Towards an orbifold generalization of Zvonkine’s $r$-ELSV formula
HTML articles powered by AMS MathViewer
- by R. Kramer, D. Lewanski, A. Popolitov and S. Shadrin PDF
- Trans. Amer. Math. Soc. 372 (2019), 4447-4469 Request permission
Abstract:
We perform a key step towards the proof of Zvonkine’s conjectural $r$-ELSV formula that relates Hurwitz numbers with completed $(r+1)$-cycles to the geometry of the moduli spaces of the $r$-spin structures on curves: we prove the quasi-polynomiality property prescribed by Zvonkine’s conjecture. Moreover, we propose an orbifold generalization of Zvonkine’s conjecture and prove the quasi-polynomiality property in this case as well. In addition to that, we study the $(0,1)$- and $(0,2)$-functions in this generalized case, and we show that these unstable cases are correctly reproduced by the spectral curve initial data.References
- A. Alexandrov, D. Lewanski, and S. Shadrin, Ramifications of Hurwitz theory, KP integrability and quantum curves, J. High Energy Phys. 5 (2016), 124, front matter+30. MR 3521843, DOI 10.1007/JHEP05(2016)124
- Vincent Bouchard, Daniel Hernández Serrano, Xiaojun Liu, and Motohico Mulase, Mirror symmetry for orbifold Hurwitz numbers, J. Differential Geom. 98 (2014), no. 3, 375–423. MR 3263522
- Vincent Bouchard and Marcos Mariño, Hurwitz numbers, matrix models and enumerative geometry, From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math., vol. 78, Amer. Math. Soc., Providence, RI, 2008, pp. 263–283. MR 2483754, DOI 10.1090/pspum/078/2483754
- Alessandro Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and $r$th roots, Compos. Math. 144 (2008), no. 6, 1461–1496. MR 2474317, DOI 10.1112/S0010437X08003709
- Norman Do, Oliver Leigh, and Paul Norbury, Orbifold Hurwitz numbers and Eynard-Orantin invariants, Math. Res. Lett. 23 (2016), no. 5, 1281–1327. MR 3601067, DOI 10.4310/MRL.2016.v23.n5.a3
- P. Dunin-Barkowski, M. Kazarian, N. Orantin, S. Shadrin, and L. Spitz, Polynomiality of Hurwitz numbers, Bouchard-Mariño conjecture, and a new proof of the ELSV formula, Adv. Math. 279 (2015), 67–103. MR 3345179, DOI 10.1016/j.aim.2015.03.016
- P. Dunin-Barkowski, D. Lewanski, A. Popolitov, and S. Shadrin, Polynomiality of orbifold Hurwitz numbers, spectral curve, and a new proof of the Johnson-Pandharipande-Tseng formula, J. Lond. Math. Soc. (2) 92 (2015), no. 3, 547–565. MR 3431649, DOI 10.1112/jlms/jdv047
- P. Dunin-Barkowski, N. Orantin, S. Shadrin, and L. Spitz, Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys. 328 (2014), no. 2, 669–700. MR 3199996, DOI 10.1007/s00220-014-1887-2
- Torsten Ekedahl, Sergei Lando, Michael Shapiro, and Alek Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), no. 2, 297–327. MR 1864018, DOI 10.1007/s002220100164
- Bertrand Eynard, Intersection numbers of spectral curves, arXiv:1104.0176 (2011).
- B. Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex curves, Commun. Number Theory Phys. 8 (2014), no. 3, 541–588. MR 3282995, DOI 10.4310/CNTP.2014.v8.n3.a4
- Bertrand Eynard, Motohico Mulase, and Bradley Safnuk, The Laplace transform of the cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers, Publ. Res. Inst. Math. Sci. 47 (2011), no. 2, 629–670. MR 2849645, DOI 10.2977/PRIMS/47
- B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007), no. 2, 347–452. MR 2346575, DOI 10.4310/CNTP.2007.v1.n2.a4
- F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine, Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 221–266. MR 3668650, DOI 10.1007/s10240-017-0088-x
- P. Johnson, R. Pandharipande, and H.-H. Tseng, Abelian Hurwitz-Hodge integrals, Michigan Math. J. 60 (2011), no. 1, 171–198. MR 2785870, DOI 10.1307/mmj/1301586310
- Paul D. Johnson, Equivariant Gromov-Witten theory of one dimensional stacks, arXiv:0903.1068v1 [math.AG] (2009).
- Paul Johnson, Double Hurwitz numbers via the infinite wedge, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6415–6440. MR 3356942, DOI 10.1090/S0002-9947-2015-06238-2
- Serguei Kerov and Grigori Olshanski, Polynomial functions on the set of Young diagrams, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 2, 121–126 (English, with English and French summaries). MR 1288389
- Reinier Kramer, Danilo Lewanski, and Sergey Shadrin, Quasi-polynomiality of monotone orbifold Hurwitz numbers and Grothendieck’s dessins d’enfants, arXiv:1610.08376 (2016).
- Danilo Lewanski, On ELSV-type formulae, Hurwitz numbers and topological recursion, arXiv:1703.06435 (2017).
- Danilo Lewanski, Alexandr Popolitov, Sergey Shadrin, and Dimitri Zvonkine, Chiodo formulas for the $r$-th roots and topological recursion, Lett. Math. Phys. 107 (2017), no. 5, 901–919. MR 3633029, DOI 10.1007/s11005-016-0928-5
- M. Mulase, S. Shadrin, and L. Spitz, The spectral curve and the Schrödinger equation of double Hurwitz numbers and higher spin structures, Commun. Number Theory Phys. 7 (2013), no. 1, 125–143. MR 3108774, DOI 10.4310/CNTP.2013.v7.n1.a4
- Motohico Mulase and Naizhen Zhang, Polynomial recursion formula for linear Hodge integrals, Commun. Number Theory Phys. 4 (2010), no. 2, 267–293. MR 2725053, DOI 10.4310/CNTP.2010.v4.n2.a1
- A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006), no. 2, 517–560. MR 2199225, DOI 10.4007/annals.2006.163.517
- A. Okounkov and R. Pandharipande, The equivariant Gromov-Witten theory of $\textbf {P}^1$, Ann. of Math. (2) 163 (2006), no. 2, 561–605. MR 2199226, DOI 10.4007/annals.2006.163.561
- S. Shadrin, L. Spitz, and D. Zvonkine, On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc. (2) 86 (2012), no. 2, 407–432. MR 2980918, DOI 10.1112/jlms/jds010
- S. Shadrin, L. Spitz, and D. Zvonkine, Equivalence of ELSV and Bouchard-Mariño conjectures for $r$-spin Hurwitz numbers, Math. Ann. 361 (2015), no. 3-4, 611–645. MR 3319543, DOI 10.1007/s00208-014-1082-y
- Dimitri Zvonkine, A preliminary text on the \texorpdfstring{$r$}r-ELSV formula, preprint (2006).
Additional Information
- R. Kramer
- Affiliation: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, The Netherlands
- MR Author ID: 1245081
- Email: R.Kramer@uva.nl
- D. Lewanski
- Affiliation: Max Planck Institute for Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
- MR Author ID: 1140181
- Email: ilgrillodani@mpim-bonn.mpg.de
- A. Popolitov
- Affiliation: Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden; Institute for Information Transmission Problems, Moscow 127994, Russia; and ITEP, Moscow 117218, Russia
- MR Author ID: 1063503
- Email: popolit@gmail.com
- S. Shadrin
- Affiliation: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, The Netherlands
- MR Author ID: 680371
- Email: S.Shadrin@uva.nl
- Received by editor(s): March 28, 2017
- Received by editor(s) in revised form: September 14, 2018
- Published electronically: February 25, 2019
- Additional Notes: The authors were supported by the Netherlands Organization for Scientific Research.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 4447-4469
- MSC (2010): Primary 14H30; Secondary 14H10, 53D45, 14N10
- DOI: https://doi.org/10.1090/tran/7793
- MathSciNet review: 4009392