Hereditarily normal manifolds of dimension greater than one may all be metrizable
HTML articles powered by AMS MathViewer
- by Alan Dow and Franklin D. Tall PDF
- Trans. Amer. Math. Soc. 372 (2019), 6805-6851 Request permission
Abstract:
P. J. Nyikos has asked whether it is consistent that every hereditarily normal manifold of dimension greater than one is metrizable, and he proved that it is if one assumes the consistency of a supercompact cardinal, and, in addition, that the manifolds are hereditarily collectionwise Hausdorff. We are able to omit these extra assumptions.References
- A. V. ArhangelâČskiÄ and S. P. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320; addendum, ibid. 15 (1968), 506. MR 0240767
- ZoltĂĄn T. Balogh, Locally nice spaces under Martinâs axiom, Comment. Math. Univ. Carolin. 24 (1983), no. 1, 63â87. MR 703926
- Keith J. Devlin and HÄvard JohnsbrÄten, The Souslin problem, Lecture Notes in Mathematics, Vol. 405, Springer-Verlag, Berlin-New York, 1974. MR 0384542, DOI 10.1007/BFb0065979
- Alan Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), no. 1, 17â72. MR 1031969
- Alan Dow, On the consistency of the Moore-MrĂłwka solution, Proceedings of the Symposium on General Topology and Applications (Oxford, 1989), 1992, pp. 125â141. MR 1173249, DOI 10.1016/0166-8641(92)90085-E
- Todd Eisworth and Peter Nyikos, Antidiamond principles and topological applications, Trans. Amer. Math. Soc. 361 (2009), no. 11, 5695â5719. MR 2529910, DOI 10.1090/S0002-9947-09-04705-9
- Ryszard Engelking, General topology, Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60], PWNâPolish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author. MR 0500780
- Ilijas Farah, OCA and towers in ${\scr P}(\textbf {N})/\textrm {fin}$, Comment. Math. Univ. Carolin. 37 (1996), no. 4, 861â866. MR 1440716
- A. J. Fischer, F. D. Tall, and S. Todorcevic, Forcing with a coherent Souslin tree and locally countable subspaces of countably tight compact spaces, Topology Appl. 195 (2015), 284â296. MR 3414892, DOI 10.1016/j.topol.2015.09.035
- William Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974), 294â298. MR 362240, DOI 10.1090/S0002-9939-1974-0362240-4
- D. H. Fremlin, Perfect pre-images of $\omega _i$ and the PFA, Topology Appl. 29 (1988), no. 2, 151â166. MR 949366, DOI 10.1016/0166-8641(88)90072-7
- Paul Larson, An $\textbf {S}_\textrm {max}$ variation for one Souslin tree, J. Symbolic Logic 64 (1999), no. 1, 81â98. MR 1683897, DOI 10.2307/2586753
- Paul B. Larson and Franklin D. Tall, Locally compact perfectly normal spaces may all be paracompact, Fund. Math. 210 (2010), no. 3, 285â300. MR 2733053, DOI 10.4064/fm210-3-4
- Paul Larson and Stevo Todorcevic, KatÄtovâs problem, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1783â1791. MR 1881016, DOI 10.1090/S0002-9947-01-02936-1
- Tadatoshi Miyamoto, $\omega _1$-Souslin trees under countable support iterations, Fund. Math. 142 (1993), no. 3, 257â261. MR 1220552, DOI 10.4064/fm-142-3-257-261
- P. Nyikos, Set-theoretic topology of manifolds, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp. 513â526. MR 698452
- Peter Nyikos, The theory of nonmetrizable manifolds, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 633â684. MR 776633
- Peter J. Nyikos, Mary Ellen Rudinâs contributions to the theory of nonmetrizable manifolds, The work of Mary Ellen Rudin (Madison, WI, 1991) Ann. New York Acad. Sci., vol. 705, New York Acad. Sci., New York, 1993, pp. 92â113. MR 1277883, DOI 10.1111/j.1749-6632.1993.tb12527.x
- Peter J. Nyikos, Complete normality and metrization theory of manifolds, Proceedings of the Janos Bolyai Mathematical Society 8th International Topology Conference (Gyula, 1998), 2002, pp. 181â192. MR 1921659, DOI 10.1016/S0166-8641(01)00181-X
- Peter J. Nyikos, Applications of some strong set-theoretic axioms to locally compact $T_5$ and hereditarily scwH spaces, Fund. Math. 176 (2003), no. 1, 25â45. MR 1971471, DOI 10.4064/fm176-1-3
- Peter Nyikos, Correction to: âComplete normality and metrization theory of manifoldsâ [Topology Appl. 123 (2002), no. 1 181â192; MR1921659], Topology Appl. 138 (2004), no. 1-3, 325â327. MR 2035491, DOI 10.1016/j.topol.2003.11.004
- Peter J. Nyikos, Crowding of functions, para-saturation of ideals, and topological applications, Topology Proc. 28 (2004), no. 1, 241â266. Spring Topology and Dynamical Systems Conference. MR 2105461
- Mary Ellen Rudin, The undecidability of the existence of a perfectly normal nonmetrizable manifold, Houston J. Math. 5 (1979), no. 2, 249â252. MR 546759
- Mary Ellen Rudin and Phillip Zenor, A perfectly normal nonmetrizable manifold, Houston J. Math. 2 (1976), no. 1, 129â134. MR 394560
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955, DOI 10.1007/978-3-662-21543-2
- Saharon Shelah and JindĆich Zapletal, Canonical models for $\aleph _1$-combinatorics, Ann. Pure Appl. Logic 98 (1999), no. 1-3, 217â259. MR 1696852, DOI 10.1016/S0168-0072(98)00022-0
- Z. SzentmiklĂłssy, $S$-spaces and $L$-spaces under Martinâs axiom, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. JĂĄnos Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 1139â1145. MR 588860
- F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Dissertationes Math. (Rozprawy Mat.) 148 (1977), 53. MR 454913
- Franklin D. Tall, Problems arising from Z. T. Baloghâs âLocally nice spaces under Martinâs axiomâ [Comment. Math. Univ. Carolin. 24 (1983), no. 1, 63â87; MR0703926], Topology Appl. 151 (2005), no. 1-3, 215â225. MR 2139753, DOI 10.1016/j.topol.2004.07.014
- Stevo TodorÄeviÄ, Directed sets and cofinal types, Trans. Amer. Math. Soc. 290 (1985), no. 2, 711â723. MR 792822, DOI 10.1090/S0002-9947-1985-0792822-9
- Stevo TodorÄeviÄ, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), no. 3-4, 261â294. MR 908147, DOI 10.1007/BF02392561
- Stevo TodorÄeviÄ, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR 980949, DOI 10.1090/conm/084
- S. TodorÄeviÄ, Forcing with a coherent Souslin tree, preprint, 2010, http://www.math.toronto.edu/\string ~stevo/todorcevic_chain_cond.pdf
Additional Information
- Alan Dow
- Affiliation: Department of Mathematics and Statistics, University of North Carolina, Charlotte, North Carolina 28223
- MR Author ID: 59480
- Email: adow@uncc.edu
- Franklin D. Tall
- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada
- MR Author ID: 170400
- Email: f.tall@math.utoronto.ca
- Received by editor(s): September 23, 2015
- Received by editor(s) in revised form: August 2, 2016, February 20, 2017, and November 28, 2017
- Published electronically: August 28, 2019
- Additional Notes: The first authorâs research was supported by NSF grant DMS-1501506
The second authorâs research was supported by NSERC grant A-7354 - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 6805-6851
- MSC (2010): Primary 54A35, 54D15, 54D45, 54E35, 03E05, 03E35, 03E65; Secondary 54D20, 03E55
- DOI: https://doi.org/10.1090/tran/7916
- MathSciNet review: 4024539