Irreducible 3-manifolds that cannot be obtained by 0-surgery on a knot
HTML articles powered by AMS MathViewer
- by Matthew Hedden, Min Hoon Kim, Thomas E. Mark and Kyungbae Park PDF
- Trans. Amer. Math. Soc. 372 (2019), 7619-7638 Request permission
Abstract:
We give two infinite families of examples of closed, orientable, irreducible 3-manifolds $M$ such that $b_1(M)=1$ and $\pi _1(M)$ has weight 1, but $M$ is not the result of Dehn surgery along a knot in the 3-sphere. This answers a question of Aschenbrenner, Friedl, and Wilton and provides the first examples of irreducible manifolds with $b_1=1$ that are known not to be surgery on a knot in the 3-sphere. One family consists of Seifert fibered 3-manifolds, while each member of the other family is not even homology cobordant to any Seifert fibered 3-manifold. None of our examples are homology cobordant to any manifold obtained by Dehn surgery along a knot in the 3-sphere.References
- Matthias Aschenbrenner, Stefan Friedl, and Henry Wilton, 3-manifold groups, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2015. MR 3444187, DOI 10.4171/154
- J. W. Alexander, On the subdivision of $3$-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6–8.
- David Auckly, Surgery numbers of $3$-manifolds: a hyperbolic example, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 21–34. MR 1470719, DOI 10.1090/amsip/002.1/02
- John A. Baldwin, Heegaard Floer homology and genus one, one-boundary component open books, J. Topol. 1 (2008), no. 4, 963–992. MR 2461862, DOI 10.1112/jtopol/jtn029
- Steven Boyer and Daniel Lines, Surgery formulae for Casson’s invariant and extensions to homology lens spaces, J. Reine Angew. Math. 405 (1990), 181–220. MR 1041002
- Maciej Borodzik and András Némethi, Heegaard-Floer homologies of $(+1)$ surgeries on torus knots, Acta Math. Hungar. 139 (2013), no. 4, 303–319. MR 3061478, DOI 10.1007/s10474-012-0280-x
- Noam D. Elkies, A characterization of the $\textbf {Z}^n$ lattice, Math. Res. Lett. 2 (1995), no. 3, 321–326. MR 1338791, DOI 10.4310/MRL.1995.v2.n3.a9
- David Gabai, Foliations and the topology of $3$-manifolds. III, J. Differential Geom. 26 (1987), no. 3, 479–536. MR 910018
- Francisco González-Acuña and Hamish Short, Knot surgery and primeness, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 1, 89–102. MR 809502, DOI 10.1017/S0305004100063969
- S. M. Gersten, Selected problems, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 545–551. MR 895631
- C. McA. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), no. 2, 371–415. MR 965210, DOI 10.1090/S0894-0347-1989-0965210-7
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Matthew Hedden, Knot Floer homology of Whitehead doubles, Geom. Topol. 11 (2007), 2277–2338. MR 2372849, DOI 10.2140/gt.2007.11.2277
- K. Hendricks, J. Hom, and T. Lidman, Applications of involutive Heegaard Floer homology, arXiv:1802.02008, 2018.
- Matthew Hedden, Se-Goo Kim, and Charles Livingston, Topologically slice knots of smooth concordance order two, J. Differential Geom. 102 (2016), no. 3, 353–393. MR 3466802
- Jennifer Hom, ÇağrıKarakurt, and Tye Lidman, Surgery obstructions and Heegaard Floer homology, Geom. Topol. 20 (2016), no. 4, 2219–2251. MR 3548466, DOI 10.2140/gt.2016.20.2219
- Jennifer Hom and Tye Lidman, A note on surgery obstructions and hyperbolic integer homology spheres, Proc. Amer. Math. Soc. 146 (2018), no. 3, 1363–1365. MR 3750247, DOI 10.1090/proc/13925
- Jennifer Hom, A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications 26 (2017), no. 2, 1740015, 24. MR 3604497, DOI 10.1142/S0218216517400156
- Neil R. Hoffman and Genevieve S. Walsh, The big Dehn surgery graph and the link of $S^3$, Proc. Amer. Math. Soc. Ser. B 2 (2015), 17–34. MR 3422666, DOI 10.1090/bproc/20
- Matthew Hedden and Liam Watson, On the geography and botany of knot Floer homology, Selecta Math. (N.S.) 24 (2018), no. 2, 997–1037. MR 3782416, DOI 10.1007/s00029-017-0351-5
- William Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. MR 565450, DOI 10.1090/cbms/043
- W. B. R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, DOI 10.2307/1970373
- Adam Simon Levine and Daniel Ruberman, Generalized Heegaard Floer correction terms, Proceedings of the Gökova Geometry-Topology Conference 2013, Gökova Geometry/Topology Conference (GGT), Gökova, 2014, pp. 76–96. MR 3287799
- Paolo Lisca and András I. Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds. II, J. Differential Geom. 75 (2007), no. 1, 109–141. MR 2282726
- V. D. Mazurov and E. I. Khukhro (eds.), The Kourovka notebook, Eighteenth edition, Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 2014. Unsolved problems in group theory. MR 3408705
- Robert Myers, Homology cobordisms, link concordances, and hyperbolic $3$-manifolds, Trans. Amer. Math. Soc. 278 (1983), no. 1, 271–288. MR 697074, DOI 10.1090/S0002-9947-1983-0697074-4
- Walter D. Neumann, An invariant of plumbed homology spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 125–144. MR 585657
- Walter D. Neumann and Frank Raymond, Seifert manifolds, plumbing, $\mu$-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 163–196. MR 518415
- Yi Ni and Zhongtao Wu, Cosmetic surgeries on knots in $S^3$, J. Reine Angew. Math. 706 (2015), 1–17. MR 3393360, DOI 10.1515/crelle-2013-0067
- Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261. MR 1957829, DOI 10.1016/S0001-8708(02)00030-0
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116. MR 2065507, DOI 10.1016/j.aim.2003.05.001
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), no. 3, 1159–1245. MR 2113020, DOI 10.4007/annals.2004.159.1159
- Peter Ozsváth and Zoltán Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005), no. 1, 39–61. MR 2153455, DOI 10.1215/S0012-7094-04-12912-4
- Peter S. Ozsváth and Zoltán Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008), no. 1, 101–153. MR 2377279, DOI 10.2140/agt.2008.8.101
- Jacob Andrew Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Harvard University. MR 2704683
- Nikolai Saveliev, Invariants for homology $3$-spheres, Encyclopaedia of Mathematical Sciences, vol. 140, Springer-Verlag, Berlin, 2002. Low-Dimensional Topology, I. MR 1941324, DOI 10.1007/978-3-662-04705-7
- H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238 (German). MR 1555366, DOI 10.1007/BF02398271
- M. Stoffregen, $\operatorname {Pin}(2)$-equivariant Seiberg-Witten Floer homology of Seifert fibrations, arXiv:1505.03234, https://arxiv.org/pdf/1505.03234.pdf, 2015.
- Matthew Henry Stoffregen, Applications of Pin(2)-equivariant Seiberg-Witten Floer Homology, ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–University of California, Los Angeles. MR 3697767
- Clifford Henry Taubes, Gauge theory on asymptotically periodic $4$-manifolds, J. Differential Geom. 25 (1987), no. 3, 363–430. MR 882829
- Andrew H. Wallace, Modifications and cobounding manifolds, Canadian J. Math. 12 (1960), 503–528. MR 125588, DOI 10.4153/CJM-1960-045-7
Additional Information
- Matthew Hedden
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- MR Author ID: 769768
- Email: mhedden@math.msu.edu
- Min Hoon Kim
- Affiliation: School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
- MR Author ID: 1067137
- Email: kminhoon@kias.re.kr
- Thomas E. Mark
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
- MR Author ID: 690723
- Email: tmark@virginia.edu
- Kyungbae Park
- Affiliation: Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- MR Author ID: 1124709
- Email: kyungbaepark@snu.ac.kr
- Received by editor(s): July 9, 2018
- Received by editor(s) in revised form: December 18, 2018
- Published electronically: May 20, 2019
- Additional Notes: The first author’s work on this project was partially supported by NSF CAREER grant DMS-1150872, DMS-1709016, and an NSF postdoctoral fellowship.
The second author was partially supported by the POSCO TJ Park Science Fellowship.
The third author was supported in part by a grant from the Simons Foundation (523795, TM).
The fourth author was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF, F2018R1C1B6008364).
Kyungbae Park is the corresponding author - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 7619-7638
- MSC (2010): Primary 57M25, 57M27, 57R58, 57R65
- DOI: https://doi.org/10.1090/tran/7786
- MathSciNet review: 4029676