Logarithmic hyperseries
HTML articles powered by AMS MathViewer
- by Lou van den Dries, Joris van der Hoeven and Elliot Kaplan PDF
- Trans. Amer. Math. Soc. 372 (2019), 5199-5241 Request permission
Abstract:
We define the field $\mathbb {L}$ of logarithmic hyperseries, construct on $\mathbb {L}$ natural operations of differentiation, integration, and composition, establish the basic properties of these operations, and characterize these operations uniquely by such properties.References
- Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven, Differentially algebraic gaps, Selecta Math. (N.S.) 11 (2005), no. 2, 247–280. MR 2183848, DOI 10.1007/s00029-005-0010-0
- M. Aschenbrenner, L. van den Dries, and J. van der Hoeven, Asymptotic differential algebra and model theory of transseries, Annals of Mathematics Studies, vol. 195, Princeton Univ. Press, Princeton, NJ, 2017.
- Matthias Aschenbrenner, Lou van den Dries, and Joris van der Hoeven, The surreal numbers as a universal $H$-field, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 4, 1179–1199. MR 3941461, DOI 10.4171/JEMS/858
- M. Aschenbrenner, L. van den Dries, and J. van der Hoeven, On numbers, germs, and transseries, Proceedings of the International Congress of Mathematicians, Rio de Janeiro, vol. 2, Singapore, World Scientific, 2018, pp. 19–43.
- Alessandro Berarducci and Vincenzo Mantova, Surreal numbers, derivations and transseries, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 2, 339–390. MR 3760298, DOI 10.4171/JEMS/769
- A. Berarducci and V. Mantova, Transseries as germs of surreal functions, Trans. Amer. Math. Soc. 751 (2019), 3549–3592.
- Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR 0460128
- Bernd I. Dahn and Peter Göring, Notes on exponential-logarithmic terms, Fund. Math. 127 (1987), no. 1, 45–50. MR 883151, DOI 10.4064/fm-127-1-45-50
- Jean Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1992 (French, with French summary). MR 1399559
- Allen Gehret, NIP for the asymptotic couple of the field of logarithmic transseries, J. Symb. Log. 82 (2017), no. 1, 35–61. MR 3631276, DOI 10.1017/jsl.2016.59
- Joris van der Hoeven, Asymptotique automatique, Université Paris VII, Paris, 1997 (English, with English and French summaries). Thèse, Université Paris VII, Paris, 1997; With an introduction and a conclusion in French. MR 1458614
- Joris van der Hoeven, Operators on generalized power series, Illinois J. Math. 45 (2001), no. 4, 1161–1190. MR 1894891
- J. van der Hoeven, Transseries and real differential algebra, Lecture Notes in Mathematics, vol. 1888, Springer-Verlag, Berlin, 2006. MR 2262194, DOI 10.1007/3-540-35590-1
- Hellmuth Kneser, Reelle analytische Lösungen der Gleichung $\varphi (\varphi (x))=e^x$ und verwandter Funktional-gleichungen, J. Reine Angew. Math. 187 (1949), 56–67 (German). MR 35385
- M. C. Schmeling, Corps de transséries, 2001. Thesis (Ph.D.)–Université Paris VII.
Additional Information
- Lou van den Dries
- Affiliation: Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
- MR Author ID: 59845
- Email: vddries@illinois.edu
- Joris van der Hoeven
- Affiliation: CNRS, LIX, École Polytechnique, 91128 Palaiseau Cedex, France
- MR Author ID: 621578
- Email: vdhoeven@lix.polytechnique.fr
- Elliot Kaplan
- Affiliation: Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
- MR Author ID: 1140317
- Email: eakapla2@illinois.edu
- Received by editor(s): October 2, 2018
- Received by editor(s) in revised form: February 5, 2019, and April 14, 2019
- Published electronically: July 1, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 5199-5241
- MSC (2010): Primary 03C64; Secondary 12H05, 16W60
- DOI: https://doi.org/10.1090/tran/7876
- MathSciNet review: 4009458