On pro-$p$ link groups of number fields
HTML articles powered by AMS MathViewer
- by Yasushi Mizusawa PDF
- Trans. Amer. Math. Soc. 372 (2019), 7225-7254 Request permission
Abstract:
As an analogue of a link group, we consider the Galois group of the maximal pro-$p$-extension of a number field with restricted ramification which is cyclotomically ramified at $p$, i.e., tamely ramified over the intermediate cyclotomic $\mathbb Z_p$-extension of the number field. In some basic cases, such a pro-$p$ Galois group also has a Koch type presentation described by linking numbers and mod $2$ Milnor numbers (Rédei symbols) of primes. Then the pro-$2$ Fox derivative yields a calculation of Iwasawa polynomials analogous to Alexander polynomials.References
- Fumiya Amano, On a certain nilpotent extension over $\textbf {Q}$ of degree 64 and the 4-th multiple residue symbol, Tohoku Math. J. (2) 66 (2014), no. 4, 501–522. MR 3350281, DOI 10.2748/tmj/1432229194
- Julien Blondeau, Philippe Lebacque, and Christian Maire, On the cohomological dimension of some pro-$p$-extensions above the cyclotomic $\Bbb Z_p$-extension of a number field, Mosc. Math. J. 13 (2013), no. 4, 601–619, 736–737 (English, with English and Russian summaries). MR 3184074, DOI 10.17323/1609-4514-2013-13-4-601-619
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368, DOI 10.1017/CBO9780511470882
- Bruce Ferrero, The cyclotomic $\textbf {Z}_{2}$-extension of imaginary quadratic fields, Amer. J. Math. 102 (1980), no. 3, 447–459. MR 573095, DOI 10.2307/2374108
- Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant $\mu _{p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395. MR 528968, DOI 10.2307/1971116
- Patrick Forré, Strongly free sequences and pro-$p$-groups of cohomological dimension 2, J. Reine Angew. Math. 658 (2011), 173–192. MR 2831517, DOI 10.1515/CRELLE.2011.067
- Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. MR 53938, DOI 10.2307/1969736
- Jochen Gärtner, Rédei symbols and arithmetical mild pro-2-groups, Ann. Math. Qué. 38 (2014), no. 1, 13–36 (English, with English and French summaries). MR 3249409, DOI 10.1007/s40316-014-0021-3
- Jochen Gärtner, Higher Massey products in the cohomology of mild pro-$p$-groups, J. Algebra 422 (2015), 788–820. MR 3272101, DOI 10.1016/j.jalgebra.2014.07.023
- Robert Gold, The nontriviality of certain $Z_{1}$-extensions, J. Number Theory 6 (1974), 369–373. MR 369316, DOI 10.1016/0022-314X(74)90034-1
- Georges Gras, Class field theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. From theory to practice; Translated from the French manuscript by Henri Cohen. MR 1941965, DOI 10.1007/978-3-662-11323-3
- Ralph Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), no. 1, 263–284. MR 401702, DOI 10.2307/2373625
- Cornelius Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 449–499 (English, with English and French summaries). MR 1182638, DOI 10.5802/aif.1299
- Jonathan Hillman, Algebraic invariants of links, Series on Knots and Everything, vol. 32, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. MR 1932169, DOI 10.1142/9789812776648
- Jonathan Hillman, Daniel Matei, and Masanori Morishita, Pro-$p$ link groups and $p$-homology groups, Primes and knots, Contemp. Math., vol. 416, Amer. Math. Soc., Providence, RI, 2006, pp. 121–136. MR 2276139, DOI 10.1090/conm/416/07890
- Tsuyoshi Itoh and Yasushi Mizusawa, On tamely ramified pro-$p$-extensions over ${\Bbb Z}_p$-extensions of ${\Bbb Q}$, Math. Proc. Cambridge Philos. Soc. 156 (2014), no. 2, 281–294. MR 3177870, DOI 10.1017/S0305004113000637
- Jean-François Jaulent, Théorie $l$-adique globale du corps de classes, J. Théor. Nombres Bordeaux 10 (1998), no. 2, 355–397 (French, with English and French summaries). MR 1828250, DOI 10.5802/jtnb.233
- Teruhisa Kadokami and Yasushi Mizusawa, Iwasawa type formula for covers of a link in a rational homology sphere, J. Knot Theory Ramifications 17 (2008), no. 10, 1199–1221. MR 2460171, DOI 10.1142/S0218216508006580
- Teruhisa Kadokami and Yasushi Mizusawa, On the Iwasawa invariants of a link in the 3-sphere, Kyushu J. Math. 67 (2013), no. 1, 215–226. MR 3089003, DOI 10.2206/kyushujm.67.215
- T. Kadokami and Y. Mizusawa, Iwasawa invariants of links, Intelligence of low-dimensional topology, RIMS Kōkyūroku 1911 (2014), 10–17.
- Yûji Kida, On cyclotomic $\textbf {Z}_{2}$-extensions of imaginary quadratic fields, Tohoku Math. J. (2) 31 (1979), no. 1, 91–96. MR 526512, DOI 10.2748/tmj/1178229880
- Klaus Haberland, Galois cohomology of algebraic number fields, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. With two appendices by Helmut Koch and Thomas Zink. MR 519872
- Helmut Koch, Galois theory of $p$-extensions, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. With a foreword by I. R. Shafarevich; Translated from the 1970 German original by Franz Lemmermeyer; With a postscript by the author and Lemmermeyer. MR 1930372, DOI 10.1007/978-3-662-04967-9
- John Labute, Mild pro-$p$-groups and Galois groups of $p$-extensions of $\Bbb Q$, J. Reine Angew. Math. 596 (2006), 155–182. MR 2254811, DOI 10.1515/CRELLE.2006.058
- John Labute and Ján Mináč, Mild pro-2-groups and 2-extensions of $\Bbb Q$ with restricted ramification, J. Algebra 332 (2011), 136–158. MR 2774682, DOI 10.1016/j.jalgebra.2011.01.019
- B. Mazur, Remarks on the Alexander polynomial, unpublished, 1963-64, http://www.math.harvard.edu/~mazur/papers/alexander_polynomial.pdf.
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI 10.1007/BF01388599
- Yasushi Mizusawa, On the maximal unramified pro-2-extension of $\Bbb Z_2$-extensions of certain real quadratic fields. II, Acta Arith. 119 (2005), no. 1, 93–107. MR 2163520, DOI 10.4064/aa119-1-7
- Yasushi Mizusawa, On the maximal unramified pro-2-extension over the cyclotomic $\Bbb Z_2$-extension of an imaginary quadratic field, J. Théor. Nombres Bordeaux 22 (2010), no. 1, 115–138 (English, with English and French summaries). MR 2675876, DOI 10.5802/jtnb.707
- Yasushi Mizusawa, On unramified Galois 2-groups over $\Bbb Z_2$-extensions of real quadratic fields, Proc. Amer. Math. Soc. 138 (2010), no. 9, 3095–3103. MR 2653934, DOI 10.1090/S0002-9939-10-10458-4
- Yasushi Mizusawa, Tame pro-2 Galois groups and the basic $\Bbb {Z}_2$-extension, Trans. Amer. Math. Soc. 370 (2018), no. 4, 2423–2461. MR 3748573, DOI 10.1090/tran/7023
- Yasushi Mizusawa and Manabu Ozaki, Abelian 2-class field towers over the cyclotomic $\Bbb Z_2$-extensions of imaginary quadratic fields, Math. Ann. 347 (2010), no. 2, 437–453. MR 2606944, DOI 10.1007/s00208-009-0431-8
- Yasushi Mizusawa and Manabu Ozaki, On tame pro-$p$ Galois groups over basic $\Bbb {Z}_p$-extensions, Math. Z. 273 (2013), no. 3-4, 1161–1173. MR 3030694, DOI 10.1007/s00209-012-1048-2
- Masanori Morishita, On certain analogies between knots and primes, J. Reine Angew. Math. 550 (2002), 141–167. MR 1925911, DOI 10.1515/crll.2002.070
- Masanori Morishita, Milnor invariants and Massey products for prime numbers, Compos. Math. 140 (2004), no. 1, 69–83. MR 2004124, DOI 10.1112/S0010437X03000137
- Masanori Morishita, Knots and primes, Universitext, Springer, London, 2012. An introduction to arithmetic topology. MR 2905431, DOI 10.1007/978-1-4471-2158-9
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- T. Nguyễn-Quang-Đỗ, Formations de classes et modules d’Iwasawa, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 167–185 (French). MR 756093, DOI 10.1007/BFb0099451
- Keiji Okano, Abelian $p$-class field towers over the cyclotomic $\Bbb Z_p$-extensions of imaginary quadratic fields, Acta Arith. 125 (2006), no. 4, 363–381. MR 2271283, DOI 10.4064/aa125-4-5
- Manabu Ozaki, Non-abelian Iwasawa theory of $\Bbb Z_p$-extensions, J. Reine Angew. Math. 602 (2007), 59–94. MR 2300452, DOI 10.1515/CRELLE.2007.003
- Manabu Ozaki and Hisao Taya, On the Iwasawa $\lambda _2$-invariants of certain families of real quadratic fields, Manuscripta Math. 94 (1997), no. 4, 437–444. MR 1484637, DOI 10.1007/BF02677865
- The PARI Group, PARI/GP, version 2.7.4, University of Bordeaux, 2015, http://pari.math.u-bordeaux.fr/.
- Ladislaus Rédei, Ein neues zahlentheoretisches Symbol mit Anwendungen auf die Theorie der quadratischen Zahlkörper. I, J. Reine Angew. Math. 180 (1939), 1–43 (German). MR 1581597, DOI 10.1515/crll.1939.180.1
- Landry Salle, Sur les pro-$p$-extensions à ramification restreinte au-dessus de la $\Bbb Z_p$-extension cyclotomique d’un corps de nombres, J. Théor. Nombres Bordeaux 20 (2008), no. 2, 485–523 (French, with English and French summaries). MR 2477515, DOI 10.5802/jtnb.638
- Landry Salle, On maximal tamely ramified pro-2-extensions over the cyclotomic $\Bbb Z_2$-extension of an imaginary quadratic field, Osaka J. Math. 47 (2010), no. 4, 921–942. MR 2791570
- Jonathan W. Sands, On the nontriviality of the basic Iwasawa $\lambda$-invariant for an infinitude of imaginary quadratic fields, Acta Arith. 65 (1993), no. 3, 243–248. MR 1254959, DOI 10.4064/aa-65-3-243-248
- Alexander Schmidt, Rings of integers of type $K(\pi ,1)$, Doc. Math. 12 (2007), 441–471. MR 2365909
- Jean-Pierre Serre, Galois cohomology, Corrected reprint of the 1997 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised by the author. MR 1867431
- Romyar T. Sharifi, On Galois groups of unramified pro-$p$ extensions, Math. Ann. 342 (2008), no. 2, 297–308. MR 2425144, DOI 10.1007/s00208-008-0236-1
- Jun Ueki, On the Iwasawa $\mu$-invariants of branched $\mathbf {Z}_p$-covers, Proc. Japan Acad. Ser. A Math. Sci. 92 (2016), no. 6, 67–72. MR 3508576, DOI 10.3792/pjaa.92.67
- Jun Ueki, On the Iwasawa invariants for links and Kida’s formula, Internat. J. Math. 28 (2017), no. 6, 1750035, 30. MR 3663789, DOI 10.1142/S0129167X17500355
- Denis Vogel, On the Galois group of 2-extensions with restricted ramification, J. Reine Angew. Math. 581 (2005), 117–150. MR 2132673, DOI 10.1515/crll.2005.2005.581.117
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- K. Wingberg, Arithmetical Koch groups, preprint, 2007, www.mathi.uni-heidelberg.de/groups/arithmetik/paperwingberg/wingberg40-en.html.
- Gen Yamamoto, On the vanishing of Iwasawa invariants of absolutely abelian $p$-extensions, Acta Arith. 94 (2000), no. 4, 365–371. MR 1779948, DOI 10.4064/aa-94-4-365-371
- Yoshihiko Yamamoto, Divisibility by $16$ of class number of quadratic fields whose $2$-class groups are cyclic, Osaka J. Math. 21 (1984), no. 1, 1–22. MR 736966
Additional Information
- Yasushi Mizusawa
- Affiliation: Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
- MR Author ID: 672607
- Email: mizusawa.yasushi@nitech.ac.jp
- Received by editor(s): July 11, 2018
- Received by editor(s) in revised form: December 17, 2018
- Published electronically: February 6, 2019
- Additional Notes: This work was supported by JSPS KAKENHI Grant Numbers JP26800010, JP17K05167.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 7225-7254
- MSC (2010): Primary 11R23; Secondary 11R18, 11R32, 57M05
- DOI: https://doi.org/10.1090/tran/7787
- MathSciNet review: 4024552