Simple ${\mathcal L}$-invariants for GL$_n$
HTML articles powered by AMS MathViewer
- by Yiwen Ding PDF
- Trans. Amer. Math. Soc. 372 (2019), 7993-8042 Request permission
Abstract:
Let $L$ be a finite extension of ${\mathbb Q}_p$, and $\rho _L$ be an $n$-dimensional semistable noncrystalline $p$-adic representation of ${\mathrm {Gal}}_L$ with full monodromy rank. Via a study of Breuil’s (simple) ${\mathcal L}$-invariants, we attach to $\rho _L$ a locally ${\mathbb Q}_p$-analytic representation $\Pi (\rho _L)$ of ${\mathrm {GL}}_n(L)$, which carries the exact information of the Fontaine–Mazur simple ${\mathcal L}$-invariants of $\rho _L$. When $\rho _L$ comes from an automorphic representation of $G({\mathbb A}_{F^+})$ (for a unitary group $G$ over a totally real field $F^+$ which is compact at infinite places and ${\mathrm {GL}}_n$ at $p$-adic places), we prove under mild hypothesis that $\Pi (\rho _L)$ is a subrepresentation of the associated Hecke-isotypic subspaces of the Banach spaces of $p$-adic automorphic forms on $G({\mathbb A}_{F^+})$. In other words, we prove the equality of Breuil’s simple ${\mathcal L}$-invariants and Fontaine–Mazur simple $L$-invariants.References
- Joël Bellaïche and Gaëtan Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009), xii+314 (English, with English and French summaries). MR 2656025
- John Bergdall and Przemysław Chojecki, An adjunction formula for the Emerton-Jacquet functor, Israel J. Math. 223 (2018), no. 1, 1–52. MR 3773056, DOI 10.1007/s11856-017-1611-y
- Christophe Breuil, Invariant $\scr L$ et série spéciale $p$-adique, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 4, 559–610 (French, with English and French summaries). MR 2097893, DOI 10.1016/j.ansens.2004.02.001
- Christophe Breuil, The emerging $p$-adic Langlands programme, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 203–230. MR 2827792
- Christophe Breuil, Série spéciale $p$-adique et cohomologie étale complétée, Astérisque 331 (2010), 65–115 (French, with English and French summaries). MR 2667887
- Christophe Breuil, Vers le socle localement analytique pour $\textrm {GL}_n$ II, Math. Ann. 361 (2015), no. 3-4, 741–785 (French, with French summary). MR 3319547, DOI 10.1007/s00208-014-1086-7
- C. Breuil, $\mathrm {Ext}^1$ localement analytique et compatibilité local-global, Amer. J. Math. (to appear).
- Christophe Breuil, Socle localement analytique I, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 2, 633–685 (French, with English and French summaries). MR 3477886, DOI 10.5802/aif.3021
- C. Breuil and Y. Ding, Higher $\mathcal {L}$-invariants for $\mathrm {GL}_3(\mathbb {Q}_p)$ and local-global compatibility, preprint, arXiv:1803.10498.
- Christophe Breuil and Matthew Emerton, Représentations $p$-adiques ordinaires de $\textrm {GL}_2(\mathbf Q_p)$ et compatibilité local-global, Astérisque 331 (2010), 255–315 (French, with English and French summaries). MR 2667890
- Christophe Breuil, Eugen Hellmann, and Benjamin Schraen, Smoothness and classicality on eigenvarieties, Invent. Math. 209 (2017), no. 1, 197–274. MR 3660309, DOI 10.1007/s00222-016-0708-y
- Christophe Breuil, Eugen Hellmann, and Benjamin Schraen, Une interprétation modulaire de la variété trianguline, Math. Ann. 367 (2017), no. 3-4, 1587–1645 (French, with English and French summaries). MR 3623233, DOI 10.1007/s00208-016-1422-1
- C. Breuil and F. Herzig, Towards the finite slope part for $\mathrm {GL}_n$, arXiv:1806.02695 (2018).
- Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty, Vytautas Paškūnas, and Sug Woo Shin, Patching and the $p$-adic local Langlands correspondence, Camb. J. Math. 4 (2016), no. 2, 197–287. MR 3529394, DOI 10.4310/CJM.2016.v4.n2.a2
- W. Casselman and D. Wigner, Continuous cohomology and a conjecture of Serre’s, Invent. Math. 25 (1974), 199–211. MR 352333, DOI 10.1007/BF01389727
- Gaëtan Chenevier, On the infinite fern of Galois representations of unitary type, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 6, 963–1019 (English, with English and French summaries). MR 2919688, DOI 10.24033/asens.2158
- Pierre Colmez, Représentations triangulines de dimension 2, Astérisque 319 (2008), 213–258 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493219
- Yiwen Ding, $\mathcal {L}$-invariants and local-global compatibility for the group $\textrm {GL}_2/F$, Forum Math. Sigma 4 (2016), Paper No. e13, 49. MR 3510330, DOI 10.1017/fms.2016.9
- Yiwen Ding, $\mathcal L$-invariants, partially de Rham families, and local-global compatibility, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 4, 1457–1519 (English, with English and French summaries). MR 3711132, DOI 10.5802/aif.3115
- Matthew Emerton, $p$-adic $L$-functions and unitary completions of representations of $p$-adic reductive groups, Duke Math. J. 130 (2005), no. 2, 353–392. MR 2181093, DOI 10.1215/00127094-8230018
- Matthew Emerton, Jacquet modules of locally analytic representations of $p$-adic reductive groups. I. Construction and first properties, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 5, 775–839 (English, with English and French summaries). MR 2292633, DOI 10.1016/j.ansens.2006.08.001
- M. Emerton, Jacquet modules of locally analytic representations of $p$-adic reductive groups II. The relation to parabolic induction, J. Inst. Math. Jussieu (to appear).
- Matthew Emerton, Locally analytic representation theory of $p$-adic reductive groups: a summary of some recent developments, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 407–437. MR 2392361, DOI 10.1017/CBO9780511721267.012
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 173675
- Kiran S. Kedlaya, Jonathan Pottharst, and Liang Xiao, Cohomology of arithmetic families of $(\varphi ,\Gamma )$-modules, J. Amer. Math. Soc. 27 (2014), no. 4, 1043–1115. MR 3230818, DOI 10.1090/S0894-0347-2014-00794-3
- Mark Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), no. 2, 513–546. MR 2373358, DOI 10.1090/S0894-0347-07-00576-0
- Jan Kohlhaase, The cohomology of locally analytic representations, J. Reine Angew. Math. 651 (2011), 187–240. MR 2774315, DOI 10.1515/CRELLE.2011.013
- Ruochuan Liu, Cohomology and duality for $(\phi ,\Gamma )$-modules over the Robba ring, Int. Math. Res. Not. IMRN 3 (2008), Art. ID rnm150, 32. MR 2416996, DOI 10.1093/imrn/rnm150
- R. Liu, Triangulation of refined families, Comment. Math. Helv. 90 (2015), no. 4, 831–904. MR 3433281, DOI 10.4171/CMH/372
- Kentaro Nakamura, Deformations of trianguline $B$-pairs and Zariski density of two dimensional crystalline representations, J. Math. Sci. Univ. Tokyo 20 (2013), no. 4, 461–568. MR 3185293
- Sascha Orlik, On extensions of generalized Steinberg representations, J. Algebra 293 (2005), no. 2, 611–630. MR 2173717, DOI 10.1016/j.jalgebra.2005.03.028
- Sascha Orlik and Benjamin Schraen, The Jordan-Hölder series of the locally analytic Steinberg representation, Doc. Math. 19 (2014), 647–671. MR 3247798
- Sascha Orlik and Matthias Strauch, On Jordan-Hölder series of some locally analytic representations, J. Amer. Math. Soc. 28 (2015), no. 1, 99–157. MR 3264764, DOI 10.1090/S0894-0347-2014-00803-1
- Peter Schneider and Jeremy Teitelbaum, Locally analytic distributions and $p$-adic representation theory, with applications to $\textrm {GL}_2$, J. Amer. Math. Soc. 15 (2002), no. 2, 443–468. MR 1887640, DOI 10.1090/S0894-0347-01-00377-0
- Peter Schneider and Jeremy Teitelbaum, Algebras of $p$-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145–196. MR 1990669, DOI 10.1007/s00222-002-0284-1
- Benjamin Schraen, Représentations $p$-adiques de $\textrm {GL}_2(L)$ et catégories dérivées, Israel J. Math. 176 (2010), 307–361 (French, with English summary). MR 2653197, DOI 10.1007/s11856-010-0031-z
- Benjamin Schraen, Représentations localement analytiques de $\textrm {GL}_3(\Bbb Q_p)$, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 1, 43–145 (French, with English and French summaries). MR 2760195, DOI 10.24033/asens.2140
- B. Schraen, Erratum to “Représentations localement analytiques de $\mathrm {GL}_3(\mathbb {Q}_p)$", https://www.math.u-psud.fr/~schraen/Erratum_GL3.pdf.
Additional Information
- Yiwen Ding
- Affiliation: BICMR, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, People’s Republic of China
- MR Author ID: 984199
- Email: yiwen.ding@bicmr.pku.edu.cn
- Received by editor(s): August 31, 2018
- Received by editor(s) in revised form: March 4, 2019
- Published electronically: July 2, 2019
- Additional Notes: This work was supported by EPSRC Grant No. EP/L025485/1 and by Grant No. 8102600240 from BICMR
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 7993-8042
- MSC (2010): Primary 11S80; Secondary 22D12
- DOI: https://doi.org/10.1090/tran/7859
- MathSciNet review: 4029688