute their dimensions.

In Section 4, we show that Mq,n as a homogeneous space is isomorphic to
an affine space bundle over Pq−1 with fiber isomorphic to the quotient group
Iq,n/(Iq,n ∩G1) (Proposition 4.3).

Proposition. We have an isomorphism Mq,n 
 GLq(k)×P1Iq,n/(Iq,n∩G1), where
P1 acts on Iq,n/(Iq,n ∩ G1) by conjugation. In particular, Mq,n is an equivariant

bundle of relative dimension (q − 1)(n− 2) over P
q−1
k .

Due to this proposition, it is clear that the P1-space structure of the quotient
group Iq,n/(Iq,n ∩ G1) is the key for understanding the bundle structure of Mq,n

over P
q−1. To this end, we further investigate the structure of groups Iq,n and

Iq,n/(Iq,n ∩G1) in Section 5. Corollary 5.4 gives a coordinate system under which
Iq,n/(Iq,n ∩ G1) is identified with an affine space, and this allows us to study the
affine bundle structure of Mq,n in an explicit manner in the subsequent section.

In Section 6, we build on the results from Section 5 and study the topology
of Mq,n as a complex manifold over C. Algebraically, the P1-space structure of
Iq,n/(Iq,n∩G1) is not very well behaved. But once we pass to the smooth category,
the P1-structure is easy to understand due to our work in Section 5. We prove the
following.

Theorem. The moduli space Mq,n as a smooth fiber bundle is isomorphic to the

direct sum
⊕n−1

j=2 TPq−1(+j) of twisted tangent bundles.

In Section 7, we shall prove that Mq,n is a fine moduli scheme in the sense of
algebro-geometric moduli theory. The space Mq,n is an orbit space Aut(Aq,n)/G1

parametrizing length n ideals of Aq,n, and we can show that the induced sheaf I(q1)
on it has a universal property. The next theorem follows from this.
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Theorem. The space Mq,n is a fine moduli scheme for the moduli functor Mq,n :

Sch/k → Sets from the category of k-schemes to the category of sets, defined by

Mq,n(S) = {Ideal sheaves I ⊂ OS ⊗k Aq,n ARR and flat over S},
where ARR is short for “annihilates regular representations” (Definition 7.1).

By using the universal property, we can readily identify Mq,n with an open
subscheme of a suitable Hilbert scheme. Our main theorem below will be proved
in Section 8.

Theorem. Mq,n is isomorphic to an open subscheme of the punctual Hilbert
scheme Hilbn[0] P

q.

This implies that M2,n has Hilbn[0] P
2 as its completion since the latter is ir-

reducible (cf. [Bar01, Theorem 7]). In general, the punctual Hilbert schemes are
reducible and Mq,n sits inside a particular component [Iar72b].

Finally, we use a theorem by Iarrobino [Iar73] and show the following.

Theorem. Mq,n → Pq−1 is not a vector bundle in the algebraic category for n ≥ 4.

This is quite interesting on its own: Examples of affine space fiber bundles that
are not vector bundles are quite rare.

2. The Artinian algebra Aq,n and its representations

With a q-tuple (N1, . . . , Nq) of commuting nilpotents in End(V ), one can asso-
ciate a k-algebra homomorphism

φ : k[x1, . . . , xq] → End(V ),
xi → Ni.

Since Ni’s are nilpotent, ker(φ) contains the ideal Jq,n generated by all forms of
degree n in the variables x1, . . . , xq. Of course, Jq,n = mn

0 , where m0 is the maximal
ideal generated by x1, . . . , xq.

Definition 2.1. Let Aq,n = k[x1, . . . , xq]/Jq,n, and let m = m0/Jq,n. We shall call
Aq,n the ring of n-nil polynomials.

Clearly Aq,n is an Artinian k-algebra of k-dimension
(
n+q−1
n−1

)
.

A representation of Aq,n will mean a k-algebra homomorphism ρ : Aq,n →
End(V ). Through a representation ρ, V is endowed with an Aq,n-module struc-
ture. We denote it by Vρ. The correspondence between q-tuples of commuting
n-nilpotents in End(V ) and representations of Aq,n is bijective. For this reason, we
consider

Nq,n :=

{
(N1, . . . , Nq) ∈

q∏
A

n2

∣∣∣∣∣ Nn
i = 0, [Ni, Nj ] = 0 ∀i, j

}

as the variety of representations of Aq,n in V , regarded as a subvariety of the q-fold
product of the affine n2-space with underlying vector space End(V ).

Definition 2.2. A representation ρ is called regular if ρ(un−1) �= 0 for some u ∈ m.
It is said to be cyclic if there is a vector v ∈ V such that ρ(Aq,n) · v = V .

Definition 2.3. A q-tuple (N1, . . . , Nq) of commuting nilpotents in End(V ) is said
to be regular (resp., cyclic) if the corresponding representation ρ : Aq,n → End(V )
determined by ρ(xi) = Ni is regular (resp., cyclic).
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Evidently a regular representation is cyclic. Also, the regular (resp., cyclic)
representations form a Zariski open subset N r

q,n (resp., N c
q,n) of the variety

Nq,n = {(N1, . . . , Nq) ∈ Mn(k)
⊕q | [NiNj ] = 0, Nn

i = 0 ∀i, j}
of q-tuples of commuting nilpotent matrices since it is the complement of the van-
ishing locus of a collection of suitable minors. Note that this does not mean that
the nonregular locus is determinantal since the nilpotency condition defining Nq,n

is in general not determinantal. We write Mq,n (resp., Mc
q,n) for the set of equiva-

lence classes of points of N r
q,n (resp., N c

q,n) under simultaneous conjugation. Clearly
Mq,n is a proper subset of Mc

q,n. Note that we will drop the superscript “r” when
we pass from N r

q,n to the quotient Mq,n for notational convenience later on.
Given a representation ρ, we write A(ρ) for the annihilator in Aq,n of Vρ.

Proposition 2.4. Let ρ and ρ′ be two cyclic representations of Aq,n. Then Vρ and
Vρ′ are isomorphic as Aq,n-modules if and only if A(ρ) = A(ρ′). The isomorphism
classes of cyclic representations of Aq,n are in bijective correspondence with ideals
in Aq,n of codimension n.

Proof. If ρ is cyclic with cyclic generator v, then the annihilator of v is equal
to the annihilator of Vρ, and the map a �→ av induces an isomorphism between
Aq,n/A(ρ) and Vρ. It is trivial that if two representations are isomorphic, then
their annihilators are equal. All that must be shown is that if I is an ideal in
Aq,n of codimension n, then there is a cyclic representation (ρ, V ) with annihilator
I = A(ρ).

If I is of codimension n, then Aq,n/I is a vector space of dimension n, so there
is an isomorphism (of k-vector spaces) θ : Aq,n/I → V. Define ρ by the equation
ρ(a)v = θ(aθ−1(v)). This gives a representation of Aq,n with cyclic vector θ(1). �

Lemma 2.5. Let (Z1, . . . , Zq) be a regular q-tuple, i.e., Zn−1
i �= 0 for some i. Then

(1) any Zj is a polynomial in Zi, and
(2) if (ρ, V ) is the corresponding representation, then there is a k-algebra iso-

morphism ρ(Aq,n) 
 k[z]/znk[z].

Proof. Suppose that Z1 is of rank n − 1, and let v be a vector not annihilated by
Zn−1
1 . Then {v, Z1v, Z

2
1v, . . . , Z

n−1
1 v} form a basis of V : If

∑n−1
i=0 aiZ

iv = 0 with
a0 = a1 = · · · = am−1 = 0 and am �= 0, then we would have

Zn−m−1(amZmv) = −Zn−m−1(am+1Z
m+1v + · · ·+ an−1Z

n−1v) = 0,

which is contradictory of our choice of v. With respect to this ordered cyclic basis,
Z1 is represented by the n×n matrix X, with 1 on the subdiagonal and 0 elsewhere.
An elementary computation shows that any n × n matrix commuting with X is a
polynomial in X. The first item follows, and we let fi denote the polynomial
without a constant term such that fi(Z1) = Zi. Then the kernel of ρ is generated
by xi − fi(x1), so ρ(Aq,n) is isomorphic to Aq,n/〈x2 − f2(x1), . . . , xq − fq(x1)〉 

k[x1]/〈xn

1 〉. �

Definition 2.6. We let GAq,n denote the algebraic group of k-algebra automor-
phisms of Aq,n.

Note that GAq,n is a linear algebraic group since it is a closed subgroup of
GL(Aq,n), where Aq,n is viewed as a finite-dimensional k-vector space.
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Definition 2.7. A subset {u1, . . . , ur} ⊂ Aq,n will be called a system of nil pa-
rameters of Aq,n of length r if the Aq,n/〈u1, . . . , ur〉 is isomorphic to Aq−r,n. The
variables x1, . . . , xq are called the standard nil parameters.

Remark 2.8. Throughout this paper, we shall let q1 denote the ideal of Aq,n gen-
erated by x2, . . . , xq.

Lemma 2.9. Let ρ be a regular representation. Then there is a system of nil
parameters, u1, . . . , uq such that A(ρ) is the ideal generated by u2, . . . , uq. Moreover,
there is an automorphism α ∈ GAq,n such that α(xi) = ui and α(q1) = A(ρ).

Proof. Since ρ is regular, ρ(u1)
n−1 �= 0 for some u1 ∈ m. We have seen that this

implies that the image of ρ is of the form k[z]/znk[z], where ρ(u1) is the class of z.
Let q = ker(ρ). Now ρ induces the map ϕ : m/m2 → (z̄)/(z̄2) of cotangent spaces.
Choose v2, . . . , vq ∈ m, whose images in m/m2 form a basis for the kernel of ϕ.
Then there is a polynomial fj(z) ∈ z2k[z] such that ρ(vj) ≡ fj(z) modulo znk[z].
Hence vj − fj(u1) ∈ q, and it is congruent to vj modulo m2. Let uj = vj − fj(u1),
j = 2, . . . , q. The elements u1, u2, . . . , uq are a basis for m/m2, so they generate
Aq,n as a k-algebra. That is, they are a set of nil parameters for Aq,n. The elements
u2, . . . , uq generate an ideal q′ ⊆ q and Aq,n/q

′ 
 k[z]/znk[z]. Hence by dimension
count, q = q′. It immediately follows that we may define an automorphism α ∈
GAq,n such that α(xi) = ui and α(q1) = q = A(ρ). �

Lemma 2.10. Let I be a colength n ideal of Aq,n. The following are equivalent.

(i) I is the annihilator of a regular representation.
(ii) Aq,n/I 
 k[z]/〈zn〉, where k[z] is a polynomial ring in one variable z over

k.
(iii) dimk I/m

2 ∩ I = q − 1.

Proof. If I is the annihilator of a regular representation, then by Lemma 2.9,
Aq,n/I 
 k[u1]/〈un

1 〉. Suppose that there is an isomorphism φ : Aq,n/I → k[z]/〈zn〉.
Then there exist polynomials fj of degree n without constant terms such that
xj = fj(ζ), where ζ = φ−1(z) equal modulo m2 to

∑
aixi �= 0 (since otherwise

ζn−1 = 0). Let cj be the linear term coefficient of fj . Modulo m2, xj = cjζ and
ζ =

∑
aixi, so ζ = (

∑
aici)ζ in the k vector space m/m2, i.e.,

∑
aici = 1. Hence

we see that I/I ∩ m2 is spanned by x1 − c1ζ, . . . , xq − cqζ with a single relation∑
ai(xi − ciζ) = 0.
Assume (iii), and let {u2, u3, . . . , uq} ⊂ I give rise to a basis of I/I∩m2. Expand

it to a basis {u1, u2, . . . , uq} ofm/m2 with a linear form u1. ThenAq,n/〈u2, . . . , uq〉

k[u1]/〈un

1 〉, so I = 〈u2, . . . , uq〉 by dimension reasons. Then I is the annihilator of
the representation ρ : Aq,n → End(Aq,n/I), ρ(xi) = ui· , which is regular since

un−1
1 �= 0. �

Definition 2.11 ([Kle98, She09]). An ideal of Aq,n satisfying the conditions in
Lemma 2.10 is called curvilinear or aligned.

Remark 2.12. Note that if I is curvilinear, then the type of I is

Tn := (1, 1, . . . , 1︸ ︷︷ ︸
n

, 0, 0, . . .),

i.e., dimk(Aq,n)j/Ij = 1 for j = 0, . . . , n− 1 and 0 otherwise, where Ij is the set of
degree j initial forms of members of I. This follows since there is a graded algebra
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isomorphism Aq,n/inI 
 k[z]/〈zn〉, where inI is the graded ideal generated by the
initial forms of I. There is a decomposition

Hilbn R =
⋃

|T |=n

ZT

of the Hilbert scheme of colength n ideals ofR = k[[x1, . . . , xq]] according to the type

T , and the r = 2 case has been extensively studied [Iar72a, Iar73, Iar77,G9̈0]. They
study the component of the punctual Hilbert scheme that contains the stratum
ZTn

. This is closely related to our results in Section 8.

3. Preliminary results on the algebraic groups of automorphisms

of Aq,n

We let Ω denote the k-vector subspace of Aq,n generated by x1, . . . , xq. By
abusing notation, we shall identify Ω with the cotangent space m/m2. Let σ be
an automorphism of Aq,n. Then σ(m) = m, so σ induces a linear automorphism
of Ω. The map which assigns to σ the associated automorphism of Ω 


∐q
i=1 kx̄i

is clearly a group morphism from the group GAq,n of automorphisms of Aq,n to
GL(Ω).

Definition 3.1. Let π : GAq,n → GL(Ω) denote the morphism which sends the
automorphism σ of Aq,n to the associated linear automorphism in GL(Ω). Also, we
identify GL(Ω) with GLq(k) by using the basis x̄1, . . . , x̄q.

Clearly π is surjective: Let Ω1 be the subspace of Ω spanned by x2, . . . , xq. Any
α = (αij) ∈ GLq(k) naturally defines an element α̃ ∈ GAq,n defined by α̃(xi) =∑

j αijxj . This defines a section χ : GLq(k) → GAq,n, and we frequently identify

GLq(k) with its image in GAq,n as the group of linear automorphisms of Aq,n. An
automorphism σ ∈ GAq,n will be called linearly trivial if it is in the kernel of π. If σ
is linearly trivial, there are quadratic expressions si(x1, . . . , xq) ∈ m2, i = 1, . . . , q
such that σ(xi) = xi − si. We let Iq,n denote the kernel of π:

(3.1) 1 → Iq,n → GAq,n → GLq(k) → 1.

We also wish to describe the stabilizer G1 of the ideal q1. Note that π carries G1

to the stabilizer P1 in GLq(k) of the codimension 1 space Ω1 in Ω = m/m2. Then
the exact sequence (3.1) restricts to the exact sequence

(3.2) 1 → Iq,n ∩G1 → G1 → P1 → 1.

The section χ carries P1 to the stabilizer of Ω1 in GLq(k). As a consequence,
GAq,n and G1 are compatibly semidirect products GLq(k) ·Iq,n and P1 ·(Iq,n∩G1),
respectively, so the action of an element of GLq(k) on Aq,n is determined by its linear
action on Ω.

We first offer some preliminary results on the algebraic groups involved.

Proposition 3.2. The exact sequences (3.1) and (3.2) with the section χ induce
isomorphisms of varieties

GAq,n 
 GLq(k)× Iq,n,
G1 
 P1 × (Iq,n ∩G1).
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Moreover, the following hold:

(1) The groups Iq,n and Iq,n ∩G1 are unipotent. Let Ij
q,n denote the subgroup

of Iq,n consisting of elements which reduce to the identity modulo mj+2.
Each of these groups is normal in GAq,n

(2) There is an isomorphism of additive group schemes Ij
q,n/Ij+1

q,n 

(mj+2/mj+3)q.

(3) There are natural isomorphisms of varieties

Iq,n 
 (m2)(q),(3.3)

Iq,n ∩G1 
 m
2 × (q1m)(q−1).(3.4)

The exponents in parentheses represent iterated Cartesian products.
(4) The groups GAq,n and G1 are connected affine group schemes.

Proof. The two initial product decompositions follow from the existence of the
section χ. We define a map α from Iq,n to (m2)(q) as follows: For σ ∈ Iq,n, σ(xi) =
xi+ui for some unique element ui ∈ m2. Let α(σ) = (u1, . . . , uq), the corresponding
q-tuple of elements of m2. Conversely, given any such q-tuple, consider the elements
x′
i = xi + ui. Let A = k[x′

1, . . . x
′
q] be the subalgebra of Aq,n generated by these

elements. The x′
i generate m/m2, so the associated graded of A and that of Aq,n are

the same. Hence the two algebras are of the same dimension and the x′
i constitute

a system of nil parameters. Thus there is an automorphism of Aq,n sending xi to
x′
i, so α is surjective as well as injective. This establishes (3.3).
The element σ ∈ Iq,n is in Iq,n ∩ G1 if and only if σ(xi) ∈ q1 for i ≥ 2. Now

σ(xi) = xi + ui, with ui ∈ m2, so σ ∈ Iq,n ∩G1 if and only if ui ∈ q1 ∩m2 for each

i ≥ 2. Said otherwise, σ ∈ Iq,n ∩ G1 if and only if α(σ) ∈ m2 × (q1m)(q−1). Thus
(3.4) is established.

For the first item, if Iq,n is unipotent, then its subgroup Iq,n ∩ G1 is as well. To
see that Iq,n is unipotent, we examine the filtration of item 1. The surjection Aq,n →
Aq,r, r < n, induces a surjective map GAq,n → GAq,r with kernel Ir−2

q,n , whence

each of the groups is normal in GAq,n . Hence if σ ∈ Ij
q,n, it induces the identity on

Aq,n/m
j+2. Consequently, σ(xi) = xi + ui(x1, . . . , xq), ui ∈ mj+2. Suppose that τ

is another such automorphism, and that τ (xi) = xi+vi(x1, . . . , xq) with vi ∈ mj+2.
Then σ◦τ (xi) = σ(xi+vi(x1, . . . , xq)) = xi+ui(x1, . . . , xq)+vi(x1+u1, . . . , xq+uq).
Now vi is a polynomial with lowest degree terms of degree at least j+2, so we may
write vi(x1+ui, . . . , xq+uq) = vi(x1, . . . , xq)+

∑
(ν1,...,νq)

c(ν1,...,νq)u
ν1
1 . . . u

νq
q . In this

last expression, the q-tuples (ν1, . . . , νq) have nonnegative integral entries with at
least one positive entry, and the coefficients c(ν1,...,νq) are polynomials in the xi with
no constant terms. Consequently, since ui is of degree at least j+2, all terms except
the first are in mj+3. In particular, σ ◦ τ (xi) ≡ xi + ui(x1, . . . , xq) + vi(x1, . . . , xq)

mod(mj+3). For σ ∈ Ij
q,n, let αj(σ) = (σ(x1)− x1, . . . , σ(xq)− xq), where the

overline denotes the class in mj+2/mj+3. The preceding calculation shows that
αj is a homomorphism to the additive group scheme (mj+2/mj+3)q. For any q-
tuple (u1, . . . , uq) with all of the ui ∈ mj+2, the elements xi + ui are a system
of nil parameters, so there is an automorphism σ sending xi to xi + ui for each
i. It follows that αj is surjective. Hence Iq,n admits a finite filtration so that
successive quotients are group schemes of additive type isomorphic to the vector
spaces mj+2/mj+3. Hence it is unipotent and connected. �
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We compute the dimensions of the groups Iq,n and G1 ∩ Iq,n and the relevant
homogeneous spaces.

Proposition 3.3.

(1) dim(Iqn) = q(
(
q+n−1
n−1

)
− (q + 1)),

(2) dim(Iq,n ∩G1) =
(
q+n−1
n−1

)
+ (q − 1)(

(
q+n−1
n−1

)
− (q + 1)− (n− 2)),

(3) dim(GAq,n) = q
(
q+n−1
n−1

)
− q,

(4) dim(G1) = q
(
q+n−1
n−1

)
− qn+ n− 1,

(5) dim(GAq,n /G1) = (q − 1)(n− 1),
(6) dim(Iq,n/(Iq,n ∩G1)) = (q − 1)(n− 2).

Proof. First, note that Aq,n is graded and isomorphic as a vector space to the sum
of the first n − 1 symmetric powers of the vector space of dimension q. Hence its
dimension is equal to the dimension of the forms of degree n− 1 in q+1 variables,
that is,

(
q+n−1
n−1

)
. Hence the dimension of m is

(
q+n−1
n−1

)
−1, and the dimension of m2

is
(
q+n−1
n−1

)
− q − 1.

Now we wish to compute the dimensions of the ideals q1 and q1m. Now Aq,n/q1 

k[z̄], where z̄ is the residue class of z in k[z]/znk[z]. The isomorphism sends the
residue class of x1 to z̄. Hence dim(q1) =

(
q+n−1
n−1

)
− n.

Now note that q1 ∩ m2 = q1m. To see this, note that an element of m2 can be
written in the form x2

1f(x1) + u with u ∈ q1m. Thus modulo q1, this just becomes
(z̄)2f(z̄), so it lies in q1 if and only if x2

1f(x1) = 0. This means that q1 ∩m2 = q1m.
Hence we may compute the dimension of q1m from the exact sequence

0 → q1m → m2 → (z̄)2k[z̄] → 0.

As a consequence, dim(q1m) =
(
q+n+1
n−1

)
− (q + 1)− (n− 2) =

(
q+n+1
n−1

)
− q −n+ 1.

To compute the dimensions of the groups Iq,n and Iq,n ∩ G1, we recall the
isomorphisms (3.3) and (3.4). Hence as a variety, Iq,n is isomorphic to the q-fold
Cartesian product (m2)q. That is, it is isomorphic to affine k-space of dimension
q(
(
q+n−1
n−1

)
− (q + 1)).

Applying (3.4), Iq,n∩G1 is isomorphic to the product of the vector space m2 and
the (q− 1)th Cartesian power of the affine space q1m. We find that dim(Iq,n ∩G1)
is (

q + n− 1

n− 1

)
− (q + 1) + (q − 1)(

(
q + n− 1

n− 1

)
− (q + 1)− (n− 2)).

Since dim(GLq(k)) = q2 and dim(P1) = q2 − q + 1, we may use the exact se-
quences (3.1) and (3.2) to compute the dimensions of GAq,n and G1. The formulae
in the theorem can now be obtained from some basic algebra computations com-
bined with these results. �

4. The quasihomogeneous structure on Mq,n

Due to Lemma 2.9, we can identify the space Mq,n with the orbit GAq,n · q1,
giving it a homogeneous space structure. From now on, we will use the following.

Definition 4.1. Mq,n means the homogeneous space GAq,n · q1 
 GAq,n /G1.

Lemma 4.2. There is a natural fibration π : Mq,n → Mq,n−1 with fiber isomorphic
to Aq−1.
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Proof. Note that there is a natural projection π : Aq,n → Aq,n−1 sending I + mn

to I + mn−1. This induces a homomorphism ι : GAq,n → GAq,n−1, which in turn
leads to a surjective map of orbits Mq,n = GAq,n · q1 → GAq,n−1 · q1 = Mq,n−1.
Define

Un
i = {I ∈ Mq,n |xn−1

i �∈ I}.
Let I ∈ Un

i . By Lemma 2.5 applied to the regular q-tuple (x1. , . . . , x2. ) of endomor-

phisms xj ·(a+I) = xj ·a+I of Aq,n/I, there exist polynomials fj(t) =
∑n−1

s=1 ajst
s
i

such that xj · = fj(xi·) or xj − fj(xi) ∈ I ∀j �= i. Since 〈xj − fj(x1)〉j �=i has the
same k-dimension as I, it equals I; i.e., I is completely determined by the coeffi-
cients ajs of fj , and it follows that Un

i 
 A(q−1)(n−1). The fibration π, in terms of

the coordinates (ajs), is simply the projection (ajs)
n−1
s=1 �→ (ajs)

n−2
s=1 , and the lemma

follows. �

Proposition 4.3. Mq,n is an equivariant bundle of relative dimension (q−1)(n−2)

over P
q−1
k . More precisely, we have an isomorphism

Mq,n 
 GLq(k)×P1 Iq,n/(Iq,n ∩G1).

Here, P1 acts on Iq,n/(Iq,n ∩G1) by conjugation; i.e., p · [σ] = [p ◦ σ ◦ p−1], where
◦ denotes the multiplication (composition) in the automorphism group GAq,n.

Proof. Since Iq,n is normal in GAq,n, P1 normalizes it, and we may consider the
semidirect product H = P1 · Iq,n. Recall the exact sequence (3.2). Since P1 can
be viewed as a subgroup of GAq,n as above, we may write the stabilizer G1 as the
semidirect product P1 · (Iq,n ∩ G1). In particular, G1 ⊆ H. By Lemma 2.9, GAq,n

operates transitively on Mq,n, which can be written as the orbit GAq,n · q1 =
GAq,n /G1.

Since G1 ⊆ H, there is a natural GLq(k)-equivariant fibration

� : GAq,n /G1 �→ GAq,n /H

with the base GAq,n /H = (GAq,n /Iq,n)/(H/Iq,n) = GLq(k)/P1 = P
q−1
k . Since �

is a P1-equivariant fibration, it equals GLq(k)×P1 �−1(P1). The fiber �−1(P1) is
H/G1, where the groups on the top and the bottom are the semidirect products
P1 ·Iq,n and P1 ·(Iq,n∩G1), respectively. Hence the fiber is isomorphic to Iq,n/Iq,n∩
G1. It has dimension (q−1)(n−2) by Lemma 3.3. Note that P1 acts on P1 ·Iq,n/P1 ·
(Iq,n ∩G1) by left multiplication and on Iq,n/Iq,n ∩G1 by conjugation, and a P1-
space isomorphism from the former to the latter is given by [px] �→ [pxp−1]. �

Remark 4.4.

(1) Alternatively, one can think of the equivariant bundle map � as the com-
position

Mq,n → Mq,n−1 → · · · → Mq,2,

where each arrow is the fibration in Lemma 4.2. This is induced from the
natural projection Aq,n → Aq,2, and since GAq,2 
 GLq, the induced orbit
map GAq,n/G1 → GAq,2/G1 
 GLq /P1 is indeed the fibration � above.

(2) A colength 2 curvilinear ideal of Aq,2 is graded since nil-parameters of Aq,2

are linear. Conversely, generators of a graded curvilinear ideal of colength
n are necessarily linear since they must have a linear term (curvilinearity)
and are homogeneous at the same time. Hence the ideals parametrized by
Mq,2 are precisely the graded ideals of colength 2. Via this correspondence,
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the fibration� can be thought of as I �→ gr(I), where gr(I) is the associated
graded ideal generated by the initial forms of members of I. And there is
a “zero” section of � defined simply by sending gr(I) to itself (forgetting
the grading). This will be used in the proof of Theorem 6.3.

In order to complete our examination of the structure ofMq,n, we shall determine
the structure of the fiber Iq,n/(Iq,n∩G1) as a P1-variety. Then by examining the P1-
space structure over k = C, we shall see that Mq,n is diffeomorphically isomorphic
to a sum of twisted tangent bundles over Pq−1.

5. More on the group Iq,n
We wish to understand the structure of Mq,n as a fiber bundle over P

q−1
k .

By Proposition 4.3, it is a homogeneous fiber space whose fiber is the P1-space
Iq,n/(Iq,n ∩ G1). Note that Iq,n/(Iq,n ∩ G1) has a P1-structure through conjuga-
tion since P1 normalizes both groups. To analyze Mq,n, it is crucial to understand
the P1-space structure of Iq,n/(Iq,n ∩G1).

We begin with a product decomposition for Iq,n and an invariant version of (3.3).
First, we consider a group Γ ⊆ Iq,n, which we will demonstrate to be a geometric
complement to Iq,n ∩G1.

Definition 5.1. Let Γ be the subgroup of Iq,n defined

Γ = {σ ∈ GAq,n : σ(x1) = x1, σ(xi) = xi + x2
1fi(x1), i ≥ 2}.

Proposition 5.2. The multiplication morphism μ : Γ × (Iq,n ∩ G1) → Iq,n is an
isomorphism of varieties.

Proof. Since Γ ∩ (Iq,n ∩ G1) = {e}, it is clear that μ is an injective morphism of
varieties. Since each fi has degree 2 ≤ deg(fi) ≤ n − 1, dimΓ = (q − 1)(n − 2).
Hence by Proposition 3.3, the dimension of Γ×(Iq,n∩ G1) is equal to the dimension
of Iq,n. We may regard Iq,n as a Γ× (Iq,n ∩G1)-space with the action (u, v) · g =
ugv−1. Then Im(μ) is the Γ× (Iq,n ∩G1)-orbit of e. Hence it is open in its closure,
which is Iq,n. Since it is a product of affine spaces, it is affine and hence its
complement is, if nonempty, of codimension 1 given as the zero set of a polynomial
f on Iq,n. But f | Im(μ) is a nonconstant unit, which, by a well-known theorem of
Rosenlicht, is a character. This is impossible since Iq,n is unipotent and has only
trivial characters. �

Now consider the ring k[z] where zn = 0. Any automorphism φ of k[z] is uniquely
determined by φ(z). The element φ(z) can be any element in zk[z] not in z2k[z].
Refer to such elements as generating elements. If u is a generating element, then
un−1 �= 0 and un = 0. Given any two generating elements u1 and u2, there is a
unique automorphism φ such that φ(u1) = u2. As before, we let Ω1 denote the
subspace of Aq,n generated by x2, . . . , xq.

Proposition 5.3. Let q′ be an ideal in Aq,n generated by a system of nil parameters
such that q′ = Ω1 modulo m2. Then there is a unique homomorphism φ : Aq,n �→
k[z] such that φ(x1) = z and Ker(φ) = q′. Moreover, there is a uniquely determined
linear map γ : Ω1 → x2

1k[x1] ⊂ Aq,n such that the elements u − γ(u), ∀u ∈ Ω1,
generate q′. In particular, the elements xi−γ(xi), i > 1, are a set of nil parameters
of length q − 1 generating q′.
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Proof. Since q′ is generated by a set of nil parameters of length q − 1, there is an
isomorphism β : Aq,n/q

′ → k[z]. Let φ0 be the composition of β with the natural
surjection Aq,n → Aq,n/q

′. Since φ0 is surjective and the image of its kernel q′ in
m/m2 is equal to the image there of Ω1, φ0(x1) must be a generating element.
Hence there is a unique automorphism θ of k[z] carrying φ0(x1) to z. Replacing φ0

with θ ◦ φ0 = φ, we may assume that φ(x1) = z.
Since q′ = Ω1 modulo m2, it follows that, for each u ∈ Ω1, there is an element

u − su with su ∈ m2 such that φ0(u − su) = 0. Now φ carries m2 to z2k[z], so
φ(u) = φ(su) is a polynomial in z with neither a constant nor a linear term. Let
φ(u) = fu(z). Define a map γ : Ω1 �→ x2

1k[x1] ⊂ Aq,n by setting γ(u) equal to
fu(x1). It is clear that γ is a linear map since it is a composition of the linear map
φ|Ω1 and the inverse of the isomorphism k[x1] �→ k[z]. Moreover, φ(u − γ(u)) = 0
for all u; that is, these elements are in q′. Consider the elements xi − γ(xi), i > 1.
These elements clearly constitute a system of nil parameters of length q− 1. Hence
they generate an ideal of codimension n which is contained in q′. It follows that
they generate q′.

Since q′ is generated by a system of nil parameters of length q − 1—namely,
x′
i = xi − γ(xi)—we have Aq,n = k[x1, x

′
2, . . . x

′
q], and the uniqueness of φ follows

since φ is determined by φ(x1) = z and φ(x′
i) = 0, i = 2, 3, . . . , q. �

Note that there is an obvious isomorphism between Γ and Homk(Ω1, z
2k[z]), and

we shall identify the two in the following corollary.

Corollary 5.4. There is a natural isomorphism of varieties ψ : Iq,n/(Iq,n∩ G1) →
Homk(Ω1, z

2k[z]).

Proof. Consider the morphism

ψ̃ : Iq,n
μ−1

−→ Γ× (Iq,n ∩G1)
π1−→ Γ,

where μ is the multiplication morphism (which is an isomorphism due to Propo-
sition 5.2) and π1 is the projection onto the first factor. The subgroup Iq,n ∩ G1

acts on Iq,n by the right multiplication, and on the product Γ × (Iq,n ∩ G1) by

the right multiplication on the second factor. Obviously ψ̃ is Iq,n ∩ G1-invariant,
so it descends to give the desired morphism ψ on Iq,n/Iq,n ∩ G1. The ideals q′

in Proposition 5.3 are precisely the ideals in the Iq,n-orbit of q1, and hence the
statement of the proposition means that ψ is bijective. Now it follows that ψ is an
isomorphism since it is a bijective morphism between affine spaces. �

In order to give a complete description of Mq,n = GLq(k)×P1 Iq,n/(Iq,n ∩G1),
we must yet provide an explicit formula for the action of P1 on Iq,n/(Iq,n ∩ G1).
To this end, we need to concretely describe the P1-action on Homk(Ω1, z

2k[z]) that
makes ψ in Corollary 5.4 P1-equivariant. This will be taken up in the subsequent
section.

6. Mq,n as a smooth fiber bundle

In this section, we shall work over k = C and work in the category of smooth
manifolds: We regard the algebraic groups GAq,n, Iq,n, etc., as (complex) Lie
groups. We will also consider homogeneous spaces Iq,n/(Iq,n ∩G1) and GAq,n/G1
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as smooth manifolds, and the isomorphism

ψ : Iq,n/(Iq,n ∩G1) → Hom(Ω1, z
2k[z]) 
 C

(q−1)(n−2)

and other relevant maps as smooth maps.
Let f ∈ Iq,n and si = γ(xi) be the polynomials (in z) associated with f(q1) as

in the Proposition 5.3. There is a natural commutative diagram

Iq,n
η

����
���

���
���

���
�

��
Iq,n/(Iq,n ∩G1)

ψ
�� Hom(Ω1, z

2k[z]),

where η(f) maps xi to si(z). Then the P1-action on Homk(Ω1, z
2k[z]) can be

written in terms of si as follows. Let p = (pij) ∈ P1, and let f(q1) ∈ Iq,nq1.
Then by Proposition 5.3, we have f(q1) = (x2 − s2(x1), . . . , xq − sq(x1)) for some

polynomials si(z) =
∑n−1

j=2 bijz
j with no constant and linear term, and

p · f(q1) = p · (x2 − s2(x1), . . . , xq − sq(x1)) =

⎛
⎝∑

j

pijxj − si

⎛
⎝∑

j

p1jxj

⎞
⎠
⎞
⎠

i≥2

.

Setting g = p−1 and performing a Gauss elimination, we get

(
∑

j pijxj − si(
∑

j p1jxj))i≥2 = (
∑

i gki(
∑

j pijxj − si(
∑

j p1jxj)))i,k≥2

= (xk −
∑

i gkisi(
∑

j p1jxj))k≥2.

This is a fairly complicated action and is not well understood in general. But in
the special case in which p1j = 0 for j ≥ 2, the action is linear. Then in terms of
(bij), p · f(q1) corresponds to

(†) ((p−1)ikbkjp
j
11).

Restating this in terms of representations, we obtain the following.

Lemma 6.1. Let t ∈ C, and let ϕt : P1 → P1 be the group homomorphism

p =

[
p11 R
0 Q

]
�→
[

p11 tR
0 Q

]
,

where R, 0, Q are of size 1×(q−1), (q−1)×1, and (q−1)×(q−1), respectively. Let
Yt be the P1-space whose underlying variety is Iq,n/Iq,n ∩G1 on which P1 acts by

p · [σ] = [ϕt(p)σϕt(p)
−1].

Then Y0 is isomorphic to
∐n−1

j=2 Ω∗
1⊗Cj, where Cj is C acted upon by the jth power

of the character λ(p) = p11 ∀p ∈ P1.

Note that for t �= 0, Yt 
 Y1 as P1-spaces since ϕt(p) = τpτ−1, τ =

[
t 0
0 I2

]
,

so Φt([σ]) = [τστ−1] is a P1-equivariant isomorphism from Y1 to Yt. Let B =
Spec k[t], and let Y = Y × B be the P1-space on which P1 acts by p · ([σ], t) =
([ϕt(p)σϕt(p)

−1], t). Consider E := GLq ×P1Y → GLq /P1 × B 
 Pq−1 × B. It is
an isotrivial family of affine (q − 1)(n− 2)-bundles over Pq−1: We have

Et := E|(Pq−1 × {t}) = GLq ×P1Yt 
 GLq ×P1Y1 
 Mq,n.
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Recall that two smooth manifolds X1, X2 are said to be deformation equivalent
if there exists a smooth family X → S over a smooth connected base S and two
points s1, s2 ∈ S such that the fibers Xsi are diffeomorphic to Xi, i = 1, 2.

Proposition 6.2. The moduli space Mq,n as a smooth fiber bundle over Pq−1 is
smooth deformation equivalent to the direct sum⊕n−1

j=2
TPq−1(+j)

of twisted tangent bundles over Pq−1.

Proof. Consider the one-parameter family Et := GLq ×P1Yt of affine bundles over

Pq−1. Then E0 =
⊕n−1

j=2 TPq−1(+j) since Ω∗
1 corresponds to the tangent bundle,

and Cj to OPq−1(+j). Since E1 = Mq,n, it follows that as smooth fiber bundles

Mq,n and
⊕n−1

j=2 TPq−1(+j) are deformation equivalent. �

Our moduli space Mq,n is a fiber bundle over GLq(k)/P1 = Pq−1 with fibers
F := Iq,n/Iq,n ∩ G1. Since F is an affine space, the theory of microbundles can
be applied to show that Mq,n as a smooth fiber bundle is isomorphic to a smooth
vector bundle; i.e., its structure group reduces to the general linear group.

Theorem 6.3. The moduli space Mq,n as a smooth fiber bundle is isomorphic to

the direct sum
⊕n−1

j=2 TPq−1(+j) of twisted tangent bundles.

Proof. First, note that there is a distinguished zero section 0n : P
q−1 → Mq,n

defined by sending ḡ ∈ GLq /P1 to g · q1 or, equivalently, to

(g, 0) ∈ GLq ×P1 Hom(Ω1, z
2
C[z]/〈zn〉).

In terms of ideals, this is defined by sending a graded ideal to itself forgetting
the grading (Remark 4.4). Let N denote the R-dimension of the affine space
Hom(Ω1, z

2C[z]/〈zn〉). The isomorphism classes of smooth fiber bundles with fibers
diffeomorphic to RN is functorially in bijective correspondence with the homotopy
classes of maps from P

q−1 to BDiff(RN , 0)], where BDiff(RN , 0) is the classifying
space of the group Diff(RN , 0) of diffeomorphisms of RN fixing 0. By the Alexander
trick, the natural inclusion

GLN (R) ↪→ Diff(RN , 0)

is a homotopy equivalence, and it follows that (Mq,n → Pq−1, 0n) has a reduction of
structure group to GLN (R). More specifically, up to diffeomorphism, Mq,n → Pq−1

is isomorphic to the normal bundle of the zero section 0n. By Proposition 6.2, the
maps corresponding to the two smooth vector bundles Mq,n and

⊕n−1
j=2 TPq−1(+j)

are homotopy equivalent. Hence they are isomorphic as smooth vector bundles over
Pq−1. �
Corollary 6.4. Let � : Mq,n → Mq,n−1 be the fibration in Lemma 4.2. Then the
kernel �−1(0n−1) is isomorphic to TPq−1(n− 1).

Proof. In terms of the coordinates bij above, the kernel is defined by bij = 0 ∀i,
j = 1, . . . , n− 2. By equation (†), it is the bundle associated with the P1-space

p · (bin−1) = ((p−)ikbkn−1p
n−1
11 ),

which is Ω∗ ⊗ Cn−1. The corollary follows. �
In fact, the corollary above holds for any algebraically closed field.
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7. Universal property of Mq,n

Let G := GAq,n. Recall that Mq,n = G/G1 (by definition), G1 = StabG(q1).
We have observed in Proposition 4.3 that Mq,n 
 GLq ×P1Iq,n/(Iq,n ∩G1). From
the natural sequence

0 → q1 → Aq,n → Aq,n/q1 → 0

of G1-representations, we obtain the sequence of induced sheaves on G/G1:

0 → IG/G1
(q1) → IG/G1

(Aq,n) → IG/G1
(Aq,n/q1) → 0.

Definition 7.1. An ideal sheaf I ⊂ Aq,n ⊗k OS over a k-scheme S is said to
annihilate regular representations over S (we abbreviate this as “ARR over S”) if
there exists a map ρ : Aq,n⊗kOS → V ⊗kOS of OS-modules such that, for all closed
points b ∈ S, ρb := ρ⊗ 1k(b) : Aq,n ⊗k k(b) → V ⊗k k(b) is a regular representation
and ker(ρb) = I ⊗ k(b).

We shall prove that IG/G1
(q1) is an ideal sheaf of IG/G1

(Aq,n) 
 OMq,n
⊗kAq,n =

OMq,n
[x1, . . . , xq]/m

n
0 such that the following hold:

(i) It annihilates regular representations over Mq,n.
(ii) It is universal : For any k-scheme S and an ideal I of OS ⊗ Aq,n ARR

over S, there exists a unique morphism fI : S → Mq,n such that (fI ×
1)∗
(
IG/G1

(q1)
)

 I, where 1 is the identity morphism on SpecAq,n.

Remark 7.2. Recall from Proposition 2.4 and the definition preceding it that ker(ρ)
in (i) above is called the annihilator of the representation ρ and is denoted by A(ρ).

Proposition 7.3. The ideal sheaf IG/G1
(q1) is ARR over Mq,n.

Proof. By Corollary 5.4 and Proposition 5.3, we may naturally identify the homo-
geneous space Iq,n := Iq,n/(Iq,n ∩G1) with

Homk(Ω1, z
2k[z]) = Spec k[bij | 2 ≤ i ≤ q, 2 ≤ j ≤ n− 1],

where the coordinates bij are the obvious ones determined by

h(xi) =

n−1∑
j=2

bij(h)z
j ∀h ∈ Homk(Ω1, z

2k[z]).

Hence on Iq,n, we have an ideal

U ′ :=

〈
xi −

n−1∑
j=2

bijx
j
1

〉
2≤i≤q

⊂ k[bij , x1, . . . , xq]

mn
0

.

The right-hand side is the global section ring Γ(OIq,n
) ⊗k Aq,n. Subsequently, a

versal ideal sheaf U ′′ on GLq(k)×Iq,n is obtained by further moving U ′ around by
the GLq(k)-action:

(7.1) U ′′ :=

〈
q∑

l=1

ailxl −
n−1∑
j=2

bij

(
q∑

l=1

a1lxl

)j〉
2≤i≤q

⊂ k[al m, bij , x2, . . . , xq]

mn
0

,

where k[GLq(k)] = k[al m | 1 ≤ l,m ≤ q], so k[al m, bij , x2, . . . , xq]/m
n
0 is the global

section ring of OGLq(k)×Iq,n
⊗k Aq,n.
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Since P1 acts diagonally on GLq(k)× Iq,n by p · (g, v) = (gp−1, p · v) and U ′′ is
obtained by letting GLq(k) act on U ′, U ′′ is plainly invariant under the P1-action

and descends to give an ideal sheaf U on the quotient Mq,n =
(
GLq(k)× Iq,n

)
/P1,

0 → U → OMq,n
⊗k Aq,n → W → 0.

By construction, U is clearly ARR over Mq,n. It is easy to see that U is equal
to IG/G1

(q1): Since they are ideal subsheaves of the same sheaf OMq,n
⊗k Aq,n of

algebras, it suffices to show that their fibers are exactly the same as the fibers of
OMq,n

⊗k Aq,n. Let σ ∈ G. The fiber of IG/G1
(q1) at σG1 is by definition σ(q1).

By our analysis in the previous sections, especially Proposition 5.3,

(7.2) σ(q1) = (aij) ·
〈∑

xi + si(x1)
〉
i=2,...,q

for a unique ((aij), (bij)) ∈ GLq ×P1Iq,n, where bij are determined by si(x1) =∑n−1
j=2 bijx

j
1. Comparing (7.2) with equation (7.1), we see immediately that σ(q1)

is precisely the fiber of U at σG1. �

Proposition 7.4. The ideal sheaf IG/G1
(q1) = U is universal over Mq,n.

Proof. Let S be a k-scheme, and let I be an ideal of OS ⊗ Aq,n ARR over S. Let
V denote the quotient of OS ⊗ Aq,n by I. Let π : S × SpecAq,n → S be the
projection, and let μi ∈ H0(S, π∗End(V)) be the endomorphism of π∗V defined by
multiplication by xn−1

i . Since I is ARR, for each s ∈ S, there exists an i such that

μi|s �= 0 ∈ End(π∗V)|s.
Hence there exists an open subvariety T � s of S and a section v ∈ π∗V(T ) such that
μi|t(vt) �= 0 for all t ∈ T . At s, {v|s, xi ·v|s, x2

i ·v|s, . . . , xn−1
i ·v|s} is a basis for V|s 


kn. After shrinking T if necessary, we may assume that {v, xi ·v, x2
i ·v, . . . , xn−1

i ·v}
is a framing of π∗V over T . That is, x�

i · v’s give rise to an isomorphism

O⊕n
T −→ π∗V|T

over T . But with respect to this framing, multiplication by xi is represented by
an n × n matrix B with 1’s on the subdiagonal and zeros elsewhere. Any matrix
commuting with B is easily shown to be a polynomial in B, and the μj ’s commute
with each other. So, we have, over T ,

xj =
n−1∑
l=1

bjlx
l
i (mod I ⊗OS

OT ), bjl ∈ Γ(OT ), j �= i.

By dimension reasons, xj −
∑n−1

l=1 bjlx
l
i generates I over T , and it induces a unique

morphism ψT : T → Mq,n such that (ψT × 1)∗U = I|T×SpecAq,n
. Indeed, we have

a well-defined lifting ψ̃T : T → GLn ×Homk(Ω1, z
2k[z]) of ψT given by

t �→ (g, ft),

where f is the homomorphism defined by bjl(t), and g ∈ GLn is the permutation
matrix g · x1 = xi, g · xi = x1, and g · xk = xk for all k �= 1, i. Then ft(q1) is

the ideal defined by xj −
∑n−1

l=1 bjl(t)x
l
1, j �= 1, and g · ft(q1) is precisely the ideal

I|{t}×SpecAq,n
, which also is plainly seen to be equal to ψ̃∗

T (U ′′).
We claim that these ψT ’s glue together to give the desired morphism S → Mq,n.

Indeed, consider ψT and ψT ′ , given by ψ̃T (t) = (g, ft) and ψ̃T ′(t′) = (g′, f ′
t′). At any
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point t ∈ T ∩ T ′ in the intersection, we have g · ft(q1) = I{t}×SpecAq,n
= g′ · f ′

t(q1),
and it follows that

(g′, f ′
t) = (gp−1

t , pt · ft)
for some T -point p of P1(T ). The dependence of pt on t is certainly algebraic, and
it follows that ψT and ψT ′ agree on T ∩ T ′, defining a morphism T ∪ T ′ → Mq,n.
Since (ψT × 1Aq,n

)∗U = IT×SpecAq,n
for each T , the sheaf U is universal. �

Theorem 7.5. The space Mq,n is a fine moduli scheme for the moduli functor
Mq,n : Sch/k → Sets from the category of k-schemes to the category of sets, defined

by
Mq,n(S) = {Ideal sheaves I ⊂ OS ⊗k Aq,n ARR and flat over S}.

Proof. The contents of Propositions 7.3 and 7.4 combined give the assertion of the
theorem. �

There is a natural set map π : N r
q,n → Mq,n that sends (N1, . . . , Nq) to the

kernel of ρ : k[x1, . . . , xq] → End(kn), ρ(xi) = Ni. From the universality of Mq,n,
it follows immediately that this is a morphism of varieties.

Corollary 7.6. There is a GLn invariant orbit map π : N r
q,n → Mq,n.

Proof. Consider the natural map

ON r
q,n

⊗k Aq,n → ON r
q,n

⊗k End(V )

defined by sending f(x1, . . . , xq) ∈ ON r
q,n

(U)[x1, . . . , xq] to f(N1, . . . , Nq), where

(N1, . . . , Nq) are, by abuse of notation, regarded as sections of ON r
q,n

over a given
open set U ⊂ N r

q,n. The kernel K of this map is an ideal sheaf ARR over N r
q,n

giving rise to a morphism N r
q,n → Mq,n, which is constant on GLn orbits due to

Proposition 2.4. By the universality of Mq,n (Theorem 7.5), we conclude that π is
algebraic. �

8. The moduli space as an open subscheme of a punctual Hilbert

scheme

LetX0, . . . , Xq denote a set of homogeneous coordinates for Pq, [0] := [1, 0, . . . , 0],
and let xi = Xi/X0 be the affine coordinates of the affine chart {X0 �= 0}. In
this section, we shall consider the relation between Mq,n and the Hilbert scheme
Hilbn Pq of length n zero-dimensional subschemes of Pq. The Hilbert scheme is
defined by its functor. That is, for any scheme S over k, we have

Hom(S,Hilbn Pq) = {Z ⊂ P
q
S |Z is surjective, finite flat over S of degree n}.

Let P
q(n) be the nth symmetric product of Pq that parametrizes length n cycles

of Pq. Recall the Hilbert–Chow morphism Ψ : Hilbn Pq → Pq(n) that maps a
zero-dimensional subscheme Z to its underlying cycle [Z].

Definition 8.1. The punctual Hilbert scheme Hilbn[0] P
q is the reduced fiber of the

Hilbert–Chow morphism Ψ over the cycle n · [0].

That is, the punctual Hilbert schemeHilbn[0]P
q parametrizes the zero-dimensional

subschemes of length n with support at the single point [0] ∈ Pq.

Theorem 8.2. Mq,n is isomorphic to an open subscheme of the punctual Hilbert
scheme Hilbn[0] P

q.
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Proof. The universal quotient OMq,n
⊗Aq,n → W := OMq,n

⊗Aq,n/IG/G1
(q1) gives

rise to a map η : Mq,n → Hilbn Pq by (abusing notation and) identifying xi with
the affine coordinates xi of P

q at [0]. Since xn
i = 0 for all i, W is supported at [0].

Also, Mq,n is nonsingular (and hence reduced in particular) since it is an affine
space bundle over Pq−1. It follows that the map η factors through the punctual
Hilbert scheme Hilbn[0] P

q.
Consider the universal quotient sequence

0 → J → OHilbn
[0]

Pq [x1, . . . , xq] → Q → 0

on the punctual Hilbert scheme. Multiplication by xi· : Q → Q defines an
OHilbn

[0]
Pq -linear map and the locus where xn−1

i is identically 0 is a closed sub-

scheme, say, Zi, of the punctual Hilbert scheme. Then U := Hilbn[0] P
q \
⋂

i Zi is

an open subscheme of Hilbn[0] P
q. Now the restriction of J to U is ARR by con-

struction of U . Hence by Proposition 7.4, we have the corresponding morphism
fI : U → Mq,n, providing an inverse to η. �
Remark 8.3. Due to Lemma 2.10, Mq,n and the stratum of the punctual Hilbert
scheme consisting of curvilinear ideals are the same as sets. They are indeed iso-
morphic schemes by the previous theorem.

9. Mq,n → Pq−1
is not a vector bundle

We shall prove in this section that, as opposed to the result (in smooth category)
of the previous section, Mq,n is not a vector bundle over Pq−1 in the algebraic
category. This result can be regarded as an extension of the following theorem by
Iarrobino [Iar73, Iar77].

Theorem 9.1 ([Iar73, Theorem 1]). The variety Z parametrizing linear ideals
I ⊂ k[[x, y]] of colength 4 is locally trivial over P

1 but is not a vector bundle.

Here, an ideal I ⊂ 〈x, y〉 is said to be linear if I is not contained in 〈x, y〉2. It
is equivalent to I being an annihilator of a regular representation (Definition 7.1)
since f ∈ I satisfies fn−1 �= 0 in k[[x, y]]/〈x, y〉n if and only if f �∈ 〈x, y〉2. The
map from Z to P1 is given by sending I to its associated graded ideal gr(I), which
is linear and also of colength 4 (cf. Remark 4.4). We note that the map Z → P1

is precisely our fibration M2,4 → M2,2 induced by the natural map A2,4 → A2,2.
The key ingredient of the proof of the above theorem is that there is no section of
M2,4 → M2,3 
 TP1(+1) 
 OP1(+3) [Iar73, Lemma 3].

In fact, the theorem above is a special case of a more general statement that the
variety ZT of curvilinear ideals of type T is a locally trivial affine space fibration, but
not necessarily a vector bundle over a complete variety GT of graded ideals of type
T [Iar72a, Theorem 3]. The curvilinear case is when T = Tn = (1, 1, . . . , 1︸ ︷︷ ︸

n

, 0, 0, . . .).

See Remark 4.4 for a relevant discussion.

Theorem 9.2. Mq,n → Pq−1 is not a vector bundle in the algebraic category for
n ≥ 4.

Proof. Let �n denote the fibration Mq,n → Pq−1. It is induced by the natural
projection Aq,n = k[x1, . . . , xq]/m

n → k[x1, . . . , xq]/m
2 = Aq,2. Consider the set

map
M2,n → Mq,n
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sending a commuting pair (N1, N2) to the q-tuple (N1, N2, . . . , N2). It can be
readily seen that this map is algebraic: Recall the universal sheaf over M2,n from
Proposition 7.4. We denote it by U . Consider the associated ideal sheaf

U ′ := U +OM2,n
〈x3 − x2, . . . , xq − x2〉 ⊂ OM2,n

⊗k Aq,n.

Note that this annihilates regular representations of Aq,n: For any [I] ∈ M2,n, we
have

U ′ ⊗ κ([I]) 
 U ⊗ κ([I]) + 〈x3 − x2, . . . , xq − x2〉
= I + 〈x3 − x2, . . . , xq − x2〉 ⊂ k[x1, . . . , xq],

which annihilates a regular representation since I ⊂ k[x1, x2] satisfies I �⊂ 〈x, y〉2.
By the universality (Proposition 7.4), U ′ induces a morphism ψ : M2,n → Mq,n.

Let I ⊂ A2,n be a colength n ideal annihilating a regular representation, and
let (N1, N2) denote the commuting pair of nilpotents associated with I; i.e., I is
the kernel of A2,n → End(kn) given by mapping xi to Ni. Obviously I + 〈x3 −
x2, . . . , xq−x2〉 is contained in the kernel of Aq,n → End(kn) given by x1 �→ N1 and
xi �→ N2 ∀i ≥ 2. Then it must equal the kernel since they are of the same colength.
It follows that ψ corresponds to the map (N1, N2) �→ (N1, N2, N2, . . . , N2).

Suppose that �n is a vector bundle. From the commutative square

�−1
n (ι(P1)) = M2,n

��

��

Mq,n

�n

��
M2,2 
 P1

ι
�� Mq,2 
 Pq−1,

we conclude that M2,n → P1 is also a vector bundle. But then M2,n should be

isomorphic to
⊕n−1

j=1 TP1(+j) 

⊕n−1

j=1 OP1(j + 2) by Theorem 6.3. In this case,
the projection πn,3 : Mq,n → Mq,3 induced by Aq,n → Aq,3 is simply the bundle

projection
⊕n−1

j=1 OP1(j+2) → OP1(+3) and hence admits a section σ. Now consider
the following diagram:

M2,n

πn,4 ��

πn,3

���
��

��
��

��
M2,4

π4,3

��
M2,3,σ

��

which is commutative since πn,3 = π4,3 ◦ πn,4. Hence we have a section πn,4 ◦ σ of
π4,3, contradicting [Iar73, Lemma 3]. �
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