Conditioned Lyapunov exponents for random dynamical systems
HTML articles powered by AMS MathViewer
- by Maximilian Engel, Jeroen S. W. Lamb and Martin Rasmussen PDF
- Trans. Amer. Math. Soc. 372 (2019), 6343-6370 Request permission
Abstract:
We introduce the notion of Lyapunov exponents for random dynamical systems, conditioned to trajectories that stay within a bounded domain for asymptotically long times. This is motivated by the desire to characterize local dynamical properties in the presence of unbounded noise (when almost all trajectories are unbounded). We illustrate its use in the analysis of local bifurcations in this context.
The theory of conditioned Lyapunov exponents of stochastic differential equations builds on the stochastic analysis of quasi-stationary distributions for killed processes and associated quasi-ergodic distributions. We show that conditioned Lyapunov exponents describe the asymptotic stability behaviour of trajectories that remain within a bounded domain and, in particular, that negative conditioned Lyapunov exponents imply local synchronisation. Furthermore, a conditioned dichotomy spectrum is introduced, and its main characteristics are established.
References
- Ludwig Arnold, Random dynamical systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1723992, DOI 10.1007/978-3-662-12878-7
- Ludwig Arnold, Gabriele Bleckert, and Klaus Reiner Schenk-Hoppé, The stochastic Brusselator: parametric noise destroys Hopf bifurcation, Stochastic dynamics (Bremen, 1997) Springer, New York, 1999, pp. 71–92. MR 1678459, DOI 10.1007/0-387-22655-9_{4}
- Ludwig Arnold, N. Sri Namachchivaya, and Klaus R. Schenk-Hoppé, Toward an understanding of stochastic Hopf bifurcation: a case study, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6 (1996), no. 11, 1947–1975. MR 1430980, DOI 10.1142/S0218127496001272
- Peter H. Baxendale, A stochastic Hopf bifurcation, Probab. Theory Related Fields 99 (1994), no. 4, 581–616. MR 1288071, DOI 10.1007/BF01206233
- L. A. Breyer and G. O. Roberts, A quasi-ergodic theorem for evanescent processes, Stochastic Process. Appl. 84 (1999), no. 2, 177–186. MR 1719286, DOI 10.1016/S0304-4149(99)00018-6
- Mark Callaway, Thai Son Doan, Jeroen S. W. Lamb, and Martin Rasmussen, The dichotomy spectrum for random dynamical systems and pitchfork bifurcations with additive noise, Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017), no. 4, 1548–1574 (English, with English and French summaries). MR 3729628, DOI 10.1214/16-AIHP763
- Nicolas Champagnat, Koléhè Abdoulaye Coulibaly-Pasquier, and Denis Villemonais, Criteria for exponential convergence to quasi-stationary distributions and applications to multi-dimensional diffusions, Séminaire de Probabilités XLIX, Lecture Notes in Math., vol. 2215, Springer, Cham, 2018, pp. 165–182. MR 3837104
- Nicolas Champagnat and Denis Villemonais, Exponential convergence to quasi-stationary distribution and $Q$-process, Probab. Theory Related Fields 164 (2016), no. 1-2, 243–283. MR 3449390, DOI 10.1007/s00440-014-0611-7
- Nicolas Champagnat and Denis Villemonais, Uniform convergence to the $Q$-process, Electron. Commun. Probab. 22 (2017), Paper No. 33, 7. MR 3663104, DOI 10.1214/17-ECP63
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
- Pierre Collet, Servet Martínez, and Jaime San Martín, Quasi-stationary distributions, Probability and its Applications (New York), Springer, Heidelberg, 2013. Markov chains, diffusions and dynamical systems. MR 2986807, DOI 10.1007/978-3-642-33131-2
- Hans Crauel and Franco Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields 100 (1994), no. 3, 365–393. MR 1305587, DOI 10.1007/BF01193705
- Hans Crauel and Franco Flandoli, Additive noise destroys a pitchfork bifurcation, J. Dynam. Differential Equations 10 (1998), no. 2, 259–274. MR 1623013, DOI 10.1023/A:1022665916629
- Hans Crauel and Peter E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch. Math.-Ver. 117 (2015), no. 3, 173–206. MR 3372173, DOI 10.1365/s13291-015-0115-0
- G. Dimitroff and M. Scheutzow, Attractors and expansion for Brownian flows, Electron. J. Probab. 16 (2011), no. 42, 1193–1213. MR 2827455, DOI 10.1214/EJP.v16-894
- Thai Son Doan, Maximilian Engel, Jeroen S. W. Lamb, and Martin Rasmussen, Hopf bifurcation with additive noise, Nonlinearity 31 (2018), no. 10, 4567–4601. MR 3846439, DOI 10.1088/1361-6544/aad208
- Maximilian Engel, Jeroen S. W. Lamb, and Martin Rasmussen, Bifurcation analysis of a stochastically driven limit cycle, Comm. Math. Phys. 365 (2019), no. 3, 935–942. MR 3916984, DOI 10.1007/s00220-019-03298-7
- P. A. Ferrari, H. Kesten, S. Martinez, and P. Picco, Existence of quasi-stationary distributions. A renewal dynamical approach, Ann. Probab. 23 (1995), no. 2, 501–521. MR 1334159
- Crispin Gardiner, Stochastic methods, 4th ed., Springer Series in Synergetics, Springer-Verlag, Berlin, 2009. A handbook for the natural and social sciences. MR 2676235
- Georg A. Gottwald and Ian Melbourne, Homogenization for deterministic maps and multiplicative noise, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2013), no. 2156, 20130201, 16. MR 3064670, DOI 10.1098/rspa.2013.0201
- Guoman He, Hanjun Zhang, and Yixia Zhu, On the quasi-ergodic distribution of absorbing Markov processes, Statist. Probab. Lett. 149 (2019), 116–123. MR 3915361, DOI 10.1016/j.spl.2019.02.001
- Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1988. MR 917065, DOI 10.1007/978-1-4684-0302-2
- David Kelly and Ian Melbourne, Smooth approximation of stochastic differential equations, Ann. Probab. 44 (2016), no. 1, 479–520. MR 3456344, DOI 10.1214/14-AOP979
- Xuerong Mao, Stochastic differential equations and applications, 2nd ed., Horwood Publishing Limited, Chichester, 2008. MR 2380366, DOI 10.1533/9780857099402
- I. Melbourne and A. M. Stuart, A note on diffusion limits of chaotic skew-product flows, Nonlinearity 24 (2011), no. 4, 1361–1367. MR 2776125, DOI 10.1088/0951-7715/24/4/018
- Sylvie Méléard and Denis Villemonais, Quasi-stationary distributions and population processes, Probab. Surv. 9 (2012), 340–410. MR 2994898, DOI 10.1214/11-PS191
- Bernt Øksendal, Stochastic differential equations, 6th ed., Universitext, Springer-Verlag, Berlin, 2003. An introduction with applications. MR 2001996, DOI 10.1007/978-3-642-14394-6
- Grigorios A. Pavliotis and Andrew M. Stuart, Multiscale methods, Texts in Applied Mathematics, vol. 53, Springer, New York, 2008. Averaging and homogenization. MR 2382139
- Martin Rasmussen, Finite-time attractivity and bifurcation for nonautonomous differential equations, Differ. Equ. Dyn. Syst. 18 (2010), no. 1-2, 57–78. MR 2670074, DOI 10.1007/s12591-010-0009-7
- David Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 27–58. MR 556581
- A. M. Yaglom, Certain limit theorems of the theory of branching random processes, Doklady Akad. Nauk SSSR (N.S.) 56 (1947), 795–798 (Russian). MR 0022045
Additional Information
- Maximilian Engel
- Affiliation: Zentrum Mathematik der TU München, Boltzmannstr. 3, D-85748 Garching bei München, Germany
- MR Author ID: 1217727
- Email: maximilian.engel@tum.de
- Jeroen S. W. Lamb
- Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
- MR Author ID: 319947
- Email: jsw.lamb@imperial.ac.uk
- Martin Rasmussen
- Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
- MR Author ID: 751819
- Email: m.rasmussen@imperial.ac.uk
- Received by editor(s): June 30, 2018
- Received by editor(s) in revised form: December 17, 2018
- Published electronically: May 20, 2019
- Additional Notes: The first author would like to thank the Department of Mathematics at Imperial College London and the SFB Transregio 109 “Discretization in Geometry and Dynamics”, sponsored by the German Research Foundation (DFG), for support during the course of this research.
The second and third authors would like to thank the EU Marie-Skłodowska-Curie ITN Critical Transitions in Complex Systems for support during the course of this research.
The first author is the corresponding author - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 6343-6370
- MSC (2010): Primary 37A50, 37H15; Secondary 37H10
- DOI: https://doi.org/10.1090/tran/7803
- MathSciNet review: 4024524