Coupling Lévy measures and comparison principles for viscosity solutions
HTML articles powered by AMS MathViewer
- by Nestor Guillen, Chenchen Mou and Andrzej Świȩch PDF
- Trans. Amer. Math. Soc. 372 (2019), 7327-7370 Request permission
Abstract:
We prove new comparison principles for viscosity solutions of nonlinear integro-differential equations. The operators to which the method applies include but are not limited to those of Lévy–Itô type. The main idea is to use an optimal transport map to couple two different Lévy measures and use the resulting coupling in a doubling of variables argument.References
- Nathaël Alibaud, Existence, uniqueness and regularity for nonlinear parabolic equations with nonlocal terms, NoDEA Nonlinear Differential Equations Appl. 14 (2007), no. 3-4, 259–289. MR 2364893, DOI 10.1007/s00030-007-5029-9
- Nathaël Alibaud, Simone Cifani, and Espen R. Jakobsen, Optimal continuous dependence estimates for fractional degenerate parabolic equations, Arch. Ration. Mech. Anal. 213 (2014), no. 3, 705–762. MR 3218830, DOI 10.1007/s00205-014-0737-x
- Olivier Alvarez and Agnès Tourin, Viscosity solutions of nonlinear integro-differential equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 13 (1996), no. 3, 293–317 (English, with English and French summaries). MR 1395674, DOI 10.1016/S0294-1449(16)30106-8
- Luigi Ambrosio and Nicola Gigli, A user’s guide to optimal transport, Modelling and optimisation of flows on networks, Lecture Notes in Math., vol. 2062, Springer, Heidelberg, 2013, pp. 1–155. MR 3050280, DOI 10.1007/978-3-642-32160-3_{1}
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. MR 2401600
- Mariko Arisawa, A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006), no. 5, 695–711 (English, with English and French summaries). MR 2259613, DOI 10.1016/j.anihpc.2005.09.002
- Guy Barles, Rainer Buckdahn, and Etienne Pardoux, Backward stochastic differential equations and integral-partial differential equations, Stochastics Stochastics Rep. 60 (1997), no. 1-2, 57–83. MR 1436432, DOI 10.1080/17442509708834099
- Guy Barles and Cyril Imbert, Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. Inst. H. Poincaré C Anal. Non Linéaire 25 (2008), no. 3, 567–585. MR 2422079, DOI 10.1016/j.anihpc.2007.02.007
- Luis Caffarelli and Luis Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math. 62 (2009), no. 5, 597–638. MR 2494809, DOI 10.1002/cpa.20274
- Emmanuel Chasseigne and Espen R. Jakobsen, On nonlocal quasilinear equations and their local limits, J. Differential Equations 262 (2017), no. 6, 3759–3804. MR 3592657, DOI 10.1016/j.jde.2016.12.001
- Michael G. Crandall and Hitoshi Ishii, The maximum principle for semicontinuous functions, Differential Integral Equations 3 (1990), no. 6, 1001–1014. MR 1073054
- Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67. MR 1118699, DOI 10.1090/S0273-0979-1992-00266-5
- Alessio Figalli and Nicola Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, J. Math. Pures Appl. (9) 94 (2010), no. 2, 107–130 (English, with English and French summaries). MR 2665414, DOI 10.1016/j.matpur.2009.11.005
- N. Guillen and R. W. Schwab, Min-max formulas for nonlocal elliptic operators, arXiv:1606.08417 (2016).
- Jan Gairing, Michael Högele, Tetiana Kosenkova, and Alexei Kulik, Coupling distances between Lévy measures and applications to noise sensitivity of SDE, Stoch. Dyn. 15 (2015), no. 2, 1550009, 25. MR 3332269, DOI 10.1142/S0219493715500094
- Espen R. Jakobsen and Kenneth H. Karlsen, A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, NoDEA Nonlinear Differential Equations Appl. 13 (2006), no. 2, 137–165. MR 2243708, DOI 10.1007/s00030-005-0031-6
- Dennis Kriventsov, $C^{1,\alpha }$ interior regularity for nonlinear nonlocal elliptic equations with rough kernels, Comm. Partial Differential Equations 38 (2013), no. 12, 2081–2106. MR 3169771, DOI 10.1080/03605302.2013.831990
- Chenchen Mou and Andrzej Święch, Uniqueness of viscosity solutions for a class of integro-differential equations, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 6, 1851–1882. MR 3415025, DOI 10.1007/s00030-015-0347-9
- Sayah Awatif, Équations d’Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité, Comm. Partial Differential Equations 16 (1991), no. 6-7, 1057–1074 (French). MR 1116853, DOI 10.1080/03605309108820789
- Sayah Awatif, Équations d’Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. II. Existence de solutions de viscosité, Comm. Partial Differential Equations 16 (1991), no. 6-7, 1075–1093 (French). MR 1116854, DOI 10.1080/03605309108820790
- Russell W. Schwab and Luis Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels, Anal. PDE 9 (2016), no. 3, 727–772. MR 3518535, DOI 10.2140/apde.2016.9.727
- Halil Mete Soner, Optimal control with state-space constraint. II, SIAM J. Control Optim. 24 (1986), no. 6, 1110–1122. MR 861089, DOI 10.1137/0324067
- Halil Mete Soner, Optimal control of jump-Markov processes and viscosity solutions, Stochastic differential systems, stochastic control theory and applications (Minneapolis, Minn., 1986) IMA Vol. Math. Appl., vol. 10, Springer, New York, 1988, pp. 501–511. MR 934740, DOI 10.1007/978-1-4613-8762-6_{2}9
Additional Information
- Nestor Guillen
- Affiliation: Department of Mathematics and Statistics, UMass, Amherst, Massachusetts 01003
- MR Author ID: 885423
- Email: nguillen@math.umass.edu
- Chenchen Mou
- Affiliation: Department of Mathematics, UCLA, Los Angeles, California 90095
- MR Author ID: 1125463
- Email: muchenchen@math.ucla.edu
- Andrzej Świȩch
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- Email: swiech@math.gatech.edu
- Received by editor(s): July 12, 2018
- Received by editor(s) in revised form: April 1, 2019, and April 16, 2019
- Published electronically: August 28, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 7327-7370
- MSC (2010): Primary 35D40, 35J60, 35R09, 45K05, 47G20
- DOI: https://doi.org/10.1090/tran/7877
- MathSciNet review: 4024555