Limits of harmonic maps and crowned hyperbolic surfaces
HTML articles powered by AMS MathViewer
- by Subhojoy Gupta PDF
- Trans. Amer. Math. Soc. 372 (2019), 7573-7596 Request permission
Abstract:
We consider harmonic diffeomorphisms to a fixed hyperbolic target $Y$ from a family of domain Riemann surfaces degenerating along a Teichmüller ray. We use the work of Minsky to show that there is a limiting harmonic map from the conformal limit of the Teichmüller ray to a crowned hyperbolic surface. The target surface is the metric completion of the complement of a geodesic lamination on $Y$. The conformal limit is obtained by attaching half-planes and cylinders to the critical graph of the holomorphic quadratic differential determining the ray. As an application, we provide a new proof of the existence of harmonic maps from any punctured Riemann surface to a given crowned hyperbolic target of the same topological type.References
- S. I. Al’ber, On n-dimensional problems of the calculus of variations in the large, Sov. Math. Dokl. 6 (1964), 700–704.
- Thomas K. K. Au, Luen-Fai Tam, and Tom Y. H. Wan, Hopf differentials and the images of harmonic maps, Comm. Anal. Geom. 10 (2002), no. 3, 515–573. MR 1912257, DOI 10.4310/CAG.2002.v10.n3.a4
- Francis Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), no. 2, 233–297 (English, with English and French summaries). MR 1413855, DOI 10.5802/afst.829
- Francis Bonahon, Geodesic laminations on surfaces, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998) Contemp. Math., vol. 269, Amer. Math. Soc., Providence, RI, 2001, pp. 1–37. MR 1810534, DOI 10.1090/conm/269/04327
- Andrew J. Casson and Steven A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9, Cambridge University Press, Cambridge, 1988. MR 964685, DOI 10.1017/CBO9780511623912
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Subhojoy Gupta, Harmonic maps and wild Teichmüller spaces, to appear in Journal of Topology and Analysis, arXiv:1708.04780, 2017.
- Subhojoy Gupta, Meromorphic quadratic differentials with half-plane structures, Ann. Acad. Sci. Fenn. Math. 39 (2014), no. 1, 305–347. MR 3186818, DOI 10.5186/aasfm.2014.3908
- Subhojoy Gupta, Asymptoticity of grafting and Teichmüller rays II, Geom. Dedicata 176 (2015), 185–213. MR 3347577, DOI 10.1007/s10711-014-9963-5
- Zheng-Chao Han, Remarks on the geometric behavior of harmonic maps between surfaces, Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994) A K Peters, Wellesley, MA, 1996, pp. 57–66. MR 1417948
- Philip Hartman, On homotopic harmonic maps, Canadian J. Math. 19 (1967), 673–687. MR 214004, DOI 10.4153/CJM-1967-062-6
- N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126. MR 887284, DOI 10.1112/plms/s3-55.1.59
- John Hubbard and Howard Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), no. 3-4, 221–274. MR 523212, DOI 10.1007/BF02395062
- Zheng-Chao Han, Luen-Fai Tam, Andrejs Treibergs, and Tom Wan, Harmonic maps from the complex plane into surfaces with nonpositive curvature, Comm. Anal. Geom. 3 (1995), no. 1-2, 85–114. MR 1362649, DOI 10.4310/CAG.1995.v3.n1.a3
- Andy C. Huang, Harmonic maps of punctured surfaces to the hyperbolic plane, preprint, arXiv:1605.07715, 2016.
- Jürgen Jost, Compact Riemann surfaces, Universitext, Springer-Verlag, Berlin, 1997. An introduction to contemporary mathematics; Translated from the German manuscript by R. R. Simha. MR 1632873, DOI 10.1007/978-3-662-03446-0
- Michael Kapovich, Hyperbolic manifolds and discrete groups, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2009. Reprint of the 2001 edition. MR 2553578, DOI 10.1007/978-0-8176-4913-5
- Michael Keane, Interval exchange transformations, Math. Z. 141 (1975), 25–31. MR 357739, DOI 10.1007/BF01236981
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- Peter Li and Luen-Fai Tam, The heat equation and harmonic maps of complete manifolds, Invent. Math. 105 (1991), no. 1, 1–46. MR 1109619, DOI 10.1007/BF01232256
- Yair N. Minsky, Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom. 35 (1992), no. 1, 151–217. MR 1152229
- Yair N. Minsky, Extremal length estimates and product regions in Teichmüller space, Duke Math. J. 83 (1996), no. 2, 249–286. MR 1390649, DOI 10.1215/S0012-7094-96-08310-6
- R. C. Penner and J. L. Harer, Combinatorics of train tracks, Annals of Mathematics Studies, vol. 125, Princeton University Press, Princeton, NJ, 1992. MR 1144770, DOI 10.1515/9781400882458
- J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 2, 211–228. MR 510549, DOI 10.24033/asens.1344
- Jan Swoboda, Moduli spaces of Higgs bundles on degenerating Riemann surfaces, Adv. Math. 322 (2017), 637–681. MR 3720806, DOI 10.1016/j.aim.2017.10.028
- Richard Schoen and Shing Tung Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978), no. 3, 265–278. MR 478219, DOI 10.1007/BF01403164
- Michael Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989), no. 2, 449–479. MR 982185
- Michael Wolf, High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space, Topology 30 (1991), no. 4, 517–540. MR 1133870, DOI 10.1016/0040-9383(91)90037-5
- Michael Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space, J. Differential Geom. 33 (1991), no. 2, 487–539. MR 1094467
- Michael Wolf, Harmonic maps from a surface and degeneration in Teichmüller space, Low-dimensional topology (Knoxville, TN, 1992) Conf. Proc. Lecture Notes Geom. Topology, III, Int. Press, Cambridge, MA, 1994, pp. 217–239. MR 1316183, DOI 10.1159/000246841
Additional Information
- Subhojoy Gupta
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
- MR Author ID: 1001472
- Email: subhojoy@iisc.ac.in
- Received by editor(s): May 15, 2018
- Received by editor(s) in revised form: December 6, 2018
- Published electronically: June 10, 2019
- Additional Notes: The author thanks the SERB, DST (Grant No. MT/2017/000706) and the Infosys Foundation for its support.
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 7573-7596
- MSC (2010): Primary 30F60, 57M50, 58E20
- DOI: https://doi.org/10.1090/tran/7777
- MathSciNet review: 4029674