Borel functors, interpretations, and strong conceptual completeness for $\mathcal {L}_{\omega _1\omega }$
HTML articles powered by AMS MathViewer
- by Ruiyuan Chen PDF
- Trans. Amer. Math. Soc. 372 (2019), 8955-8983 Request permission
Abstract:
We prove a strong conceptual completeness theorem (in the sense of Makkai) for the infinitary logic $\mathcal {L}_{\omega _1\omega }$: every countable $\mathcal {L}_{\omega _1\omega }$-theory can be canonically recovered from its standard Borel groupoid of countable models, up to a suitable syntactical notion of equivalence. This implies that given two theories $(\mathcal {L}, \mathcal {T})$ and $(\mathcal {L}’, \mathcal {T}’)$ (in possibly different languages $\mathcal {L}, \mathcal {L}’$), every Borel functor $\text {Mod}(\mathcal {L}’, \mathcal {T}’) \to \text {Mod}(\mathcal {L}, \mathcal {T})$ between the respective groupoids of countable models is Borel naturally isomorphic to the functor induced by some $\mathcal {L}’_{\omega _1\omega }$-interpretation of $\mathcal {T}$ in $\mathcal {T}’$. This generalizes a recent result of Harrison-Trainor, Miller, and Montalbán in the $\aleph _0$-categorical case.References
- J. Adámek, F. W. Lawvere, and J. Rosický, How algebraic is algebra?, Theory Appl. Categ. 8 (2001), 253–283. MR 1825435
- Jiří Adámek and Jiří Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994. MR 1294136, DOI 10.1017/CBO9780511600579
- Steve Awodey and Henrik Forssell, First-order logical duality, Ann. Pure Appl. Logic 164 (2013), no. 3, 319–348. MR 3001549, DOI 10.1016/j.apal.2012.10.016
- Howard Becker and Alexander S. Kechris, The descriptive set theory of Polish group actions, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996. MR 1425877, DOI 10.1017/CBO9780511735264
- Francis Borceux, Handbook of categorical algebra. 1, Encyclopedia of Mathematics and its Applications, vol. 50, Cambridge University Press, Cambridge, 1994. Basic category theory. MR 1291599
- Matthew de Brecht, Quasi-Polish spaces, Ann. Pure Appl. Logic 164 (2013), no. 3, 356–381. MR 3001551, DOI 10.1016/j.apal.2012.11.001
- Su Gao, Invariant descriptive set theory, Pure and Applied Mathematics (Boca Raton), vol. 293, CRC Press, Boca Raton, FL, 2009. MR 2455198
- Matthew Harrison-Trainor, Russell Miller, and Antonio Montalbán, Borel functors and infinitary interpretations, J. Symb. Log. 83 (2018), no. 4, 1434–1456. MR 3893282, DOI 10.1017/jsl.2017.81
- Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741, DOI 10.1017/CBO9780511551574
- Peter T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- Peter T. Johnstone, Sketches of an elephant: a topos theory compendium. Vol. 2, Oxford Logic Guides, vol. 44, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 2063092
- André Joyal and Myles Tierney, An extension of the Galois theory of Grothendieck, Mem. Amer. Math. Soc. 51 (1984), no. 309, vii+71. MR 756176, DOI 10.1090/memo/0309
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- I. J. Le Creurer, F. Marmolejo, and E. M. Vitale, Beck’s theorem for pseudo-monads, J. Pure Appl. Algebra 173 (2002), no. 3, 293–313. MR 1916482, DOI 10.1016/S0022-4049(02)00038-5
- E. G. K. Lopez-Escobar, An interpolation theorem for denumerably long formulas, Fund. Math. 57 (1965), 253–272. MR 188059, DOI 10.4064/fm-57-3-253-272
- Martino Lupini, Polish groupoids and functorial complexity, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6683–6723. With an appendix by Anush Tserunyan. MR 3660238, DOI 10.1090/tran/7102
- M. Makkai, Stone duality for first order logic, Adv. in Math. 65 (1987), no. 2, 97–170. MR 900266, DOI 10.1016/0001-8708(87)90020-X
- Michael Makkai, Strong conceptual completeness for first-order logic, Ann. Pure Appl. Logic 40 (1988), no. 2, 167–215. MR 972521, DOI 10.1016/0168-0072(88)90019-X
- Michael Makkai, A theorem on Barr-exact categories, with an infinitary generalization, Ann. Pure Appl. Logic 47 (1990), no. 3, 225–268. MR 1058298, DOI 10.1016/0168-0072(90)90036-2
- Michael Makkai and Gonzalo E. Reyes, First order categorical logic, Lecture Notes in Mathematics, Vol. 611, Springer-Verlag, Berlin-New York, 1977. Model-theoretical methods in the theory of topoi and related categories. MR 0505486, DOI 10.1007/BFb0066201
- Julien Melleray and Todor Tsankov, Generic representations of abelian groups and extreme amenability, Israel J. Math. 198 (2013), no. 1, 129–167. MR 3096634, DOI 10.1007/s11856-013-0036-5
- H.-E. Porst and W. Tholen, Concrete dualities, Category theory at work (Bremen, 1990) Res. Exp. Math., vol. 18, Heldermann, Berlin, 1991, pp. 111–136. MR 1147921
- B. R. Tennison, Sheaf theory, London Mathematical Society Lecture Note Series, No. 20, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR 0404390, DOI 10.1017/CBO9780511661761
- Friedrich Ulmer, Properties of dense and relative adjoint functors, J. Algebra 8 (1968), 77–95. MR 222138, DOI 10.1016/0021-8693(68)90036-7
- Robert Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75), 269–294. MR 363912, DOI 10.4064/fm-82-3-269-294
Additional Information
- Ruiyuan Chen
- Affiliation: Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
- MR Author ID: 1012788
- Email: ruiyuan@illinois.edu
- Received by editor(s): April 4, 2018
- Received by editor(s) in revised form: June 16, 2019
- Published electronically: September 23, 2019
- Additional Notes: The author’s research was partially supported by NSERC PGS D
- © Copyright 2019 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 372 (2019), 8955-8983
- MSC (2010): Primary 03E15; Secondary 03G30, 03C15, 18C10
- DOI: https://doi.org/10.1090/tran/7950
- MathSciNet review: 4029718