Homomorphisms to acylindrically hyperbolic groups I: Equationally noetherian groups and families
HTML articles powered by AMS MathViewer
- by D. Groves and M. Hull PDF
- Trans. Amer. Math. Soc. 372 (2019), 7141-7190 Request permission
Abstract:
We study the set of homomorphisms from a fixed finitely generated group $G$ into a family of groups $\mathcal {G}$ which are ‘uniformly acylindrically hyperbolic’. Our main results reduce this study to sets of homomorphisms which do not diverge in an appropriate sense. As an application, we prove that any relatively hyperbolic group with equationally noetherian peripheral subgroups is itself equationally noetherian.References
- Emina Alibegović, Makanin-Razborov diagrams for limit groups, Geom. Topol. 11 (2007), 643–666. MR 2302499, DOI 10.2140/gt.2007.11.643
- Gilbert Baumslag, Alexei Myasnikov, and Vladimir Remeslennikov, Algebraic geometry over groups. I. Algebraic sets and ideal theory, J. Algebra 219 (1999), no. 1, 16–79. MR 1707663, DOI 10.1006/jabr.1999.7881
- Mladen Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988), no. 1, 143–161. MR 932860, DOI 10.1215/S0012-7094-88-05607-4
- Mladen Bestvina and Mark Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995), no. 2, 287–321. MR 1346208, DOI 10.1007/BF01884300
- Brian H. Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008), no. 2, 281–300. MR 2367021, DOI 10.1007/s00222-007-0081-y
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- M. R. Bridson and G. A. Swarup, On Hausdorff-Gromov convergence and a theorem of Paulin, Enseign. Math. (2) 40 (1994), no. 3-4, 267–289. MR 1309129
- Montserrat Casals-Ruiz and Ilya V. Kazachkov, On systems of equations over free products of groups, J. Algebra 333 (2011), 368–426. MR 2785952, DOI 10.1016/j.jalgebra.2010.09.044
- Christophe Champetier and Vincent Guirardel, Limit groups as limits of free groups, Israel J. Math. 146 (2005), 1–75. MR 2151593, DOI 10.1007/BF02773526
- F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017), no. 1156, v+152. MR 3589159, DOI 10.1090/memo/1156
- B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810–840. MR 1650094, DOI 10.1007/s000390050075
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Daniel Groves, Limit groups for relatively hyperbolic groups. II. Makanin-Razborov diagrams, Geom. Topol. 9 (2005), 2319–2358. MR 2209374, DOI 10.2140/gt.2005.9.2319
- Daniel Groves, Limit groups for relatively hyperbolic groups. I. The basic tools, Algebr. Geom. Topol. 9 (2009), no. 3, 1423–1466. MR 2530123, DOI 10.2140/agt.2009.9.1423
- Daniel Groves and Henry Wilton, Enumerating limit groups, Groups Geom. Dyn. 3 (2009), no. 3, 389–399. MR 2516172, DOI 10.4171/GGD/63
- V. S. Guba, Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems, Mat. Zametki 40 (1986), no. 3, 321–324, 428 (Russian). MR 869922
- Vincent Guirardel, Actions of finitely generated groups on $\Bbb R$-trees, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 1, 159–211 (English, with English and French summaries). MR 2401220, DOI 10.5802/aif.2348
- Vincent Guirardel and Gilbert Levitt, JSJ decompositions of groups, Astérisque 395 (2017), vii+165 (English, with English and French summaries). MR 3758992
- Vincent Guirardel, Limit groups and groups acting freely on $\Bbb R^n$-trees, Geom. Topol. 8 (2004), 1427–1470. MR 2119301, DOI 10.2140/gt.2004.8.1427
- Ch. K. Gupta and N. S. Romanovskiĭ, The property of being equational Noetherian of some solvable groups, Algebra Logika 46 (2007), no. 1, 46–59, 124 (Russian, with Russian summary); English transl., Algebra Logic 46 (2007), no. 1, 28–36. MR 2321079, DOI 10.1007/s10469-007-0003-5
- G. Christopher Hruska and Bruce Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005), 1501–1538. With an appendix by the authors and Mohamad Hindawi. MR 2175151, DOI 10.2140/gt.2005.9.1501
- HJRW (http://mathoverflow.net/users/1463/hjrw), Is there a non-hopfian lacunary hyperbolic group? MathOverflow, http://mathoverflow.net/q/75784 (version: 2011-09-28).
- Eric Jaligot and Zlil Sela, Makanin-Razborov diagrams over free products, Illinois J. Math. 54 (2010), no. 1, 19–68. MR 2776984
- O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998), no. 2, 472–516. MR 1610660, DOI 10.1006/jabr.1997.7183
- O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998), no. 2, 517–570. MR 1610664, DOI 10.1006/jabr.1997.7184
- P. A. Linnell, On accessibility of groups, J. Pure Appl. Algebra 30 (1983), no. 1, 39–46. MR 716233, DOI 10.1016/0022-4049(83)90037-3
- A. Yu. Ol′shanskiĭ, On residualing homomorphisms and $G$-subgroups of hyperbolic groups, Internat. J. Algebra Comput. 3 (1993), no. 4, 365–409. MR 1250244, DOI 10.1142/S0218196793000251
- Denis V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100. MR 2182268, DOI 10.1090/memo/0843
- D. Osin, Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016), no. 2, 851–888. MR 3430352, DOI 10.1090/tran/6343
- Abderezak Ould Houcine, Limit groups of equationally Noetherian groups, Geometric group theory, Trends Math., Birkhäuser, Basel, 2007, pp. 103–119. MR 2395792, DOI 10.1007/978-3-7643-8412-8_{8}
- Frédéric Paulin, Outer automorphisms of hyperbolic groups and small actions on $\textbf {R}$-trees, Arboreal group theory (Berkeley, CA, 1988) Math. Sci. Res. Inst. Publ., vol. 19, Springer, New York, 1991, pp. 331–343. MR 1105339, DOI 10.1007/978-1-4612-3142-4_{1}2
- C. Reinfeldt and R. Weidmann, Makanin-Razborov diagrams for hyperbolic groups, preprint, http://www.math.uni-kiel.de/algebra/de/weidmann/research/material-research/mr2014-pdf, 2014.
- E. Rips and Z. Sela, Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal. 4 (1994), no. 3, 337–371. MR 1274119, DOI 10.1007/BF01896245
- N. S. Romanovskiĭ, Equational Noetherianity of rigid solvable groups, Algebra Logika 48 (2009), no. 2, 258–279, 284, 287 (Russian, with English and Russian summaries); English transl., Algebra Logic 48 (2009), no. 2, 147–160. MR 2573021, DOI 10.1007/s10469-009-9045-1
- Z. Sela, Diophantine geometry over groups: a list of research problems, http://www.ma.huji.ac.il/$\sim$zlil/problems.dvi.
- Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), no. 3, 527–565. MR 1465334, DOI 10.1007/s002220050172
- Zlil Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 31–105. MR 1863735, DOI 10.1007/s10240-001-8188-y
- Z. Sela, Diophantine geometry over groups. VII. The elementary theory of a hyperbolic group, Proc. Lond. Math. Soc. (3) 99 (2009), no. 1, 217–273. MR 2520356, DOI 10.1112/plms/pdn052
- Z. Sela, Diophantine geometry over groups. X: The elementary theory of free products, arXiv:1012.0044, 2010.
- D. Vallino. Algebraic and definable closure in free groups, Thesis, Université Claude Bernard - Lyon I, June 2012.
- L. van den Dries and A. J. Wilkie, Gromov’s theorem on groups of polynomial growth and elementary logic, J. Algebra 89 (1984), no. 2, 349–374. MR 751150, DOI 10.1016/0021-8693(84)90223-0
- Richard Weidmann, On accessibility of finitely generated groups, Q. J. Math. 63 (2012), no. 1, 211–225. MR 2889188, DOI 10.1093/qmath/haq038
- J. Wiegold, Groups with boundedly finite classes of conjugate elements, Proc. Roy. Soc. London Ser. A 238 (1957), 389–401. MR 83488, DOI 10.1098/rspa.1957.0007
- Henry Wilton and Pavel Zalesskii, Profinite properties of graph manifolds, Geom. Dedicata 147 (2010), 29–45. MR 2660565, DOI 10.1007/s10711-009-9437-3
Additional Information
- D. Groves
- Affiliation: Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, Illinois 60607
- MR Author ID: 642547
- Email: groves@math.uic.edu
- M. Hull
- Affiliation: Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Florida 32611
- MR Author ID: 928123
- Email: mbhull@ufl.edu
- Received by editor(s): March 7, 2018
- Received by editor(s) in revised form: November 28, 2018
- Published electronically: May 23, 2019
- Additional Notes: The first author was partially supported by a grant from the Simons Foundation (#342049) and by NSF grant DMS-1507076.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 7141-7190
- MSC (2010): Primary 20F65; Secondary 20F67
- DOI: https://doi.org/10.1090/tran/7789
- MathSciNet review: 4024550