Rational points of universal curves in positive characteristics
HTML articles powered by AMS MathViewer
- by Tatsunari Watanabe PDF
- Trans. Amer. Math. Soc. 372 (2019), 7639-7676 Request permission
Abstract:
Let $K$ be the function field of the moduli stack ${\mathcal M}_{g,n/{\mathbb F}_p}$ of curves over $\text {Spec}{\mathbb F}_p$, and let $C/K$ be the restriction of the universal curve to $\text {Spec} K$. We show that if $g\geq 3$, then the only $K$-rational points of $C$ are its $n$ tautological points. Furthermore, we show that if $g\geq 4$ and $n=0$, then Grothendieckâs section conjecture holds for $C$ over $K$. This extends Hainâs work in characteristic $0$ to positive characteristics.References
- Jeffrey D. Achter and Rachel Pries, Monodromy of the $p$-rank strata of the moduli space of curves, Int. Math. Res. Not. IMRN 15 (2008), Art. ID rnn053, 25. MR 2438069, DOI 10.1093/imrn/rnn053
- Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a contribution by Joseph Daniel Harris. MR 2807457, DOI 10.1007/978-3-540-69392-5
- M. Boggi and M. Pikaart, Galois covers of moduli of curves, Compositio Math. 120 (2000), no. 2, 171â191. MR 1739177, DOI 10.1023/A:1001731524036
- Fedor Alekseivich Bogomolov, Sur lâalgĂ©bricitĂ© des reprĂ©sentations $l$-adiques, C. R. Acad. Sci. Paris SĂ©r. A-B 290 (1980), no. 15, A701âA703 (French, with English summary). MR 574307
- Siegfried Bosch, Werner LĂŒtkebohmert, and Michel Raynaud, NĂ©ron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Ătudes Sci. Publ. Math. 36 (1969), 75â109. MR 262240, DOI 10.1007/BF02684599
- Clifford J. Earle and Irwin Kra, On sections of some holomorphic families of closed Riemann surfaces, Acta Math. 137 (1976), no. 1-2, 49â79. MR 425183, DOI 10.1007/BF02392412
- Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, NJ, 2012. MR 2850125
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Alexander Grothendieck, RevĂȘtements Ă©tales et groupe fondamental. Fasc. I: ExposĂ©s 1 Ă 5, Institut des Hautes Ătudes Scientifiques, Paris, 1963. TroisiĂšme Ă©dition, corrigĂ©e; SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique, 1960/61. MR 0217087
- Richard Hain, Genus 3 mapping class groups are not KĂ€hler, J. Topol. 8 (2015), no. 1, 213â246. MR 3335253, DOI 10.1112/jtopol/jtu020
- Richard M. Hain, The Hodge de Rham theory of relative Malcev completion, Ann. Sci. Ăcole Norm. Sup. (4) 31 (1998), no. 1, 47â92 (English, with English and French summaries). MR 1604294, DOI 10.1016/S0012-9593(98)80018-9
- Richard Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), no. 3, 597â651. MR 1431828, DOI 10.1090/S0894-0347-97-00235-X
- Richard Hain, Monodromy of codimension 1 subfamilies of universal curves, Duke Math. J. 161 (2012), no. 7, 1351â1378. MR 2922377, DOI 10.1215/00127094-1593299
- Richard Hain, Rational points of universal curves, J. Amer. Math. Soc. 24 (2011), no. 3, 709â769. MR 2784328, DOI 10.1090/S0894-0347-2011-00693-0
- Richard Hain, Relative weight filtrations on completions of mapping class groups, Groups of diffeomorphisms, Adv. Stud. Pure Math., vol. 52, Math. Soc. Japan, Tokyo, 2008, pp. 309â368. MR 2509715, DOI 10.2969/aspm/05210309
- Richard Hain and Makoto Matsumoto, Galois actions on fundamental groups of curves and the cycle $C-C^-$, J. Inst. Math. Jussieu 4 (2005), no. 3, 363â403. MR 2197063, DOI 10.1017/S1474748005000095
- Richard Hain and Makoto Matsumoto, Relative pro-$l$ completions of mapping class groups, J. Algebra 321 (2009), no. 11, 3335â3374. MR 2510052, DOI 10.1016/j.jalgebra.2009.02.014
- Richard Hain and Makoto Matsumoto, Weighted completion of Galois groups and Galois actions on the fundamental group of $\Bbb P^1-\{0,1,\infty \}$, Compositio Math. 139 (2003), no. 2, 119â167. MR 2025807, DOI 10.1023/B:COMP.0000005077.42732.93
- John Hubbard, Sur la non-existence de sections analytiques Ă la courbe universelle de TeichmĂŒller, C. R. Acad. Sci. Paris SĂ©r. A-B 274 (1972), A978âA979 (French). MR 294719
- M. Pikaart and A. J. de Jong, Moduli of curves with non-abelian level structure, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, BirkhĂ€user Boston, Boston, MA, 1995, pp. 483â509. MR 1363068, DOI 10.1007/978-1-4612-4264-2_{1}8
- Minhyong Kim, The motivic fundamental group of $\mathbf P^1\sbs \{0,1,\infty \}$ and the theorem of Siegel, Invent. Math. 161 (2005), no. 3, 629â656. MR 2181717, DOI 10.1007/s00222-004-0433-9
- James S. Milne, Ătale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- AndrĂ© NĂ©ron, ProblĂšmes arithmĂ©tiques et gĂ©omĂ©triques rattachĂ©s Ă la notion de rang dâune courbe algĂ©brique dans un corps, Bull. Soc. Math. France 80 (1952), 101â166 (French). MR 56951, DOI 10.24033/bsmf.1427
- B. Noohi, Fundamental groups of algebraic stacks, J. Inst. Math. Jussieu 3 (2004), no. 1, 69â103. MR 2036598, DOI 10.1017/S1474748004000039
- B. Noohi, Foundations of topological stacks I, arXiv:math/0503247 (2005).
- M. Pikaart, Moduli spaces of curves: Stable cohomology and Galois covers, 1997. Thesis (Ph.D)âUniversity of Utrecht.
- Jakob Stix, Rational points and arithmetic of fundamental groups, Lecture Notes in Mathematics, vol. 2054, Springer, Heidelberg, 2013. Evidence for the section conjecture. MR 2977471, DOI 10.1007/978-3-642-30674-7
- TamĂĄs Szamuely, Galois groups and fundamental groups, Cambridge Studies in Advanced Mathematics, vol. 117, Cambridge University Press, Cambridge, 2009. MR 2548205, DOI 10.1017/CBO9780511627064
- H. Zieschang, E. Vogt, and H.-D. Coldewey, FlÀchen und ebene diskontinuierliche Gruppen, Lecture Notes in Mathematics, Vol. 122, Springer-Verlag, Berlin-New York, 1970 (German). MR 0262378
Additional Information
- Tatsunari Watanabe
- Affiliation: Mathematics Department, Embry-Riddle Aeronautical University, Prescott, Arizona 86301
- MR Author ID: 1256428
- Email: watanabt@erau.edu
- Received by editor(s): November 30, 2016
- Received by editor(s) in revised form: January 4, 2019
- Published electronically: July 29, 2019
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 7639-7676
- MSC (2010): Primary 14D23, 14D10, 14H30, 14H10
- DOI: https://doi.org/10.1090/tran/7842
- MathSciNet review: 4029677