On definite lattices bounded by integer surgeries along knots with slice genus at most 2
HTML articles powered by AMS MathViewer
- by Marco Golla and Christopher Scaduto PDF
- Trans. Amer. Math. Soc. 372 (2019), 7805-7829 Request permission
Abstract:
We classify the positive definite intersection forms that arise from smooth 4-manifolds with torsion-free homology bounded by positive integer surgeries on the right-handed trefoil. A similar, slightly less complete classification is given for the $(2,5)$-torus knot, and analogous results are obtained for integer surgeries on knots of slice genus at most 2. The proofs use input from Yang–Mills instanton gauge theory, Heegaard Floer correction terms, and the topology of singular complex plane curves.References
- Paolo Aceto and Marco Golla, Dehn surgeries and rational homology balls, Algebr. Geom. Topol. 17 (2017), no. 1, 487–527. MR 3604383, DOI 10.2140/agt.2017.17.487
- Selman Akbulut, On $2$-dimensional homology classes of $4$-manifolds, Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 1, 99–106. MR 433476, DOI 10.1017/S0305004100053718
- Sebastian Baader, Scissor equivalence for torus links, Bull. Lond. Math. Soc. 44 (2012), no. 5, 1068–1078. MR 2975163, DOI 10.1112/blms/bds044
- Kenneth L. Baker, Dorothy Buck, and Ana G. Lecuona, Some knots in $S^1\times S^2$ with lens space surgeries, Comm. Anal. Geom. 24 (2016), no. 3, 431–470. MR 3521314, DOI 10.4310/CAG.2016.v24.n3.a1
- Stefan Behrens and Marco Golla, Heegaard Floer correction terms, with a twist, Quantum Topol. 9 (2018), no. 1, 1–37. MR 3760877, DOI 10.4171/QT/102
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. I. Quadratic forms of small determinant, Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 17–41. MR 953276
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- S. K. Donaldson, Connections, cohomology and the intersection forms of $4$-manifolds, J. Differential Geom. 24 (1986), no. 3, 275–341. MR 868974, DOI 10.4310/jdg/1214440551
- S. K. Donaldson, The orientation of Yang-Mills moduli spaces and $4$-manifold topology, J. Differential Geom. 26 (1987), no. 3, 397–428. MR 910015, DOI 10.4310/jdg/1214441485
- Torsten Fenske, Rational 1- and 2-cuspidal plane curves, Beiträge Algebra Geom. 40 (1999), no. 2, 309–329. MR 1720107
- Kim A. Frøyshov, On Floer homology and four-manifolds with boundary, PhD thesis, University of Oxford, 1995.
- Kim A. Frøyshov, The Seiberg-Witten equations and four-manifolds with boundary, Math. Res. Lett. 3 (1996), no. 3, 373–390. MR 1397685, DOI 10.4310/MRL.1996.v3.n3.a7
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Torgunn Karoline Moe, Rational cuspidal curves, Master’s thesis, University of Oslo, 2008.
- Louise Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737–745. MR 383406, DOI 10.2140/pjm.1971.38.737
- Makoto Namba, Geometry of projective algebraic curves, Monographs and Textbooks in Pure and Applied Mathematics, vol. 88, Marcel Dekker, Inc., New York, 1984. MR 768929
- Yi Ni and Zhongtao Wu, Cosmetic surgeries on knots in $S^3$, J. Reine Angew. Math. 706 (2015), 1–17. MR 3393360, DOI 10.1515/crelle-2013-0067
- Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261. MR 1957829, DOI 10.1016/S0001-8708(02)00030-0
- Brendan Owens and Sašo Strle, Dehn surgeries and negative-definite four-manifolds, Selecta Math. (N.S.) 18 (2012), no. 4, 839–854. MR 3000471, DOI 10.1007/s00029-012-0086-2
- Brendan Owens and Sašo Strle, A characterization of the $\Bbb Z^n\oplus \Bbb Z(\delta )$ lattice and definite nonunimodular intersection forms, Amer. J. Math. 134 (2012), no. 4, 891–913. MR 2956253, DOI 10.1353/ajm.2012.0026
- Jacob Andrew Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Harvard University. MR 2704683
- Jacob Rasmussen, Lens space surgeries and a conjecture of Goda and Teragaito, Geom. Topol. 8 (2004), 1013–1031. MR 2087076, DOI 10.2140/gt.2004.8.1013
- Nikolai Saveliev, Invariants for homology $3$-spheres, Encyclopaedia of Mathematical Sciences, vol. 140, Springer-Verlag, Berlin, 2002. Low-Dimensional Topology, I. MR 1941324, DOI 10.1007/978-3-662-04705-7
- Christopher Scaduto, Niemeier lattices, smooth 4-manifolds and instantons, preprint, arXiv:1808:10321, 2018.
- Christopher Scaduto, On definite lattices bounded by a homology 3-sphere and Yang-Mills instanton Floer theory, preprint, arXiv:1805.07875, 2018.
- C. T. C. Wall, Singular points of plane curves, London Mathematical Society Student Texts, vol. 63, Cambridge University Press, Cambridge, 2004. MR 2107253, DOI 10.1017/CBO9780511617560
Additional Information
- Marco Golla
- Affiliation: CNRS, Laboratoire de Mathématiques Jean Leray, 44322 Nantes, France
- MR Author ID: 1098550
- Email: marco.golla@univ-nantes.fr
- Christopher Scaduto
- Affiliation: Simons Center for Geometry and Physics, SUNY Stony Brook University, Stony Brook, New York 11794
- MR Author ID: 1122383
- Email: cscaduto@scgp.stonybrook.edu
- Received by editor(s): October 1, 2018
- Received by editor(s) in revised form: February 11, 2019, and February 12, 2019
- Published electronically: June 21, 2019
- Additional Notes: The first author acknowledges support from CNRS though a “Jeunes chercheurs et jeunes chercheuses” grant and hospitality from the Simons Center for Geometry and Physics.
The second author was supported by NSF grant DMS-1503100. - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 7805-7829
- MSC (2010): Primary 57M25, 57M27
- DOI: https://doi.org/10.1090/tran/7823
- MathSciNet review: 4029682