Regular extensions and algebraic relations between values of Mahler functions in positive characteristic
HTML articles powered by AMS MathViewer
- by Gwladys Fernandes PDF
- Trans. Amer. Math. Soc. 372 (2019), 7111-7140 Request permission
Abstract:
Let $\mathbb {K}$ be a function field of characteristic $p>0$. We have recently established the analogue of a theorem of Ku. Nishioka for linear Mahler systems defined over $\mathbb {K}(z)$. This paper is dedicated to proving the following refinement of this theorem. Let $f_{1}(z),\ldots , f_{n}(z)$ be $d$-Mahler functions such that $\overline {\mathbb {K}}(z)\left (f_{1}(z),\ldots , f_{n}(z)\right )$ is a regular extension over $\overline {\mathbb {K}}(z)$. Then, every homogeneous algebraic relation over $\overline {\mathbb {K}}$ between their values at a regular algebraic point arises as the specialization of a homogeneous algebraic relation over $\overline {\mathbb {K}}(z)$ between these functions themselves. If $\mathbb {K}$ is replaced by a number field, this result is due to B. Adamczewski and C. Faverjon as a consequence of a theorem of P. Philippon. The main difference is that in characteristic zero, every $d$-Mahler extension is regular, whereas in characteristic $p$, non-regular $d$-Mahler extensions do exist. Furthermore, we prove that the regularity of the field extension $\overline {\mathbb {K}}(z)\left (f_{1}(z),\ldots , f_{n}(z)\right )$ is also necessary for our refinement to hold. Besides, we show that when $p\nmid d$, $d$-Mahler extensions over $\overline {\mathbb {K}}(z)$ are always regular. Finally, we describe some consequences of our main result concerning the transcendence of values of $d$-Mahler functions at algebraic points.References
- Boris Adamczewski and Colin Faverjon, Méthode de Mahler, transcendance et relations linéaires: aspects effectifs, J. Théor. Nombres Bordeaux 30 (2018), no. 2, 557–573 (French, with English and French summaries). MR 3891327, DOI 10.5802/jtnb.1039
- Boris Adamczewski and Colin Faverjon, Méthode de Mahler: relations linéaires, transcendance et applications aux nombres automatiques, Proc. Lond. Math. Soc. (3) 115 (2017), no. 1, 55–90 (French, with English and French summaries). MR 3669933, DOI 10.1112/plms.12038
- Boris Adamczewski and Colin Faverjon, Mahler’s method in several variables I. The theory of regular singular systems, preprint, 2018, 65 pp.
- Boris Adamczewski and Tanguy Rivoal, Exceptional values of $E$-functions at algebraic points, Bull. Lond. Math. Soc. 50 (2018), no. 4, 697–708. MR 3870952, DOI 10.1112/blms.12168
- Yves André, Solution algebras of differential equations and quasi-homogeneous varieties: a new differential Galois correspondence, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 2, 449–467 (English, with English and French summaries). MR 3215927, DOI 10.24033/asens.2218
- F. Beukers, A refined version of the Siegel-Shidlovskii theorem, Ann. of Math. (2) 163 (2006), no. 1, 369–379. MR 2195138, DOI 10.4007/annals.2006.163.369
- Laurent Denis, Indépendance algébrique des dérivées d’une période du module de Carlitz, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 8–18 (French, with English summary). MR 1767389, DOI 10.1017/S1446788700001804
- Laurent Denis, Indépendance algébrique de logarithmes en caractéristique $p$, Bull. Austral. Math. Soc. 74 (2006), no. 3, 461–470 (French, with English summary). MR 2273754, DOI 10.1017/S0004972700040508
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Gwladys Fernandes, Méthode de Mahler en caractéristique non nulle: un analogue du théorème de Ku. Nishioka, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 6, 2553–2580 (French, with English and French summaries). MR 3897974, DOI 10.5802/aif.3216
- Stéphane Fischler and Tanguy Rivoal, Arithmetic theory of $E$-operators, J. Éc. polytech. Math. 3 (2016), 31–65 (English, with English and French summaries). MR 3477864, DOI 10.5802/jep.28
- Alexander Graham, Kronecker products and matrix calculus: with applications, Ellis Horwood Series in Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1981. MR 640865
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Wolfgang Krull, Parameterspezialisierung in Polynomringen, Arch. Math. 1 (1948), 56–64 (German). MR 26640, DOI 10.1007/BF02038208
- Wolfgang Krull, Parameterspezialisierung in Polynomringen. II. Das Grundpolynom, Arch. Math. (Basel) 1 (1948), 129–137 (German). MR 32587, DOI 10.1007/BF02039524
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- Saunders Mac Lane, Modular fields. I. Separating transcendence bases, Duke Math. J. 5 (1939), no. 2, 372–393. MR 1546131, DOI 10.1215/S0012-7094-39-00532-6
- Yu. V. Nesterenko and A. B. Shidlovskiĭ, On the linear independence of values of $E$-functions, Mat. Sb. 187 (1996), no. 8, 93–108 (Russian, with Russian summary); English transl., Sb. Math. 187 (1996), no. 8, 1197–1211. MR 1418342, DOI 10.1070/SM1996v187n08ABEH000152
- Kumiko Nishioka, New approach in Mahler’s method, J. Reine Angew. Math. 407 (1990), 202–219. MR 1048535, DOI 10.1515/crll.1990.407.202
- Kumiko Nishioka, Mahler functions and transcendence, Lecture Notes in Mathematics, vol. 1631, Springer-Verlag, Berlin, 1996. MR 1439966, DOI 10.1007/BFb0093672
- Patrice Philippon, Groupes de Galois et nombres automatiques, J. Lond. Math. Soc. (2) 92 (2015), no. 3, 596–614 (French, with English and French summaries). MR 3431652, DOI 10.1112/jlms/jdv056
- Bernard Randé, Equations fonctionnelles de Mahler et applications aux suites p-régulières, Université Bordeaux 1, 1992.
- Julien Roques, On the reduction modulo $p$ of Mahler equations, Tohoku Math. J. (2) 69 (2017), no. 1, 55–65. MR 3640014, DOI 10.2748/tmj/1493172128
- Hermann Ludwig Schmid, Über die Automorphismen eines algebraischen Funktionenkörpers von Primzahlcharakteristik, J. Reine Angew. Math. 179 (1938), 5–15 (German). MR 1581581, DOI 10.1515/crll.1938.179.5
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- Andrei Borisovich Shidlovskii, Transcendental numbers, De Gruyter Studies in Mathematics, vol. 12, Walter de Gruyter & Co., Berlin, 1989. Translated from the Russian by Neal Koblitz; With a foreword by W. Dale Brownawell. MR 1033015, DOI 10.1515/9783110889055
- Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094, DOI 10.1007/978-0-387-09494-6
- Balwant Singh, On the group of automorphisms of function field of genus at least two, J. Pure Appl. Algebra 4 (1974), 205–229. MR 360600, DOI 10.1016/0022-4049(74)90022-X
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
Additional Information
- Gwladys Fernandes
- Affiliation: Université Claude Bernard Lyon 1, Institut Camille Jordan, 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France
- Email: fernandes@math.univ-lyon1.fr
- Received by editor(s): August 21, 2018
- Received by editor(s) in revised form: November 22, 2018
- Published electronically: June 10, 2019
- Additional Notes: This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement No. 48132.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 7111-7140
- MSC (2010): Primary 11J81, 11J72, 11J85
- DOI: https://doi.org/10.1090/tran/7798
- MathSciNet review: 4024549