Effective sup-norm bounds on average for cusp forms of even weight
HTML articles powered by AMS MathViewer
- by J. S. Friedman, J. Jorgenson and J. Kramer PDF
- Trans. Amer. Math. Soc. 372 (2019), 7735-7766 Request permission
Abstract:
Let $\Gamma \subset \mathrm {PSL}_{2}(\mathbb {R})$ be a Fuchsian subgroup of the first kind acting on the upper half-plane $\mathbb {H}$. Consider the $d_{2k}$-dimensional space of cusp forms $\mathcal {S}_{2k}^{\Gamma }$ of weight $2k$ for $\Gamma$, and let $\{f_{1},\ldots ,f_{d_{2k}}\}$ be an orthonormal basis of $\mathcal {S}_{2k}^{\Gamma }$ with respect to the Petersson inner product. In this paper, we will give effective upper and lower bounds for the supremum of the quantity $S_{2k}^{\Gamma }(z):=\sum _{j=1}^{d_{2k}}\vert f_{j}(z)\vert ^{2} \mathrm {Im}(z)^{2k}$ as $z$ ranges through $\mathbb {H}$.References
- Ahmed Abbes and Emmanuel Ullmo, Comparaison des métriques d’Arakelov et de Poincaré sur $X_0(N)$, Duke Math. J. 80 (1995), no. 2, 295–307 (French). MR 1369394, DOI 10.1215/S0012-7094-95-08012-0
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966. MR 0208797
- Hugues Auvray, Xiaonan Ma, and George Marinescu, Bergman kernels on punctured Riemann surfaces, C. R. Math. Acad. Sci. Paris 354 (2016), no. 10, 1018–1022 (English, with English and French summaries). MR 3553906, DOI 10.1016/j.crma.2016.08.006
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR 1393195
- Robert J. Berman and Gerard Freixas i Montplet, An arithmetic Hilbert-Samuel theorem for singular hermitian line bundles and cusp forms, Compos. Math. 150 (2014), no. 10, 1703–1728. MR 3269464, DOI 10.1112/S0010437X14007325
- Valentin Blomer and Roman Holowinsky, Bounding sup-norms of cusp forms of large level, Invent. Math. 179 (2010), no. 3, 645–681. MR 2587342, DOI 10.1007/s00222-009-0228-0
- Fwu Ranq Chang, On the diameters of compact Riemann surfaces, Proc. Amer. Math. Soc. 65 (1977), no. 2, 274–276. MR 447556, DOI 10.1090/S0002-9939-1977-0447556-8
- Jürgen Elstrodt, Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, Math. Ann. 203 (1973), 295–300 (German). MR 360472, DOI 10.1007/BF01351910
- J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. MR 1483315, DOI 10.1007/978-3-662-03626-6
- L. D. Faddeev, The eigenfunction expansion of Laplace’s operator on the fundamental domain of a discrete group on the Lobačevskiĭ plane, Trudy Moskov. Mat. Obšč. 17 (1967), 323–350 (Russian). MR 0236768
- John D. Fay, Fourier coefficients of the resolvent for a Fuchsian group, J. Reine Angew. Math. 293(294) (1977), 143–203. MR 506038, DOI 10.1515/crll.1977.293-294.143
- Jürgen Fischer, An approach to the Selberg trace formula via the Selberg zeta-function, Lecture Notes in Mathematics, vol. 1253, Springer-Verlag, Berlin, 1987. MR 892317, DOI 10.1007/BFb0077696
- Joshua S. Friedman, Jay Jorgenson, and Jürg Kramer, Uniform sup-norm bounds on average for cusp forms of higher weights, Arbeitstagung Bonn 2013, Progr. Math., vol. 319, Birkhäuser/Springer, Cham, 2016, pp. 127–154. MR 3618050, DOI 10.1007/978-3-319-43648-7_{6}
- H. van Haeringen and L. P. Kok, Table errata: Table of integrals, series, and products [corrected and enlarged edition, Academic Press, New York, 1980; MR 81g:33001] by I. S. Gradshteyn [I. S. Gradshteĭn] and I. M. Ryzhik, Math. Comp. 39 (1982), no. 160, 747–757. MR 669666, DOI 10.1090/S0025-5718-1982-0669666-2
- Gergely Harcos and Nicolas Templier, On the sup-norm of Maass cusp forms of large level. III, Math. Ann. 356 (2013), no. 1, 209–216. MR 3038127, DOI 10.1007/s00208-012-0844-7
- Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. MR 1942691, DOI 10.1090/gsm/053
- Ariyan Javanpeykar, Polynomial bounds for Arakelov invariants of Belyi curves, Algebra Number Theory 8 (2014), no. 1, 89–140. With an appendix by Peter Bruin. MR 3207580, DOI 10.2140/ant.2014.8.89
- Ariyan Javanpeykar, An effective Arakelov-theoretic version of the hyperbolic isogeny theorem, Math. Proc. Cambridge Philos. Soc. 160 (2016), no. 3, 463–476. MR 3479545, DOI 10.1017/S0305004115000791
- J. Jorgenson and J. Kramer, Bounding the sup-norm of automorphic forms, Geom. Funct. Anal. 14 (2004), no. 6, 1267–1277. MR 2135167, DOI 10.1007/s00039-004-0491-6
- Jay Jorgenson and Jürg Kramer, Sup-norm bounds for automorphic forms and Eisenstein series, Arithmetic geometry and automorphic forms, Adv. Lect. Math. (ALM), vol. 19, Int. Press, Somerville, MA, 2011, pp. 407–444. MR 2906915
- Jay Jorgenson and Jürg Kramer, Effective bounds for Faltings’s delta function, Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), no. 3, 665–698 (English, with English and French summaries). MR 3266709, DOI 10.5802/afst.1420
- Serge Lang, $\textrm {SL}_2(\textbf {R})$, Graduate Texts in Mathematics, vol. 105, Springer-Verlag, New York, 1985. Reprint of the 1975 edition. MR 803508
- Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR 0232968, DOI 10.1007/978-3-662-11761-3
- P. Michel and E. Ullmo, Points de petite hauteur sur les courbes modulaires $X_0(N)$, Invent. Math. 131 (1998), no. 3, 645–674 (French, with English summary). MR 1614563, DOI 10.1007/s002220050216
- Kazuto Oshima, Completeness relations for Maass Laplacians and heat kernels on the super Poincaré upper half-plane, J. Math. Phys. 31 (1990), no. 12, 3060–3063. MR 1079254, DOI 10.1063/1.528959
- Walter Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I, II, Math. Ann. 167 (1966), 292–337; ibid. 168 (1966), 261–324 (German). MR 0243062, DOI 10.1007/BF01361556
- Joseph H. Silverman, Heights and elliptic curves, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 253–265. MR 861979
- Nicolas Templier, Hybrid sup-norm bounds for Hecke-Maass cusp forms, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 8, 2069–2082. MR 3372076, DOI 10.4171/JEMS/550
Additional Information
- J. S. Friedman
- Affiliation: Department of Mathematics and Science, United States Merchant Marine Academy, 300 Steamboat Road, Kings Point, New York 11024
- MR Author ID: 772419
- Email: FriedmanJ@usmma.edu
- J. Jorgenson
- Affiliation: Department of Mathematics, The City College of New York, Convent Avenue at 138th Street, New York, New York 10031
- MR Author ID: 292611
- Email: jjorgenson@mindspring.com
- J. Kramer
- Affiliation: Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin, Germany
- MR Author ID: 227725
- Email: kramer@math.hu-berlin.de
- Received by editor(s): January 22, 2018
- Received by editor(s) in revised form: August 14, 2018, and January 14, 2019
- Published electronically: September 9, 2019
- Additional Notes: The views expressed in this article are the first author’s own and not those of the U.S. Merchant Marine Academy, the Maritime Administration, the Department of Transportation, or the United States Government.
The second author acknowledges support from numerous PSC-CUNY grants.
The third author acknowledges support from the DFG Graduate School Berlin Mathematical School. - © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 7735-7766
- MSC (2010): Primary 11F11, 11F72, 30F10; Secondary 47A10
- DOI: https://doi.org/10.1090/tran/7933
- MathSciNet review: 4029679